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Abstract

activities in some hypothalamic nuclei of hibernators.

Background: The structural arrangement of the y-aminobutyric acid type A receptor (GABAR) is known to be
crucial for the maintenance of cerebral-dependent homeostatic mechanisms during the promotion of highly
adaptive neurophysiological events of the permissive hibernating rodent, i.e the Syrian golden hamster. In this
study, in vitro quantitative autoradiography and in situ hybridization were assessed in major hypothalamic nuclei.
Reverse Transcription Reaction-Polymerase chain reaction (RT-PCR) tests were performed for specific GABAAR
receptor subunit gene primers synthases of non-hibernating (NHIB) and hibernating (HIB) hamsters. Attempts were
made to identify the type of afyy subunit combinations operating during the switching ON/OFF of neuronal

Results: Both autoradiography and molecular analysis supplied distinct expression patterns of all o subunits
considered as shown by a strong (p < 0.01) prevalence of a; ratio (over total a subunits considered in the present
study) in the medial preoptic area (MPOA) and arcuate nucleus (Arc) of NHIBs with respect to HIBs. At the same
time a., subunit levels proved to be typical of periventricular nucleus (Pe) and Arc of HIB, while strong o4
expression levels were detected during awakening state in the key circadian hypothalamic station, i.e. the
suprachiasmatic nucleus (Sch; 60%). Regarding the other two subunits (3 and v), elevated B3 and y3 mRNAs levels
mostly characterized MPOA of HIBs, while prevalently elevated expression concentrations of the same subunits
were also typical of Sch, even though this time during the awakening state. In the case of Arc, notably elevated
levels were obtained for B3 and y, during hibernating conditions.

Conclusion: We conclude that different ay subunits are operating as major elements either at the onset of
torpor or during induction of the arousal state in the Syrian golden hamster. The identification of a brain regional
distribution pattern of distinct GABAAR subunit combinations may prove to be very useful for highlighting
GABAergic mechanisms functioning at least during the different physiological states of hibernators and this may
have interesting therapeutic bearings on neurological sleeping disorders.

Background

Hibernation is a unique physiological condition that per-
mits animals to survive under extraordinary climatic and
stressful conditions [1]. This condition has been largely
studied on the Syrian golden hamster (Mesocricetus aur-
atus), a facultative hibernator (HIB) that displays pro-
found decreases in oxidative metabolism and body
temperature during bouts of prolonged torpor inter-
rupted every 5 to 14 days by brief periodic arousals. In
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such an interval animals spontaneously re-warm to 37°C
(euthermic state) for 24-48 hrs [2,3]. Consequently,
entering and exiting from torpor requires a notable
amount of energy in spite of reduced blood flow, oxygen
and glucose delivery as much as 90% of normal value. In
addition, a neuroprotective program with adaptive
homeostatic mechanisms such as reprogramming of
gene expression especially for traumatic fluctuation of
cerebral blood flow is activated during these states [4,5].
Although this adaptive physiological condition has fasci-
nated researchers, little is still known about hypothala-
mic molecular mechanisms regulating hibernation.

© 2010 Alo et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:canonaco@unical.it
http://creativecommons.org/licenses/by/2.0

Alo et al. BMC Neuroscience 2010, 11:111
http://www.biomedcentral.com/1471-2202/11/111

Recently, interests have been directed to the major cere-
bral inhibitory neuroreceptor system of mammalian, i.e.
y-aminobutyric acid type A receptor (GABA4R) that by
operating at a low temperature [6], maintain hypothala-
mic neuronal activities of HIBs in equilibrium especially
during energy balance processes [7].

GABAARs are members of the cys-loop family of ligand
gated ion channels [8] arranged in a pentameric fashion
around a central ion channel [9]. At present 20 different
classes of subunits and namely o (1-6), B(1-4), v (1-3), §,
g, 0, mand p (1-3) are combined and assembled to form
this highly complex pentameric GABA,Rs ionophore
molecule [10]. Of these subunits o, p and y are the most
common combinations characterizing GABA4R that also
determine the overall biophysical and pharmacological
properties of this receptor [11]. In particular, it is a subu-
nit that is involved in the assembly of other sequences
plus expression of pharmacological functions as shown
by a1 5 45 exhibiting varying degrees of sensitivity to ben-
zodiazepines (BDZ) [12]. Moreover, 3 and y subunits also
seem to participate with the expression of o subunit as
suggested by their constant ratio of 1:1:1 or 1:1:0.5 char-
acterizing most GABA R subunit compositions [13] plus
being responsible, as in the case of B3 [14] and v, [15],
for the induction of homeostatic, sedative-like and plasti-
city events. Now, since multiple GABA 4R subtypes dif-
fering in subunit composition, localization and functional
properties exist, it may very well be that the various fine-
tuning roles of neuronal circuits and genesis of network
oscillations [16,17] are predominately linked to o,  and
y combinations. Indeed, specific a-containing GABAAR
subunits do represent a major facet of homeostatic
synaptic plasticity [15]. As a consequence this and the
other subunits do appear to contribute to excitatory/inhi-
bitory homeostasis processes of episodic ischemic events
typical of both hibernation as well as neurodegenerative
disorders [14,15,18].

On the basis of the above considerations, it was our
intention to identify the distribution pattern and combi-
nation preferences of some specific o (a1 54,5) along
with B (B23) plus y (y2,3) subunits in the major hypotha-
lamic regions of HIB and non-HIB (NHIB) states. For
such a purpose, the golden hamster resulted to be an
adequate model since it undergoes bouts of torpor (3-5
days), which allowed us to examine hypothalamic neuro-
nal features during this physiological state by integrating
in vitro quantitative autoradiography results to reverse
transcription reaction-Polymerase chain reaction (RT-
PCR) and in situ hybridization data. The correlation of
distinct GABA 4R subunit combinations especially in a
region-specific fashion may help to unravel the type of
subunits operating during hibernation and this may pro-
vide interesting insights regarding their role on
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neurodegenerative disorders such as ischemia that is
typical of arousal state [19].

Methods

Animals

For the present study, female sexually mature Mesocrice-
tus auratus (100-120 g; Charles River, Italy) were used
(n = 21). The hamsters, which had free access to food
and water were entrained for one to two days at a tem-
perature of 30°C and to a 12-h light/12-h dark cycle
before dividing animals into two groups. A first group
(n = 6), defined euthermics (NHIB) consisted of ham-
sters being maintained under these conditions through-
out the entire testing period. The other group (n = 6),
which consisted of HIB hamsters were entrained to a
temperature 8°C and to a dark local for 20 days. All ani-
mals were decapitated and their brains were rapidly
removed, frozen using powered dry ice after which
stored at -40°C until sectioning at the cryostat and
thaw-mounting onto gelatin-coated slides according to
previous studies [20] for neuroanatomic and molecular
studies.

Animal maintenance and all experimental procedures
were carried out in accordance with the Guide for Care
and Use of Laboratory Animals issued by the European
Communities Council Directive of 24 November 1986
(86/609/EEC). Efforts were made to minimize animal
suffering and reduce the number of specimens used.

In vitro quantitative autoradiography

For this study, a competition binding analysis was per-
formed in order to establish the different pharmacologi-
cal features of the specific GABAAR a subunit
radioligand [*H] flumazenil (Ro 15-1788) in the major
brain region involved with hibernating rhythms and
namely the hypothalamus [7]. Briefly, coronal brain sec-
tions (2 sections per slide; 12 pm-thick) of HIB and
NHIB hamsters were incubated for 1 h at room tempera-
ture in 50 mM Tris HCI, pH 7.4, containing 2 nM [®H]
Ro 15-1788 + 0.5 uM of the imidazopyridine zolpidem
plus different concentrations (500 nM-1 nM) of some
agonist and antagonists of GABAAR o subunits and
namely: the highly selective o; agonist - zolpidem
(Synthelabo Recherche, France), the highly selective a.,
benzodiazepine agonist - flunitrazepam, the highly selec-
tive antagonist of o4 - the imidazobenzodiazepine Ro 15-
4513 and the highly selective inverse agonist of a5 - Ry
080 (kindly provided by Dr. J.M. Cook). A further addi-
tion of 0.5 uM aliquot of the imidazopyridine was
required to forestall the low and very low affinity sites so
that only high affinity sites are available [21]. Adjacent
slices were incubated with 50 mM Tris HCI in presence
of [*H] Ro 15-1788 + 20 mM flunitrazepam for the
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determination of non-specific binding that varied from
20% to 60% of total binding. After drying, slides were
apposed to a [*H]-sensitive Hyperfilms (Amersham, Italy)
for 10 days, the films was developed and autoradiograms
were captured via a Panasonic Telecamera (Canon
Objective Lens FD 50 mm, 1:3.5). Densitometric quantifi-
cation was handled using a computer-assisted image ana-
lyzer system by running a National Institute of Health
Image software (Scion-Image 2.0).

RT-PCR and in situ hybridization assay
Total RNA was extracted from the entire brain of Syrian
golden hamsters (n = 3) by using TRI reagent (Sigma,
Italy) dissolved in DEPC-water (Sigma, Italy) as pre-
viously reported [22]. The integrity of RNA was estab-
lished by its fractionation on 0.8% agarose gel and
staining with ethidium bromide. Total RNA concentra-
tions were determined using a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, USA). Iso-
lated RNA was finally frozen at -80°C until further pro-
cessing. Briefly, reverse transcription reaction (RT) was
performed using 2 pg of total RNA according to High
Capacity cDNA Reverse Transcription Kit (Applied Bio-
system, Italy). Polymerase chain reaction (PCR) using
Taq Polymerase (Promega, Italy) was handled for all
GABA R subunits considered in the present investiga-
tion 01,245 P23 and v, 3. PCR primers specific for each
GABAAR receptor subunit gene were designed using
Beacon Designer software (Bio-Rad Inc., USA) and their
specificity confirmed by homology analysis. The thermal
cycle conditions for all GABA sRa subunits were as fol-
lows: denaturation at 94°C for 3 min plus 35 cycles con-
sisting of denaturation at 94°C for 50s, annealing at a
different temperature (57°C for o, o, and a5, 58°C for
o) for 50s and extension at 72°C for 20s, plus final
extension at 72°C for 5 min. For both  and y subunits,
35 cycles of amplification were used with exception of
annealing temperatures (53°C for v;, 54°C for B, and
56°C for B3 and y,) and subsequently PCR products
were purified using a Wizard Kit (Promega, Italy) and
processed for sequence reactions (BMR genomics, Italy).
To perform in situ hybridization, antisense and sense
probes for each subunit were designed on the basis of
the partial sequences obtained in our rodent model and
labeled by 3’-tailing using digoxigenin-11-dUTP (DIG)
according to the indications supplied by DIG oligonu-
cleotide tailing kit (Roche, Italy). The preparation of the
probe was done via its incubation at 37°C for 30 min
and then stopped with 0.2 M EDTA pH 8.0. Probe con-
centration was determined by its quantification against
known standards on Hybond N™ filters (Amersham,
Italy). Afterwards, brain sections (10 um) of NHIB and
HIB animals, which were previously mounted on polyly-
sine coated slides (Carlo Erba, Italy) and stored at -40°C,
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were incubated with 100 ng of antisense probe in 100 ul
of hybridization solution for overnight incubation at
50°C in a humidified chamber [23]. Nonspecific hybridi-
zation was obtained on slides incubated with the sense
probe. For immunological detection, sections were
coverslipped for 45 min with PBS buffer containing 2%
normal sheep serum (Sigma, Italy) and 0.3% Triton
X100 (Sigma, Italy). Then an anti-digoxigenin alkaline
phosphatase antibody (Roche, Italy) 1:100 was added for
2 h at room temperature and the alkaline phosphatase
color reaction buffer (NBT/BCIP) was added to sections
and incubated for 72 h in a humidified dark chamber.
Neuronal hybridization signals were observed at a
bright-field Dialux EB 20 microscope (Leitz) under a
phase contrast objective (x40) and transcriptional activ-
ity was evaluated with a Panasonic Telecamera (Canon
Objective Lens FD 50 mm, 1:3.5) attached to a Macin-
tosh computer-assisted image analyzer system running
an Image software of National Institutes of Health
(Scion-Image 2.0) plus a constructed internal standard
curve for calibrating optical density (O.D.) values. The
different hypothalamic nuclei were identified on some
cresyl violet stained sections using the hamster atlas
[24] so that it was possible to evaluate their O.D.
densities.

Statistical analysis

The expression levels of the major GABAAR a, B and y
subunits in some hypothalamic areas of HIB and NHIB
hamsters were determined by a two-way Analysis Of
Variance (ANOVA) followed by a post hoc multiple
range Newman-Keul’s test when p-value < 0.05. As for
the establishment of the predominant o subunits
expression percentage in these two physiological states,
transcript levels of single subunits with respect to total
o subunits considered in this study were determined by
using a one-way ANOVA followed by a Newman-Keul’s
multiple range post hoc test when a significant p-value
< 0.05.

Results

Competition binding study

In the present it was our intention to identify and estab-
lish the order of specific o.-containing neuronal fields on
the basis of their affinity levels characterizing some of
the major hypothalamic areas during either HIB or
NHIB states of our hamster model. Indeed, the labeling
of the different hypothalamic sections with the radioli-
gand [*H] Ro 15-1788 in the presence of distinct o sub-
unit drugs and namely a; (zolpidem) and a,
(flunitrazepam) agonists, plus o4 (Ro 15-4513) antago-
nist as well as a a5 (Ry 080) inverse agonist supplied a
heterogeneous distribution pattern. In particular the
results of the preliminary study, which confirmed
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previously published results [25], tended to point
out that it was mainly a; and o, subunits of HIB
(Figure 1a) and NHIB (Figure 1b), respectively, supply-
ing greater high affinity type of characteristic as shown
by their varying binding affinities and Bmax going from
a high affinity range of 9.31 x 10> nM (327 fmol/mg
protein) to 2.47 x 10" nM (404 fmol/mg protein) for
these corresponding subunits. Such a relationship was
also characterized by lower type of binding affinities of
o4-containing sites and precisely 51.67 nM (Bmax = 215
fmol/mg protein) for NHIB hamsters while an affinity of
356.13 nM (Bmax = 393 fmol/mg protein) was obtained
for hibernators (check their order in Figures 1a,b).

[PH]FLU (mean % of control  s.e.m.)

[*H]FLU (mean % of control £ s.e.m.)

Log (agonist) M

Figure 1 Competition curves of [*H] Ro 15-1788 in the Sch of
HIB and NHIB hamsters. Displacement curves of [°H] Ro 15-1788
(mean % of total binding + s.em) showing the differing binding
capacities in the suprachiasmatic nucleus (Sch) of a) HIB and b)
NHIB hamsters. Competition study was carried out in the presence
of different concentration (500 nM-1 nM) of a; (zolpidem, white
square) and a, (flunitrazepam, black triangle) agonists plus o,
antagonist (Ro 15-4513, black square) and a.s inverse agonist, (Ry
080, white circle) as described in “Materials and Methods”. Each
point represents the mean of five separate tests.
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GABAAR Molecular Analysis and hypothalamic o subunit
expression

On the basis of the aforementioned considerations, our
attention was directed towards the distribution and
expression pattern of the major GABAAR subunits and
namely 01 54,5 P23 and y, 3. Application of specific pri-
mers designed on highly conserved regions of mamma-
lian GABAAR subunit mRNAs allowed us to obtained a
single cds fragment of 73 bp for GABAAR a; [GenBank
accession no. 1304461], 90 bp for GABAAR a, [Gen-
Bank accession no. 1300238], 157 bp for GABAAR oy
[GenBank accession no. 1300240], 80 bp for GABA4R
o5 [GenBank accession no. 1300246], 68 bp for
GABAAR B, [GenBank accession no. 1300230], 62 bp
for GABAAR B3 [GenBank accession no. 1304467], 129
bp for GABAAR v, [GenBank accession no. 1300208],
145 bp for GABAAR y3 [GenBank accession no.
1304463] which is specific for Mesocricetus auratus
(Table 1). The partial sequence of GABAAR a5 4 subu-
nits showed a homology >94% and >83% to cds
sequences of Rattus norvegicus and Mus musculus,
respectively, whereas GABAAR a4 showed a homol-
ogy of 79% to cds sequence of both Rattus norvegicus
and Mus musculus. Similarly, B, 3 subunits showed a
homology >93% to cds sequences of both Rattus norve-
gicus and Mus musculus whereas v, 3 subunits showed
an alignment that is well fitted (> 84%) to cds sequences
of these two rodents.

Once synthesized, these GABAR o subunit sequences
supplied us with a net heterogeneous distribution pat-
tern of the different a-containing receptors in the above
hypothalamic neurons as indicated by low, intermediate
and high expression levels in a representative autoradio-
gram of hypothalamic areas for a; (Figures 2A, A’), o,
(Figures 2B, B’), a4 (Figures 2C, C’) and o5 (Figures 2D,
D’) subunits with respect to nonspecific binding levels
(Figure 2E) of both HIB (A-D) and NHIB (A’-D’) ham-
sters. In the first case, elevated O.D. expression signals
(> 0.40 O.D.) of a; (Figure 3a) were reported to be typi-
cal of the medial preoptic area (MPOA) and arcuate
nucleus (Arc) in NHIB hamsters while an intermediate
level (< 0.4 > 0.18 O.D.) was instead detected for a, of
the periventricular nucleus (Pe) under the same physio-
logical state. As far as HIB hamsters are concerned (Fig-
ure 3b), intermediate levels of o; and o, were reported
for both the suprachiasmatic nucleus (Sch) and Arc,
resepctively. Conversely the expression of the other two
o subunits were either of an intermediate level as in the
case of HIB hamsters or of a very low nature (< 0.180
0O.D.) for NHIB animals.

Surprisingly, however, when the different levels of the
single o subunit were reported as a ratio with respect to
total o subunit levels considered in the present study, a
peculiarly interesting expression pattern was highlighted
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Table 1 Primer sequences for the different genes studied
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Gene Forward Primer (5’-3’) Reverse Primer (5'-3')

o AAAGTGCGACCATAGAACCGAAAG GCGGAAAGGCTATTCTTGACAGTC
o) GGACGGGAAGAGTGTAGTCAATG TTTGGAAATGGTAGAGAGGACAGG
oy AGCAGCAAGAGGTCTTTCGTC AGAAGGTGGTGGAGCAGAGG

s CCATCCTCCAAACATCCCAAG CGATCTTGCTGATGCTGCTGCAGG
B> AACTACATCTTCTTTGGGAGAGG GGTCCATCTTGTTGACATCCAG

Bs ACAACTCAGGAATCCAGTATAGG CCGTAGGTGCGTCTTCTTG

Y2 CAACAGGATGCTGAGAATTTGGAATG GCTGTGACATAGGAGACCTTGGG
Y3 ATCACCACACCCAACCAG CGTCCAACGATAAATCATTTCTTC

in these same hypothalamic areas. First of all, the distri-
bution pattern of the different GABAAR subunits
(0t1,2,4,5) notably differed in the hypothalamic areas of
NHIBs as displayed by a very strong (p < 0.001) up-reg-
ulation of the o; subunit (80%) in MPOA during such a
physiological state with respect to HIB animals (Figure
4a). Contextually, the other hypothalamic areas of NHIB
continued to maintain notably high expression capacities
of this specific subunit as shown by very strong and
moderately higher (p < 0.05) levels in Arc and Pe,
respectively, while very strong levels, instead, character-
ized Sch of HIBs. On the other hand, elevated a,-
expressing neurons seemed to be featured in almost all
hypothalamic areas of HIBs as shown by a very strong
up-regulated expression pattern in Sch and Arc while
only a moderate increase was detected in MPOA
(Figure 4b). As far as o4 subunit is concerned, a very
strong up-regulation seemed to be mostly featured in
Sch of NHIBs whereas a strong increase was reported
for Arc of HIBs (Figure 4c). Nonetheless, o5-expressing
neurons did not show any evident variations during
hibernation with the exception of a somewhat strong
up-regulation in MPOA (Figure 4d).

A similar trend to that of o subunits was also estab-
lished for B- and y-containing neurons in the same
hypothalamic areas of NHIB and HIB states. In particu-
lar, intermediate levels (< 0.4 > 0.18 O.D) of B, were
reported for Pe and Arc of NHIBs, whereas elevated
expression signals (> 0.40 O.D.) were obtained for B3
subunit in Sch and MPOA of the same physiological
state (Figure 5a). Curiously in the case of HIBs (Figure
5b), elevated levels of B3 were detected in MPOA, while
intermediate levels were typical of Arc and Sch. Regard-
ing y subunit, it was y3 that showed very strong densities
in Sch and Arc of NHIBs whereas in the case of y,, only
intermediate levels were observed in MPOA and Pe.
However, it was still MPOA that maintained notably
moderate levels of y3 in HIBs while this subunit is
weakly expressed (< 0.180 O.D.) in Pe and Sch during
this same physiological state.

Discussion

The results of this work highlighted the participation of
distinct hypothalamic o« GABAR containing neurons
during the different HIB bouts of the Syrian golden
hamster. In order to determine which specific a subunit
was involved in such a physiological state, it was neces-
sary to evaluate the type of binding affinities of o ago-
nists and antagonists that were related to hibernation.
Their highly selective inhibiting binding profiles of the
different subunit drugs and precisely a; (zolpidem), o,
(Flu), a4 (Ro 15-4513), oz (RY 080) showed that these
agonists bind tightly to most o« GABAR containing
brain sites in a similar heterogeneous manner to that of
rats as well as to that of early appearing HIB mammals
such as the hedgehog [21]. Even from the binding differ-
ences detected in the present study, it appeared that o
subunit in particular bound to its site at a greater affi-
nity in mainly telencephalic areas [26] suggesting that
this specific subunit may be a key neuronal regulating
element at least during the different HIB states of
rodents.

It was interesting to note that the expression pattern
of all & GABA4R subunits considered, using specific
01245 CDNA probes sequenced for Mesocricetus aura-
tus, confirmed previously obtained binding trends of the
selective o agonists and antagonists [21]. In the first
place a; continues to be the major subunit even in
most hypothalamic areas as shown by very strong and
strong high levels in MPOA and Arc, respectively, of
NHIBs and this should not surprise us since such a
GABA R subunit has proven to be essential in energy
balance- and reproductive activity-controlling site such
as MPOA and Arc during hibernation [27]. On the
other hand, a; expressing neurons supplying moderately
high levels in Sch of HIBs tend to corroborate homeo-
static related effects especially during the transition
from an awakening to a torpor state with the conse-
quent induction of non-rapid eye movement (NREM)
sleep [28]. Indeed during the arousal state, the switching
ON of a; may lead to a structurally well-assembled
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Figure 2 Representative autoradiograms of hypothalamic areas
of HIB hamster. Well integral representative transverse sections of
hypothalamic areas were used to determine the expression pattern
of the oo GABAAR subunits considered in the present study. For this
purpose oligonucleotidic antisense for a.; (A), o, (B), oy (C), and s
(D) mMRNAs developed in the brain of HIB Mesocricetus auratus and
was compared to the same subunits (A, B, C', D') for NHIB hamsters
with respect to (E) nonspecific binding autoradiograms. In this case
the nonspecific binding section of HIB proved to be similar to NHIB
and so was used for all determinations. MPOA: medial preoptic areg;
Pe: periventricolar hypothalamic nucleus; Sch: suprachiasmatic
nucleus.

0.4

b)

0.D. +s.e.m.

Sch

Figure 3 O.D. of 04,45 MRNA GABALR expression in
hypothalamic areas of NHIB and HIB hamsters. Expression
pattern (O.D. £ s.em.) of o,; 5 MRNA GABAAR in NHIB (a) and HIB
hamsters (b). Arc: arcuate hypothalamic nucleus; MPOA: medial
preoptic area; Pe: periventricolar hypothalamic nucleus; Sch:

suprachiasmatic nucleus.

GABAAR complex [29] and consequently the activation
of motor-controlling neurogenic programs in order to
face new functional plasticity states [30]. Moreover, the
predominance of a o;-dependent pharmacological orga-
nizational and functional features [8] have already been
reflected during the early neuronal developmental stages
of another major limbic region in hamsters and precisely
the hippocampus [31] as well as on the induction of
visual functions in other adult rodents [32]. As a conse-
quence, it might very well be that the high levels of
hypothalamic o.;-containing neurons may assure a phar-
macological protective role against ischemic insults dur-
ing the awakening phase [19,33] especially since an
increased gene expression of this subunit has been cor-
related to the new functional plasticity states during the
arousal phase [34].

Regarding o, and as, these subunits were largely
expressed in Arc, Pe plus in Sch, Pe and MPOA,
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respectively, of mainly HIBs. The lack of any evident
variations of the latter subunit in almost all hypothala-
mic areas, aside that of MPOA, in HIBs and NHIBs
tends to represent a constant presence in all facets of
the animal’s physiological conditions, since a5 has pro-
ven to play a major role on the activation of distinct
GABA R pharmacological kinetic properties throughout
the various biological developmental stages [35]. Con-
versely, the detection of prevalently elevated o, levels in
HIBs appears to support a compartmentalized type of
inhibitory activity during this physiological state. It is
especially during this condition that some vital neuroen-
docrine functions are changing and so a, could very
likely lead to the activation of the arousal state via the
induction of these vital functions and namely feeding,
which has been shown to be related to altered levels of
o, subunits [36].

Of particular interest is the dense expression of a4 in
Sch of euthermics and this tends to support a major
role played by the a4-containing GABA,Rs in such a
circadian center [37]. Now the fact that low expression
levels of this subunit was detected in the key hypothala-
mic circadian center tend to underlie a switching ON of
homeostatic neuronal processes, which in turn may be
linked to awakening states and thus strengthening the
importance of specific a, agonists, such as gaboxadol
during insomnia bouts [28]. In this context, Sch a4-con-
taining GABA sRs may be viewed as major elements for
the registering of metabolic [7] and temperature sensi-
tive neuronal changes during thermoregulation and
sleep-wake control in a similar manner to that of
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Figure 5 B, and 7,3 levels (0.D. + s.e.m.) in NHIB and HIB
hypothalamic areas. Expression pattern (O.D. £ s.em.) of GABAAR
B3 and y,3 MRNAs in a) NHIB and b) HIB hamsters. Statistics:
ANOVA and Neuman Keul's test, * p < 0.05; ** p < 0.01; *** p <
0.001. Arc: arcuate hypothalamic nucleus; MPOA: medial preoptic
area; Pe: periventricolar hypothalamic nucleus; Sch: suprachiasmatic

nucleus.

MPOA and of diagonal band of Broca in other rodents
[38,39].

Similarly to the a subunits, even the - and y-contain-
ing GABAARs displayed a heterogeneous distribution
pattern in most hypothalamic areas and this confirms
the major role played by the three subunits throughout
the entire mammalian phylogeny [8,40]. 3 proved to be
a first subunit that showed evident variations in not
only Sch but also in MPOA neuronal fields of euther-
mics; a relationship that tends to point out the major
role of B3 during the awakening stages of hibernation
since this subunit has been shown to be involved
numerous homeostatic events, above which the modifi-
cation of thermoregulatory responses [41-43] that are
known be vital for hibernators [5]. Even in this case
high expression levels of MPOA B3-containing neurons
appear to constitute a major neuroprotective element
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during the arousal states [44] in a comparable manner
to its role on homeostatic conditions including body
weight, sedative events [14,45] and overall wakening
states [46]. Furthermore, the importance of this subunit
is supported by knockout mice displaying a key regula-
tory role, aside that related to developmental and body
weight, on the modification of the different forms of
sleeping states [47] including anesthesia [14]. The preva-
lence of elevated P,-expressing neurons in most
hypothalamic areas during both euthermia and torpor
states should not be so surprising since this subunit
comprises at least 50% of GABAARs in the various brain
regions [48] as well as being a key constituent of some
major neuroendocrine or circadian events [49]. In the
case of the other class of GABAAR subunits (y), it
appears that the prevalent expression of y, occurring
mostly in MPOA and Pe of NHIB hamsters and this
could very well represent a critical condition for synap-
tic clustering of the GABA,Rs with consequently phy-
siologically adequate inhibitory signals at least during
the various motor activities [35,50,51]. In a similar man-
ner to the other subunits, a predominantly elevated
expression pattern of y3 was also featured in hypothala-
mic areas such as Sch and Arc of NHIBs along with a
comparable condition being detected in the former
hypothalamic area plus MPOA and Pe of HIBs. Interest-
ingly, the predominance of y3 during both physiological
states seems to underlie the major role elicited by this
subunit y3, which seems to fit well with the early and
correct assembly of the other synaptic-containing vy sub-
units required for neuronal trafficking strategies of the
various brain regions [52].

Conclusions

The results of the present study seem to point to a pre-
ferential role of the different afy subunits in some
hypothalamic areas during the different HIB states of
the hamster. In particular, the predominantly dense
levels of these major subunits permitted us to assign, for
the first time, specific subunit triplets to single hypotha-
lamic nuclei and precisely o1B3y, in MPOA and a4f3Y3
in Sch of euthermics while a.,B3y, appears to be typical
of Arc in the HIBs. We are still at the beginning but the
identification of a brain regional distribution pattern of
distinct GABA AR subunit combinations operating dur-
ing hibernation may have interesting bearings on the
development of new therapeutic approaches for neurolo-
gical disorders. In this case the identification of a-con-
taining brain regions cross-talking with other major
neuroreceptor systems such as orexinergic enriched
brain regions [36] may very well supply interesting
insights regarding ischemic conditions during arousal
states of HIBs [19], or insomnia conditions linked to
hippocampal cAMP-dependent signaling alterations [53].
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