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Non-dominant hand movement facilitates the
frontal N30 somatosensory evoked potential
Wynn Legon, Jennifer K Dionne, Sean K Meehan, W Richard Staines*

Abstract

Background: Previous literature has shown that the frontal N30 is increased during movement of the hand
contralateral to median nerve stimulation. This finding was a result of non-dominant left hand movement in right-
handed participants. It is unclear however if the effect depends upon non-dominant hand movement or if this is a
generalized phenomenon across the upper-limbs. This study tests the effect of dominant and non-dominant hand
movement upon contralateral frontal and parietal somatosensory evoked potentials (SEPs) and further tests if this
relationship persists in left hand dominant participants. Median nerve SEPs were elicited from the wrist
contralateral to movement in both right hand and left hand dominant participants alternating the movement hand
in separate blocks. Participants were required to volitionally squeeze (~ 20% of a maximal voluntary contraction) a
pressure-sensitive bulb every ~3 seconds with the hand contralateral to median nerve stimulation. SEPs were
continuously collected during the task and individual traces were grouped into time bins relative to movement
according to the timing of components of the Bereitschaftspotential. SEPs were then averaged and quantified from
both FCZ and CP3/4 scalp electrode sites during both the squeeze task and at rest.

Results: The N30 is facilitated during non-dominant hand movement in both right and left hand dominant
individuals. There was no effect for dominant hand movement in either group.

Conclusions: N30 amplitude increase may be a result of altered sensory gating from motor areas known to be
specifically active during non-dominant hand movement.

Background
Somatosensory information from the hand is first pro-
cessed cortically in contralateral primary somatosensory
cortex (S1) but also reaches classically defined motor
areas in the frontal cortex [1]. The N30 component of
the median nerve somatosensory evoked potential (SEP)
is a promising physiological index of somatosensory
inflow to frontal motor cortical structures. It has been
hypothesized to be generated in the supplementary
motor area (SMA) [2,3] and its amplitude to reflect
incoming proprioceptive sensory information [4-6].
The N30 has been investigated under various sensory-

motor paradigms and generally been shown to behave
similarly to parietal SEP components [7-9] though does
display unique modulation independent of parietal SEP
components under specific motor-related conditions
such as mental imagery and ideation [10,11] as well as a

distinct attenuation in Parkinson’s disease (PD). The
depressed N30 in PD patients can be transiently facili-
tated with dopamine agonist administration [12,13], pal-
lidotomy [14] or globus pallidus interal segment (GPi)/
sub-thalamic nucleus (STN) stimulation [15] and as
such, N30 amplitude has been hypothesized to reflect
the proper functioning of specific motor pathways link-
ing basal ganglia to frontal cortex [16].
The N30 has previously been demonstrated to be

facilitated independently of parietal components during
upper-limb movements contralateral to the stimulating
site [17,18]. For example, Legon et al. [18] demonstrated
that N30 facilitation only occurs during but not before
or after voluntary movement, suggesting an influence of
motor cortical activity as a result of contralateral hand
movement. However, it is unclear if N30 facilitation is
contingent upon the relationship between the side of
sensory input and motor output as a reversal of sensory
input and motor output across the upper limbs was not
investigated. It may be that hemispheric dominance
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affects sensorimotor integration across the upper-limbs
as the effect of sensory input upon motor cortical activ-
ity is different across hemispheres [19]. Furthermore,
use of the non-dominant hand results in unique recruit-
ment of basal-ganglia nuclei [20], SMA [21], ipsilateral
motor cortex [22,23] and subsequent differences in
inter-hemispheric inhibition between motor cortices
both before and during movement [24,25].
There are a few reports employing SEPs that have

shown an effect of contralateral upper-limb movement
upon SEP amplitudes [26,27]. Hoshiyama & Kakigi [26]
had both right and left-hand dominant participants per-
form a tracing task with either their dominant or non-
dominant hand while recording SEPs from the hand
contralateral to movement. Interestingly, non-dominant
hand use resulted in an attenuation of N30 amplitude; a
result at odds with the work of both Rossini et al. [17]
and Legon et al. [18]. This discrepancy may be a result
of increased demands associated with the tracing task
whereas a simple volitional movement was performed in
the former studies. Despite this, modulation of the N30
in the Hoshiyama & Kakigi [26] study only occurred for
tracing performed with the non-dominant hand in both
right and left hand dominant participants suggesting a
specific relationship for N30 modulation during non-
dominant upper-limb motor output regardless of hand
dominance.
These results would suggest a link between the N30

and non-dominant hand use but it is nonetheless
unclear if handedness has an effect upon the integration
of sensory input and motor output across the upper-
limbs and if this translates to modulation of either
parietal or frontal SEP components during a simple voli-
tional motor task that is not highly skilled or requires
vision. Hoshiyama & Kakigi [26] reported no differences
between right and left hand dominant individuals but
anatomical [28] and cortical excitability differences
between left and right hand dominant individuals have
been reported [29-35] and may contribute to N30
amplitude modulation.
It is the purpose of the current study to determine if

N30 facilitation observed by Legon et al. [18] is exclusive
to movement of the non-dominant upper-limb and
further if this relationship persists in left hand dominant
individuals. Participants were instructed to voluntarily
squeeze a pressure-sensitive bulb roughly every 3 seconds
with either their dominant or non-dominant hand while
median nerve stimulations were continuously delivered
to the contralateral wrist. These stimulations were later
binned according to timings of the Bereitschaftspotential
to assess amplitude differences of the N30 before, during
and after movement of the contralateral hand. It is
hypothesized that N30 facilitation is specific to move-
ment of the non-dominant hand in both right and left

hand dominant individuals due to differences in cortical
activation during non-dominant hand movement or
potentially through differences in centrifugal gating of
peripheral sensory inputs between the limbs.

Results
All eight left-handed and right-handed participants
showed clear frontal and parietal SEPs. No latency dif-
ferences were observed for any of the SEPs measured
and M-wave amplitudes (an electromyographic (EMG)
wave resulting from the direct stimulation of the moto-
neuronal axons serving the thenar musculature) dis-
played no differences across conditions.

Frontal N30
The three-way mixed ANOVA with between subjects
factor HANDEDNESS (Right Hand dominant; Left
Hand dominant) and within subjects’ factors MOVE-
MENT HAND (Dominant; Non-dominant) and TIM-
ING relative to movement (Early Bereitschaftspotential
(EBP); Late Bereitschaftspotential (LBP); Movement
(MVMT); Post-Movement (PMVMT)) revealed a
between subjects effect of HANDEDNESS (F (1, 14) =
4.39, p = 0.05), a main effect of TIMING (F (3, 42) =
4.16, p = 0.01), and an interaction of MOVEMENT
HAND × TIMING (F (3, 42) = 3.76, p = 0.02). The
between subjects effect was driven by a larger N30
amplitude as a whole for the left-handed group col-
lapsed across movement hand and timing epochs rela-
tive to control (116% vs. 102% (t (126) = 1.99, = 0.05)).
The interaction was investigated with one-way repeated
measures ANOVAs with factor TIMING for each move-
ment hand in left hand dominant and right hand domi-
nant groups.

Left Hand Dominant
There was no effect of TIMING associated with domi-
nant hand movement in the left hand dominant group
(F (3, 21) = 0.38, p = 0.77) whereas there was an effect of
TIMING associated with non-dominant hand movement
(F (3, 21) = 5.90, p = 0.004). Contrasts revealed N30
amplitude to be larger during the MVMT epoch as com-
pared to the EBP epoch (p < 0.05), LBP epoch (p < 0.05)
and PMVMT epoch (p < 0.05) (see Figure 1, 2 & 3;
Table 1).

Right Hand Dominant
There was no effect of TIMING associated with domi-
nant hand movement (F (3, 21) = 1.95, p = 0.15). Non-
dominant hand movement revealed an effect of TIMING
(F (3, 21) = 4.02, p = 0.02). Contrasts revealed N30 ampli-
tude to be significantly greater during the MVMT epoch
as compared to the EBP epoch (p < 0.05) and the
PMVMT epoch (p < 0.05) (see Figure 1, 2 & 3; Table 1).
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Figure 1 Timing epochs used to capture SEPs relative to movement. Example of raw EMG from flexor digitorum superficialis of the hand
performing the voluntary squeeze. Timing windows used to divide median nerve stimulations into respective epochs relative to the onset (0
ms) of EMG are shown. (EBP) Early Bereitschaftspotential (-2000 ms to -500 ms); (LBP) Late Bereitschaftspotential (-500 ms to -1 ms); (MVMT)
Movement (0 ms to +250 ms); (PMVMT) Post-Movement (+251 ms to +500 ms).

Figure 2 Group Average N30 amplitudes. Group average (n = 8) bar graphs for left hand dominant (top) and right hand dominant (bottom)
groups for each of the timing epochs. Early Bereitschaftspotential (EBP); Late Bereitschaftspotential (LBP); Movement (MVMT); Post-Movement
(PMVMT). White bars indicate movement performed with the dominant hand. Black bars indicate movement performed with the non-dominant
hand. Values are expressed relative to control values. Error bars are ± SEM. * denotes significance p < 0.05.
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Parietal N20
The three-way mixed ANOVA revealed an interaction
of MOVEMENT HAND × HANDEDNESS (F (1, 14) =
4.50, p = 0.05). N20 amplitude is larger from dominant
hand stimulation as compared to non-dominant hand
stimulation in left-hand dominant participants (t (31)
= 3.44, p = 0.03). There was no difference between
stimulation sites for right hand dominant participants

(t (31) = -0.81, p = 0.43). As such, stimulation site
affects N20 amplitude in left hand dominant partici-
pants but not in the right hand dominant group (see
Figure 4a; Table 1).

Parietal P27
The three-way mixed ANOVA revealed a main effect of
MOVEMENT HAND (F (1, 14) = 4.47, p = 0.05). The

Figure 3 Group Average FCZ traces. Group average (n = 8) traces recorded from electrode site FCZ. Top row traces recorded from right hand
(RH) dominant group; Bottom row traces recorded from left hand (LH) Dominant group. Left column represents movement performed with the
non-dominant hand, right column movement performed with the dominant hand. Light trace a result of median nerve stimulations that fell
within the Early Bereitschaftspotential (EBP) epoch; dark trace a result of median nerve stimulations that fell within the Movement epoch (MVMT).
* denotes significance p < 0.05.

Table 1 EP amplitudes

Left hand dominant

Non-dominant hand movement Dominant hand movement

FCZ CP3 FCZ CP4

N30 N20 P27 P50 N30 N20 P27 P50

EBP 1.07 (0.12) 1.20 (0.09) 1.09 (0.13) 0.83 (0.11) EBP 1.06 (0.13) 0.91 (0.16) 0.95 (0.33) 0.89 (0.11)

LBP 1.09 (0.08) 1.44 (0.09) 1.07 (0.14) 1.12 (0.16) LBP 1.25 (0.21) 1.02 (0.17) 1.12 (0.09) 1.22 (0.24)

MVMT 1.69* (0.15) 1.06 (0.22) 0.95 (0.24) 0.62 (0.09) MVMT 1.12 (0.20) 0.85 (0.10) 1.04 (0.17) 0.91 (0.22)

PMVMT 1.08 (0.20) 1.28 (0.18) 0.94 (0.15) 0.93 (0.29) PMVMT 0.95 (0.26) 0.77 (0.10) 1.21 (0.10) 0.88 (0.11)

Right hand dominant

Non-dominant hand movement Dominant hand movement

FCZ CP4 FCZ CP3

N30 N20 P27 P50 N30 P20 P27 P50

EBP 1.07 (0.04) 0.97 (0.07) 0.96 (0.06) 1.00 (0.08) EBP 1.02 (0.15) 1.11 (0.19) 1.06 (0.09) 1.16 (0.29)

LBP 1.10 (0.04) 1.04 (0.07) 0.91 (0.09) 0.94 (0.12) LBP 1.05 (0.13) 1.19 (0.23) 1.27 (0.15) 1.19 (0.49)

MVMT 1.24* (0.08) 1.15 (0.10) 0.87 (0.08) 0.56 (0.13) MVMT 0.79 (0.09) 1.01 (0.20) 1.24 (0.21) 1.18 (0.35)

PMVMT 0.93 (0.11) 1.11 (0.14) 0.93 (0.09) 1.13 (0.26) PMVMT 0.94 (0.08) 1.28 (0.27) 1.32 (0.20) 1.41 (0.47)

Mean (± SEM) of labelled potentials recorded from labelled electrode sites (FCZ, CP3/4) as a result of median nerve stimulation contralateral to hand movement.
Top data from left hand dominant group; bottom data from right hand dominant group. (EBP) early Bereitschaftspotential; (LBP) late Bereitschaftspotential;
(MVMT) movement; (PMVMT) post movement. All values are expressed relative to control value (1.00). * denotes significance p < 0.05.
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Figure 4 Group Average Parietal Potentials. Group average (n = 8) bar graphs for parietal potentials (A) N20, (B) P27 and (C) P50 as recorded
from electrode site(s) CP3/4. Amplitudes are expressed relative to control values. For bar graphs A & B, (ND) non-dominant hand movement; (D)
dominant hand movement. White bars represent group data from the right hand dominant group; black bars represent group data from the left
hand dominant group. P50 amplitudes (C) are collapsed across handedness and represent amplitude for timing epochs Early
Bereitschaftspotential (EBP); Late Bereitschaftspotential (LBP); Movement (MVMT); Post-Movement (PMVMT). Error bars are ± SEM. * denotes
significance p < 0.05.
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P27 is larger when the dominant hand is the movement
hand (t (126) = -2.41, p = 0.02) (see Figure 4b; Table 1).

Parietal P50
The three-way mixed ANOVA revealed a main effect of
TIMING (F (3, 42) = 3.38, p = 0.03). Data from both the
left hand dominant and right hand dominant groups
were collapsed and a one-way repeated measures
ANOVA with factor TIMING was performed (F (3, 93) =
3.61, p = 0.02). Contrasts revealed that the P50 amplitude
is significantly decreased during the MVMT epoch
compared to the LBP (p < 0.05) and the PMVMT epoch
(p < 0.05) (see Figure 4c; Table 1).

Discussion
It was the purpose of this study to determine the effect
of hand movement and hand dominance upon the
amplitude of the N30 SEP during a simple volitional
movement. Previous literature [17,18] has demonstrated
a frontal N30 amplitude increase during voluntary non-
dominant hand movement in right hand dominant
participants. This study demonstrates a facilitation of
frontal N30 SEP amplitude during non-dominant hand
movement but not during dominant hand movement
and further that this relationship is true for left hand
dominant individuals as well. It is currently unclear why
N30 amplitude is facilitated only during non-dominant
hand movement but may be the result of specific activa-
tion of basal ganglia, SMA and/or primary motor cortex
for non-dominant as compared to dominant hand use
[20-23]. In addition to the understood motor roles of
these areas, all receive sensory input [36-39] and thus
are candidate areas for the integration of sensory input
for motor control. As such, peripheral sensory input
from the dominant limb may be differentially modulated
as compared to non-dominant inputs during contralat-
eral hand use by altered active centrifugal gating
mechanisms.
The N30 has been hypothesized to be the result of

peripheral proprioceptive afference [4,5] and its ampli-
tude may reflect the proper functioning of centripetal
and/or centrifugal sensory gating mechanisms [6]. The
persistent finding of a depressed or absent N30 in the
PD population [13,40,41] suggests a link between it and
the basal ganglia dopaminergic system, such that the
amplitude of the N30 reflects the healthy functioning of
the basal-ganglia, cortico-cortical motor loops [16]. The
dopaminergic hypothesis for N30 amplitude is further
corroborated by the findings that dopaminergic adminis-
tration [12,13], pallidotomy [14] and GPi or STN stimu-
lation [15] facilitate the N30 that is paralleled by clinical
improvement. Interestingly, N30 amplitude increase in
the PD population under these interventions is com-
monly correlated with a reduction in rigidity [42]. As

such, it may very well be that restoration of the basal-
ganglia dopaminergic system is not the direct cause of
N30 facilitation but rather results in less gating of per-
ipheral sensory inputs to cortical motor structures
(SMA) through a reduction in rigidity [41] which acts to
inhibit sensory inflow similar to the effects of voluntary
or passive movement. This hypothesis is corroborated
by the results of Pierantozzi et al. [6] who demonstrated
atracurium (nicotinic antagonist) administration to
increase the N30 not only in PD patients but also in
neuroleptic malignant syndrome patients and healthy
controls; groups with intact dopaminergic systems.
Alternately, the N30 amplitude difference may be the

result of altered sensory gating mechanisms due to
known activity differences in the basal ganglia, SMA and
M1 during non-dominant hand use. For example, Fran-
cois-Brosseau et al. [20] reported reduced blood oxyge-
nation-level dependant (BOLD) response in the left
putamen, thalamus and right caudate for self-initiated
finger movement of the non-dominant left hand as
compared to the same movement performed by the
dominant right hand. Babiloni et al [21] reported that
non-dominant hand movement results in right SMA
activation whereas dominant hand movement results in
both right and left SMA activity. The SMA receives
dense afferents from the GPi [43] and in turn, projects
to primary motor cortex (M1) [44,45]. The connections
of the basal ganglia with SMA are excitatory and those
of the SMA to M1 are largely inhibitory in nature.
Micro-stimulation of the SMA results in inhibitory post-
synaptic potentials on pyramidal neurons in M1 [46]
and a conditioning stimulus delivered to the SMA
reduces the excitability of M1 to a test pulse [47]. PD
patients often show decreased activation of the SMA
and increased activation of M1 [48-54] in addition to a
lack of cortico-cortical inhibition in M1 [55]. Interest-
ingly, an increase in ipsilateral M1 is a persistent finding
during non-dominant hand use [23,24,56,57] a phenom-
enon that does not often occur for dominant hand use
[22,24,58]. The purpose of ipsilateral M1 activity is cur-
rently unclear though it has been hypothesized to repre-
sent inhibition to presumably prevent mirroring of the
dominant hand. Using functional MRI, Kobayashi et al.
[24] demonstrated increased intra-cortical inhibition of
ipsilateral M1 in those that displayed ipsilateral M1
activity and none in those that did not. An alternate or
complimentary theory may be that ipsilateral M1 activity
during non-dominant hand use serves to reduce the
amount of sensory gating exerted upon the dominant
limb. No modulation of N30 amplitude was witnessed
either before or after non-dominant hand movement or
for any timing epoch explored for the dominant hand,
further suggesting a role for ipsilateral M1 activity in
the modulation of N30 amplitude. It cannot be said
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with absolute conviction if this is a purposeful mechan-
ism but may be a way of the central nervous system to
increase the fidelity of sensory inputs from the domi-
nant limb to aid motor planning and execution of the
less apt non-dominant limb. It is well understood that
there are manual asymmetries in motor performance
between the dominant and non-dominant limb such
that behaviour of the non-dominant limb is usually
slower, more variable and less accurate [59,60].
Parkinson’s patients show altered response to somato-

sensory inputs [61,62] and have difficulty performing
efficient and precise movements when relying upon
kinaesthetic sensory feedback but their performance
improves for externally-cued or visually-guided motor
tasks [63,64], a phenomenon hypothesized to be the
result of incorporating alternate sources of sensory
input. Interestingly, the above mentioned differences in
basal-ganglia activation for non-dominant hand use dur-
ing volitional tasks disappeared for an externally trig-
gered task [20]. If indeed N30 amplitude is reflective of
the proper functioning of a basal-ganglia - SMA - M1
loop in response to kinaesthetic sensory input, hypoth-
eses would suggest either no increase or a decrease in
N30 amplitude during non-dominant hand movement
under a condition reliant upon vision which is what
Hoshiyama & Kakigi [26] found. They reported a reduc-
tion in N30 amplitude for non-dominant as compared
to dominant hand movement during a visually guided
tracing task. The reduced N30 in this case may reflect
increased sensory gating of proprioceptive inputs from
the dominant limb that would essentially be less infor-
mative or reliable than the visual information. Indeed,
Bernier et al. [65] have shown that proprioceptive infor-
mation is suppressed during a mirror reversal task - a
task that is heavily reliant upon visual information. This
suppression was reflected in an attenuation of the parie-
tal P27 leaving the N30 unaffected. The lack of N30
change may have been a result of an already depressed
N30 as a result of movement-related gating (the moving
limb and the stimulated limb were the same) or perhaps
because the dominant limb was used to perform the
movement in this study. The differences in N30 ampli-
tude during tasks that rely upon vision or cueing versus
those that are volitional and largely use proprioceptive
feedback is supported by the results of Urushihara et al.
[66] who demonstrated an increase in N30 amplitude as
a result of pre-motor cortical inhibition from low fre-
quency repetitive trans-cranial magnetic stimulation.
The pre-motor cortex, as opposed to the SMA, is pre-
ferentially activated for externally triggered vs. internally
generated movements [67].
None of the parietal potentials measured displayed an

interaction of movement hand and timing as the N30
did. If ipsilateral M1 activity during non-dominant hand

use is a source of N30 modulation, it would be reason-
able to hypothesize an effect upon potentials generated
in S1 due to the dense ipsilateral connectivity [68] and
interaction [69] between M1 and S1. Interpretation of
the results of the reported parietal potentials is not
clear. Generally, inhibition of early parietal potentials as
a result of movement is limited to the site of movement
[70] and does not occur across the upper limbs though
modulation of the N20 and P27 has been reported dur-
ing contralateral hand movement under specific atten-
tion requirements [71]. The lack of a specific effect of
movement time and movement hand upon the N20 and
P27 parietal potentials may be due to differences in the
response of S1 and SMA to somatosensory input. S1 is
active to passive tactile stimulation but SMA activity is
only present for tactile stimulation that is required for a
motor output [72,73], thus the N20 and P27 may not be
affected by specific motor activity. It should be noted
however that the P50 was specifically inhibited during
the movement epoch regardless of the hand performing
the task, a finding that corroborates and extends the
findings of Legon et al. [18] suggesting that parietal
potentials generated outside of area 3b/1 can be modu-
lated by contralateral movement. The P50 has been
reported to be generated in S1 [74] and may be specifi-
cally generated in area 2 as the preceding P27-N35 com-
plex has been postulated to be generated in area 1 [75].
Area 2 has connectivity with both the SMA [43,44], ipsi-
lateral M1 [76] and secondary somatosensory cortex.
The connection with secondary somatosensory cortex
provides a route of action for modulation of the P50
independently of the N20 and P27. Secondary somato-
sensory cortex is active bilaterally in response to unilat-
eral stimulation and more importantly displays
movement related activity [27,77,78] similar to the cells
of SMA.
Finally, it should be noted that recent research [79,80]

has attributed N30 amplitude to a phase-locking of the
beta/gamma frequency. Under this hypothesis, evoked
potentials may not be the result of localized processing
or a fixed latency response to a specific stimulus but
rather a reset of oscillatory activity, in the case of the
N30 in the beta/gamma frequency. Under the oscillatory
model of event-related potentials, an increase in ampli-
tude of a specific potential reflects an increase in the
influence of an oscillation which is assumed to be
related to specific task processing (see [81] for review).
Cebolla et al. [80] recently demonstrated movement-
related gating of N30 amplitude to disrupt beta/gamma
phase-locking providing additional evidence in support
of the oscillatory model of event-related potentials. If
indeed this model proves correct, the data from this
study would suggest that non-dominant hand movement
specifically affects the beta/gamma oscillation, which

Legon et al. BMC Neuroscience 2010, 11:112
http://www.biomedcentral.com/1471-2202/11/112

Page 7 of 11



may be an indication of synchronization or co-activation
of cortical and sub-cortical networks (basal ganglia -
ipsilateral M1 - SMA) that are specifically active during
non-dominant hand movement.

Conclusion
Non-dominant hand use results in different activation of
the basal ganglia, SMA and M1 and an increase in
amplitude of the N30 compared to dominant hand use.
The relationship between these different activation pat-
terns and N30 amplitude is not clear. The specific
attenuation of N30 amplitude in PD has lead to investi-
gation of the basal ganglia and dopaminergic contribu-
tion to N30 amplitude. It is clear that classically defined
motor pathologies have a sensory contribution and the
dysfunction of sensory integration may be critical [82].
These sensory gating mechanisms may be different
between the upper-limbs depending upon hand use and
reflected in the amplitude of the N30.

Methods
Participants
Sixteen subjects participated in one of two experiments
performed on separate days. Experiment 1 (Right Hand
Dominant) studied eight right-handed (4 female, Age 26
± 4.6 yrs) and Experiment 2 (Left Hand Dominant),
eight left-handed participants (2 female, Age 24 ± 2.2
yr). Handedness was assessed by the Revised Waterloo
Handedness Inventory. All participants for respective
studies scored strongly right or left handed. Participants
provided written informed consent to participate in the
study. None of the participants reported any history of
neurological or musculoskeletal impairments, and all
were paid a nominal fee for their participation. The Uni-
versity of Waterloo, Office of Research Ethics approved
all experimental procedures.

Behavioural Task
Tasks outlined below were identical for both the left
hand dominant and right hand dominant groups. Parti-
cipants were seated comfortably in a desk chair, with
arms supported upon a table top, in a sound-attenuating
booth and instructed to perform a non-maximal (~ 20%
of their maximum) squeeze (~1 s) voluntary contraction
against a pressure-sensitive bulb held in either their
right or left hand while fixating straight ahead. Partici-
pants were instructed to initiate squeezes roughly every
3 s but were allowed to perform successive movements
at their own pace. Movements that were within 2 s of
each other were discarded. Testing blocks lasted 3 min-
utes, separated by a 1 minute break repeated five times
for each hand. The hand performing the movement was
alternated between blocks. Motor and rest periods were
indicated by an auditory tone.

Stimulation and Recording
Stimulation and recording details were similar for both
left hand and right hand dominant groups. SEPs were
derived from electrical stimulation of the median nerve
of the hand contralateral to movement. Stimulation
employed square wave pulses of 0.2 ms duration
(GRASS S88 stimulator with SIU5 stimulus isolation
unit; West Warwick, Rhode Island, USA) delivered
through a surface bar electrode, with the anode distal,
fixed over the median nerve at the wrist. Median nerve
stimuli were delivered during task performance at a
constant frequency of 2 Hz and at a voltage sufficient to
elicit a noticeable thumb twitch and recordable M-wave.
Disposable adhesive surface electrodes were placed over
thenar musculature to record the M-wave, an electro-
myographic (EMG) wave resulting from the direct
stimulation of the motoneuronal axons serving the
thenar musculature. M-wave amplitude, measured peak-
to-peak, was used to confirm the consistency of stimulus
intensity. Surface EMG was also recorded from flexor
digitorum superficialis of the hand performing the
squeeze to monitor performance. EMG recordings were
amplified (2000X), band-pass filtered (DC-200 Hz), digi-
tized and stored for later analysis, using customized
LabVIEW software (National Instruments; Austin,
Texas, USA). The onset of the squeeze was evidenced
by the onset of flexor digitorum superficialis EMG activ-
ity. SEPs were elicited continuously throughout the
squeeze blocks.
Electroencephalographic (EEG) data were recorded

from 7 electrode sites (FC2, FCZ, FC1, C4, C3, CP4 and
CP3), in accordance with the international 10-20 system
for electrode placement referenced to the linked mas-
toids (impedance < 5 kΩ). EEG data were amplified
(40000×), filtered (DC-200 Hz) and digitized at 1000 Hz
(NeuroScan 4.3; Compumedics; El Paso, Texas, USA),
before being stored on a computer for subsequent ana-
lysis. SEPs were extracted by averaging epochs time-
locked to the median nerve stimulation (-50 to 300 ms).
Individual traces were high-pass filtered (2 Hz) and
visually inspected for artefacts (i.e. from blinks, eye
movements or contraction of scalp musculature). Any
contaminated epochs were eliminated before averaging.

Data Analysis
Median nerve stimulations were averaged in bins time-
locked to EMG onset in flexor digitorum superficialis,
according to pre-determined movement epochs corre-
sponding to the different known components of the
Bereitschaftspotential (BP): Early BP (-2000 ms to
-500 ms); Late BP (-500 ms to -1 ms); Movement (0 ms
to +250 ms); Post-Movement (+251 ms to +500 ms)
(see Figure 1). Median nerve stimulations that did not
fall within the pre-determined epochs were averaged
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and used as control. SEP traces for each time epoch
were a result of 180 randomly chosen stimulations.
Latencies and amplitudes of the frontal and parietal
SEPs were measured from individual participant
averages for each movement epoch from the electrode
sites that displayed the maximal amplitudes, FCZ and
CP3/4, respectively. Latencies were measured from sti-
mulus onset to the peak of each SEP (frontal N30; parie-
tal N20, P27 and P50). Amplitudes of all potentials were
measured as peak voltage relative to a pre-stimulus
baseline (50 ms). A clearly defined peak was necessary
for inclusion.
For all potentials of interest (frontal N30; parietal N20,

P27 and P50) a mixed three-way ANOVA was con-
ducted with between factor Handedness (Left hand
dominant, Right hand dominant) and within subject fac-
tors Movement Hand (Dominant, Non-dominant) and
Timing Epoch (Early Bereitschaftspotential/Late
Bereitschaftspotential/Movement/Post-Movement). Ana-
lysis was performed on normalized amplitude values
relative to control. Part of the data has been previously
reported (Legon et al. [18]) but is included in the larger
ANOVA presented here.

Acknowledgements
The authors would like to thank Mark Linseman for help with data
collection. This work was supported by grants to WRS from the Natural
Sciences and Engineering Research Council of Canada (NSERC), the Canada
Foundation for Innovation, the Ontario Research Fund and the Canada
Research Chairs Program. WL and JKD were supported by graduate
scholarships from NSERC. SKM was supported by an Ontario Graduate
Scholarship.

Authors’ contributions
WL conceived of the experiment and was the primary investigator involved
in the data collection and analysis as well as drafting of the manuscript. SKM
contributed to experimental design, data analysis, manuscript editing and
revision. JKD contributed to data analysis, manuscript writing, editing and
revision. WRS (senior author) contributed to experimental design, data
analysis, manuscript editing and revision. All authors have read and
approved the final manuscript.

Received: 12 April 2010 Accepted: 7 September 2010
Published: 7 September 2010

References
1. Wiesendanger M, Hummelsheim H, Bianchetti M: Sensory input to the

motor fields of the agranular frontal cortex: a comparison of the
precentral, supplementary motor and premotor cortex. Behav Brain Res
1985, 18(2):89-94.

2. Mauguiere F, Desmedt JE, Courjon J: Astereognosis and dissociated loss
of frontal or parietal components of somatosensory evoked potentials in
hemispheric lesions. Detailed correlations with clinical signs and
computerized tomographic scanning. Brain 1983, 106(Pt 2):271-311.

3. Desmedt JE, Bourguet M: Color imaging of parietal and frontal
somatosensory potential fields evoked by stimulation of median or
posterior tibial nerve in man. Electroencephalogr Clin Neurophysiol 1985,
62(1):1-17.

4. Restuccia D, Valeriani M, Barba C, Le Pera D, Tonali P, Mauguiere F:
Different contribution of joint and cutaneous inputs to early scalp
somatosensory evoked potentials. Muscle Nerve 1999, 22(7):910-919.

5. Restuccia D, Valeriani M, Insola A, Lo Monaco M, Grassi E, Barba C, Le
Pera D, Mauguiere F: Modality-related scalp responses after electrical
stimulation of cutaneous and muscular upper limb afferents in humans.
Muscle Nerve 2002, 26(1):44-54.

6. Pierantozzi M, Sabato AF, Leonardis F, Marciani MG, Cicardi C, Giacomini P,
Bernardi G, Stanzione P: Curariform peripheral block of muscular tone
selectively increases precentral N30 somatosensory evoked potentials
component. A pharmacological study carried out on healthy subjects
and parkinsonian syndromes. Exp Brain Res 2000, 133(3):368-376.

7. Jones SJ, Halonen JP, Shawkat F: Centrifugal and centripetal mechanisms
involved in the ‘gating’ of cortical SEPs during movement.
Electroencephalogr Clin Neurophysiol 1989, 74(1):36-45.

8. Rossini PM, Paradiso C, Zarola F, Mariorenzi R, Traversa R, Martino G,
Caramia MD: Bit-mapped somatosensory evoked potentials and muscular
reflex responses in man: comparative analysis in different experimental
protocols. Electroencephalogr Clin Neurophysiol 1990, 77(4):266-275.

9. Cheron G, Dan B, Borenstein S: Sensory and motor interfering influences
on somatosensory evoked potentials. J Clin Neurophysiol 2000,
17(3):280-294.

10. Cheron G, Borenstein S: Mental movement simulation affects the N30
frontal component of the somatosensory evoked potential.
Electroencephalogr Clin Neurophysiol 1992, 84(3):288-292.

11. Rossini PM, Caramia D, Bassetti MA, Pasqualetti P, Tecchio F, Bernardi G:
Somatosensory evoked potentials during the ideation and execution of
individual finger movements. Muscle Nerve 1996, 19(2):191-202.

12. Rossini PM, Bassetti MA, Pasqualetti P: Median nerve somatosensory
evoked potentials. Apomorphine-induced transient potentiation of
frontal components in Parkinson’s disease and in parkinsonism.
Electroencephalogr Clin Neurophysiol 1995, 96(3):236-247.

13. Cheron G, Piette T, Thiriaux A, Jacquy J, Godaux E: Somatosensory evoked
potentials at rest and during movement in Parkinson’s disease: evidence
for a specific apomorphine effect on the frontal N30 wave.
Electroencephalogr Clin Neurophysiol 1994, 92(6):491-501.

14. Gironell A, Rodriguez-Fornells A, Kulisevsky J, Pascual B, Barbanoj M,
Otermin P: Motor circuitry re-organization after pallidotomy in Parkinson
disease: a neurophysiological study of the bereitschaftspotential,
contingent negative variation, and N30. J Clin Neurophysiol 2002,
19(6):553-561.

15. Pierantozzi M, Mazzone P, Bassi A, Rossini PM, Peppe A, Altibrandi MG,
Stefani A, Bernardi G, Stanzione P: The effect of deep brain stimulation on
the frontal N30 component of somatosensory evoked potentials in
advanced Parkinson’s disease patients. Clin Neurophysiol 1999,
110(10):1700-1707.

16. Cheron G: Is the frontal N30 component of the somatosensory evoked
potentials a reliable physiological index of the dopaminergic motor
pathways? Clin Neurophysiol 1999, 110(10):1698-1699.

17. Rossini PM, Babiloni C, Babiloni F, Ambrosini A, Onorati P, Carducci F,
Urbano A: “Gating” of human short-latency somatosensory evoked
cortical responses during execution of movement. A high resolution
electroencephalography study. Brain Res 1999, 843(1):161-170.

18. Legon W, Meehan SK, Staines WR: The relationship between frontal
somatosensory-evoked potentials and motor planning. Neuroreport 2008,
19(1):87-91.

19. Helmich RC, Baumer T, Siebner HR, Bloem BR, Munchau A: Hemispheric
asymmetry and somatotopy of afferent inhibition in healthy humans.
Exp Brain Res 2005, 167(2):211-219.

20. Francois-Brosseau FE, Martinu K, Strafella AP, Petrides M, Simard F,
Monchi O: Basal ganglia and frontal involvement in self-generated and
externally-triggered finger movements in the dominant and non-
dominant hand. Eur J Neurosci 2009, 29(6):1277-1286.

21. Babiloni C, Carducci F, Del Gratta C, Demartin M, Romani GL, Babiloni F,
Rossini PM: Hemispherical asymmetry in human SMA during voluntary
simple unilateral movements. An fMRI study. Cortex 2003, 39(2):293-305.

22. Kawashima R, Yamada K, Kinomura S, Yamaguchi T, Matsui H, Yoshioka S,
Fukuda H: Regional cerebral blood flow changes of cortical motor areas
and prefrontal areas in humans related to ipsilateral and contralateral
hand movement. Brain Res 1993, 623(1):33-40.

23. Cramer SC, Finklestein SP, Schaechter JD, Bush G, Rosen BR: Activation of
distinct motor cortex regions during ipsilateral and contralateral finger
movements. J Neurophysiol 1999, 81(1):383-387.

Legon et al. BMC Neuroscience 2010, 11:112
http://www.biomedcentral.com/1471-2202/11/112

Page 9 of 11

http://www.ncbi.nlm.nih.gov/pubmed/3938286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3938286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3938286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6850271?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6850271?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6850271?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6850271?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2578373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2578373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2578373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10398210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10398210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12115948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12115948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10958527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10958527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10958527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10958527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2463147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2463147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1695138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1695138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1695138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10928640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10928640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1375888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1375888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8559169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8559169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7750449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7750449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7750449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7527767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7527767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7527767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12488787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12488787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12488787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10574285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10574285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10574285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10574284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10574284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10574284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10528122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10528122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10528122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18281899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18281899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16034577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16034577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19302163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19302163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19302163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12784890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12784890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8221091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8221091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8221091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9914297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9914297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9914297?dopt=Abstract


24. Kobayashi M, Hutchinson S, Schlaug G, Pascual-Leone A: Ipsilateral motor
cortex activation on functional magnetic resonance imaging during
unilateral hand movements is related to interhemispheric interactions.
Neuroimage 2003, 20(4):2259-2270.

25. Duque J, Murase N, Celnik P, Hummel F, Harris-Love M, Mazzocchio R,
Olivier E, Cohen LG: Intermanual Differences in movement-related
interhemispheric inhibition. J Cogn Neurosci 2007, 19(2):204-213.

26. Hoshiyama M, Kakigi R: Changes of somatosensory evoked potentials
during writing with the dominant and non-dominant hands. Brain Res
1999, 833(1):10-19.

27. Wasaka T, Kida T, Nakata H, Akatsuka K, Kakigi R: Characteristics of sensori-
motor interaction in the primary and secondary somatosensory cortices
in humans: a magnetoencephalography study. Neuroscience 2007,
149(2):446-456.

28. Buchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA: White matter
asymmetry in the human brain: a diffusion tensor MRI study. Cereb
Cortex 2004, 14(9):945-951.

29. Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K,
Georgopoulos AP: Functional magnetic resonance imaging of motor
cortex: hemispheric asymmetry and handedness. Science 1993,
261(5121):615-617.

30. Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J: Functional activation in
motor cortex reflects the direction and the degree of handedness. Proc
Natl Acad Sci USA 1997, 94(25):14015-14018.

31. Volkmann J, Schnitzler A, Witte OW, Freund H: Handedness and
asymmetry of hand representation in human motor cortex. J
Neurophysiol 1998, 79(4):2149-2154.

32. Singh LN, Higano S, Takahashi S, Kurihara N, Furuta S, Tamura H,
Shimanuki Y, Mugikura S, Fujii T, Yamadori A, Sakamoto M, Yamada S:
Comparison of ipsilateral activation between right and left handers: a
functional MR imaging study. Neuroreport 1998, 9(8):1861-1866.

33. Triggs WJ, Subramanium B, Rossi F: Hand preference and transcranial
magnetic stimulation asymmetry of cortical motor representation. Brain
Res 1999, 835(2):324-329.

34. Yahagi S, Kasai T: Motor evoked potentials induced by motor imagery
reveal a functional asymmetry of cortical motor control in left- and
right-handed human subjects. Neurosci Lett 1999, 276(3):185-188.

35. Ilic TV, Jung P, Ziemann U: Subtle hemispheric asymmetry of motor
cortical inhibitory tone. Clin Neurophysiol 2004, 115(2):330-340.

36. Lemon RN, Porter R: Afferent input to movement-related precentral
neurones in conscious monkeys. Proc R Soc Lond B Biol Sci 1976,
194(1116):313-339.

37. Hummelsheim H, Bianchetti M, Wiesendanger M, Wiesendanger R: Sensory
inputs to the agranular motor fields: a comparison between precentral,
supplementary-motor and premotor areas in the monkey. Exp Brain Res
1988, 69(2):289-298.

38. Romo R, Ruiz S, Crespo P, Zainos A, Merchant H: Representation of tactile
signals in primate supplementary motor area. J Neurophysiol 1993,
70(6):2690-2694.

39. Brown LL, Schneider JS, Lidsky TI: Sensory and cognitive functions of the
basal ganglia. Curr Opin Neurobiol 1997, 7(2):157-163.

40. Bostantjopoulou S, Katsarou Z, Zafiriou D, Gerasimou G, Alevriadou A,
Georgiadis G, Kiosseoglou G, Kazis A: Abnormality of N30 somatosensory
evoked potentials in Parkinson’s disease: a multidisciplinary approach.
Neurophysiol Clin 2000, 30(6):368-376.

41. Rossini PM, Babiloni F, Bernardi G, Cecchi L, Johnson PB, Malentacca A,
Stanzione P, Urbano A: Abnormalities of short-latency somatosensory
evoked potentials in parkinsonian patients. Electroencephalogr Clin
Neurophysiol 1989, 74(4):277-289.

42. Stanzione P, Traversa R, Pierantozzi M, Semprini R, Loberti M, Peppe A,
Santilli AM, Bernardi G: SEPs N30 amplitude in Parkinson’s disease and in
pharmacologically induced rigidity: Relationship with the clinical status.
Eur J Neurol 1997, 4(1):24-38.

43. Akkal D, Dum RP, Strick PL: Supplementary motor area and
presupplementary motor area: targets of basal ganglia and cerebellar
output. J Neurosci 2007, 27(40):10659-10673.

44. Jurgens U: The efferent and afferent connections of the supplementary
motor area. Brain Res 1984, 300(1):63-81.

45. Luppino G, Matelli M, Camarda R, Rizzolatti G: Corticocortical connections
of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey.
J Comp Neurol 1993, 338(1):114-140.

46. Ghosh S, Porter R: Corticocortical synaptic influences on morphologically
identified pyramidal neurones in the motor cortex of the monkey. J
Physiol 1988, 400:617-629.

47. Civardi C, Cantello R, Asselman P, Rothwell JC: Transcranial magnetic
stimulation can be used to test connections to primary motor areas
from frontal and medial cortex in humans. Neuroimage 2001,
14(6):1444-1453.

48. Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ:
Impaired mesial frontal and putamen activation in Parkinson’s disease: a
positron emission tomography study. Ann Neurol 1992, 32(2):151-161.

49. Rascol O, Sabatini U, Chollet F, Celsis P, Montastruc JL, Marc-Vergnes JP,
Rascol A: Supplementary and primary sensory motor area activity in
Parkinson’s disease. Regional cerebral blood flow changes during finger
movements and effects of apomorphine. Arch Neurol 1992, 49(2):144-148.

50. Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE,
Brooks DJ: Self-initiated versus externally triggered movements. I. An
investigation using measurement of regional cerebral blood flow with
PET and movement-related potentials in normal and Parkinson’s disease
subjects. Brain 1995, 118(Pt 4):913-933.

51. Samuel M, Ceballos-Baumann AO, Boecker H, Brooks DJ: Motor imagery in
normal subjects and Parkinson’s disease patients: an H215O PET study.
Neuroreport 2001, 12(4):821-828.

52. Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L,
Berry I, Montastruc JL, Chollet F, Rascol O: Cortical motor reorganization in
akinetic patients with Parkinson’s disease: a functional MRI study. Brain
2000, 123(Pt 2):394-403.

53. Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M,
Conrad B, Ceballos-Baumann AO: Event-related functional magnetic
resonance imaging in Parkinson’s disease before and after levodopa.
Brain 2001, 124(Pt 3):558-570.

54. Grafton ST: Contributions of functional imaging to understanding
parkinsonian symptoms. Curr Opin Neurobiol 2004, 14(6):715-719.

55. Ridding MC, Inzelberg R, Rothwell JC: Changes in excitability of motor
cortical circuitry in patients with Parkinson’s disease. Ann Neurol 1995,
37(2):181-188.

56. Bastings EP, Gage HD, Greenberg JP, Hammond G, Hernandez L, Santago P,
Hamilton CA, Moody DM, Singh KD, Ricci PE, Pons TP, Good DC: Co-
registration of cortical magnetic stimulation and functional magnetic
resonance imaging. Neuroreport 1998, 9(9):1941-1946.

57. Verstynen T, Diedrichsen J, Albert N, Aparicio P, Ivry RB: Ipsilateral motor
cortex activity during unimanual hand movements relates to task
complexity. J Neurophysiol 2005, 93(3):1209-1222.

58. Hanakawa T, Parikh S, Bruno MK, Hallett M: Finger and face
representations in the ipsilateral precentral motor areas in humans. J
Neurophysiol 2005, 93(5):2950-2958.

59. Roy EA, Kalbfleisch L, Elliott D: Kinematic analyses of manual asymmetries
in visual aiming movements. Brain Cogn 1994, 24(2):289-295.

60. Bryden PJ, Roy EA, Rohr LE, Egilo S: Task demands affect manual
asymmetries in pegboard performance. Laterality 2007, 12(4):364-377.

61. Boecker H, Ceballos-Baumann A, Bartenstein P, Weindl A, Siebner HR,
Fassbender T, Munz F, Schwaiger M, Conrad B: Sensory processing in
Parkinson’s and Huntington’s disease: investigations with 3D H(2)(15)O-
PET. Brain 1999, 122(Pt 9):1651-1665.

62. Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R: Short and
long latency afferent inhibition in Parkinson’s disease. Brain 2003, 126(Pt
8):1883-1894.

63. Georgiou N, Bradshaw JL, Iansek R, Phillips JG, Mattingley JB, Bradshaw JA:
Reduction in external cues and movement sequencing in Parkinson’s
disease. J Neurol Neurosurg Psychiatry 1994, 57(3):368-370.

64. Cunnington R, Iansek R, Bradshaw JL, Phillips JG: Movement-related
potentials in Parkinson’s disease. Presence and predictability of
temporal and spatial cues. Brain 1995, 118(Pt 4):935-950.

65. Bernier PM, Burle B, Vidal F, Hasbroucq T, Blouin J: Direct evidence for
cortical suppression of somatosensory afferents during visuomotor
adaptation. Cereb Cortex 2009, 19(9):2106-2113.

66. Urushihara R, Murase N, Rothwell JC, Harada M, Hosono Y, Asanuma K,
Shimazu H, Nakamura K, Chikahisa S, Kitaoka K, Sei H, Morita Y, Kaji R: Effect
of repetitive transcranial magnetic stimulation applied over the
premotor cortex on somatosensory-evoked potentials and regional
cerebral blood flow. Neuroimage 2006, 31(2):699-709.

Legon et al. BMC Neuroscience 2010, 11:112
http://www.biomedcentral.com/1471-2202/11/112

Page 10 of 11

http://www.ncbi.nlm.nih.gov/pubmed/14683727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14683727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14683727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17280510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17280510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10375672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10375672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17869442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17869442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17869442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15115737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15115737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8342027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8342027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9391144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9391144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9535974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9535974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9665616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9665616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10415389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10415389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14744574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14744574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3345808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3345808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3345808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8120609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8120609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9142758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9142758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11191929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11191929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2471629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2471629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17913900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17913900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17913900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6733468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6733468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7507940?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7507940?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3418539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3418539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1510355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1510355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1736846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1736846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1736846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7655888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7655888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7655888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7655888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11277590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11277590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10648446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10648446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11222456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11222456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15582373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15582373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7847860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7847860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9674571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9674571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9674571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15525809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15525809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15525809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15625099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15625099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8185899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8185899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17558818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17558818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10468505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10468505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10468505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12805105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12805105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8158189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8158189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7655889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7655889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7655889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19126799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19126799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19126799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16466934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16466934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16466934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16466934?dopt=Abstract


67. Halsband U, Matsuzaka Y, Tanji J: Neuronal activity in the primate
supplementary, pre-supplementary and premotor cortex during
externally and internally instructed sequential movements. Neurosci Res
1994, 20(2):149-155.

68. Jones EG, Coulter JD, Hendry SH: Intracortical connectivity of
architectonic fields in the somatic sensory, motor and parietal cortex of
monkeys. J Comp Neurol 1978, 181(2):291-347.

69. Nelson RJ: Interactions between motor commands and somatic
perception in sensorimotor cortex. Curr Opin Neurobiol 1996, 6(6):801-810.

70. Cohen LG, Starr A: Localization, timing and specificity of gating of
somatosensory evoked potentials during active movement in man. Brain
1987, 110(Pt 2):451-467.

71. Legon W, Staines WR: Predictability of the target stimulus for sensory-
guided movement modulates early somatosensory cortical potentials.
Clin Neurophysiol 2006, 117(6):1345-1353.

72. Romo R, Merchant H, Zainos A, Hernandez A: Categorical perception of
somesthetic stimuli: psychophysical measurements correlated with
neuronal events in primate medial premotor cortex. Cereb Cortex 1997,
7(4):317-326.

73. Staines WR, Graham SJ, Black SE, McIlroy WE: Task-relevant modulation of
contralateral and ipsilateral primary somatosensory cortex and the role
of a prefrontal-cortical sensory gating system. Neuroimage 2002,
15(1):190-199.

74. Hamalainen H, Kekoni J, Sams M, Reinikainen K, Naatanen R: Human
somatosensory evoked potentials to mechanical pulses and vibration:
contributions of SI and SII somatosensory cortices to P50 and P100
components. Electroencephalogr Clin Neurophysiol 1990, 75(2):13-21.

75. Allison T, McCarthy G, Wood CC, Jones SJ: Potentials evoked in human
and monkey cerebral cortex by stimulation of the median nerve. A
review of scalp and intracranial recordings. Brain 1991, 114(Pt
6):2465-2503.

76. Stepniewska I, Preuss TM, Kaas JH: Architectonics, somatotopic
organization, and ipsilateral cortical connections of the primary motor
area (M1) of owl monkeys. J Comp Neurol 1993, 330(2):238-271.

77. Forss N, Jousmaki V: Sensorimotor integration in human primary and
secondary somatosensory cortices. Brain Res 1998, 781(1-2):259-267.

78. Romo R, Hernandez A, Zainos A, Lemus L, De Lafuente V, Luna R: Probing
the cortical neuronal correlates of a sensory discrimination process. Arch
Ital Biol 2002, 140(3):253-262.

79. Cheron G, Cebolla AM, De Saedeleer C, Bengoetxea A, Leurs F, Leroy A,
Dan B: Pure phase-locking of beta/gamma oscillation contributes to the
N30 frontal component of somatosensory evoked potentials. BMC
Neuroscience 2007, 8(75).

80. Cebolla AM, De Saedeleer C, Bengoetxea A, Leurs F, Balestra C,
d’Alcantara P, Palmero-Soler E, Dan B, Cheron G: Movement gating of
beta/gamma oscillations involved in the N30 somatosensory evoked
potential. Hum Br Map 2009, 30(5):1568-1579.

81. Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R: Event-
related phase reorganization may explain evoked neural dynamics.
Neurosci Biobeh Rev 2007, 31(7):1003-1016.

82. Abbruzzese G, Berardelli A: Sensorimotor integration in movement
disorders. Mov Disord 2003, 18(3):231-240.

doi:10.1186/1471-2202-11-112
Cite this article as: Legon et al.: Non-dominant hand movement
facilitates the frontal N30 somatosensory evoked potential. BMC
Neuroscience 2010 11:112.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Legon et al. BMC Neuroscience 2010, 11:112
http://www.biomedcentral.com/1471-2202/11/112

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/7808697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7808697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7808697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/99458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/99458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/99458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9000020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9000020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3567532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3567532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16644272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16644272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9177763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9177763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9177763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11771988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11771988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11771988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1688769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1688769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1688769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1688769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1782527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1782527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1782527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7684050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7684050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7684050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9507157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9507157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12173529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12173529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17877800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17877800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12621626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12621626?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Frontal N30
	Left Hand Dominant
	Right Hand Dominant
	Parietal N20
	Parietal P27
	Parietal P50

	Discussion
	Conclusion
	Methods
	Participants
	Behavioural Task
	Stimulation and Recording
	Data Analysis

	Acknowledgements
	Authors' contributions
	References

