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Altering the trajectory of early postnatal cortical
development can lead to structural and
behavioural features of autism
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Abstract

Background: Autism is a behaviourally defined neurodevelopmental disorder with unknown etiology. Recent
studies in autistic children consistently point to neuropathological and functional abnormalities in the temporal
association cortex (TeA) and its associated structures. It has been proposed that the trajectory of postnatal
development in these regions may undergo accelerated maturational alterations that predominantly affect sensory
recognition and social interaction. Indeed, the temporal association regions that are important for sensory
recognition and social interaction are one of the last regions to mature suggesting a potential vulnerability to early
maturation. However, direct evaluation of the emerging hypothesis that an altered time course of early postnatal
development can lead to an ASD phenotype remains lacking.

Results: We used electrophysiological, histological, and behavioural techniques to investigate if the known
neuronal maturational promoter valproate, similar to that in culture systems, can influence the normal
developmental trajectory of TeA in vivo. Brain sections obtained from postnatal rat pups treated with VPA in vivo
revealed that almost 40% of cortical cells in TeA prematurely exhibited adult-like intrinsic electrophysiological
properties and that this was often associated with gross cortical hypertrophy and a reduced predisposition for
social play behaviour.

Conclusions: The co-manifestation of these functional, structural and behavioural features suggests that alteration
of the developmental time course in certain high-order cortical networks may play an important role in the
neurophysiological basis of autism.

Background
Autism spectrum disorder (ASD) is a behaviourally
defined brain disorder affecting approximately 1 in 150
children [1]. Autistic children exhibit impoverished ver-
bal and non-verbal communication skills and reduced
social interactions where they often bias their attention
towards certain objects rather than the surrounding
social situation [2]. Children with ASD also display
behavioural impairments in attention engagement and
disengagement, do poorly in emotional discrimination
and facial recognition, and fail to response to their own
names [2-6]. It has been suggested that behavioural phe-
notypes of ASD are associated with maturational

changes in cortical thickness and organization, particu-
larly affecting pyramidal neurons [1,7]. In addition,
structural and functional abnormalities are particularly
prominent in the temporal neocortex [1,8-10], and asso-
ciated target structures including the amygdala [3], that
mediate auditory and visual object recognition and
attention orientation [1,11-14].
The underlying cellular and neurobiological mechan-

ism(s) associated with ASD have remained elusive.
Based on the work in autistic children, Susan Bryson
has proposed that the expression of autistic behaviours
may involve a hypersensitivity to sensory stimulation [6].
Indeed, recent work using one rodent model of autism
has provided some evidence to support this conjecture.
For example, Markram’s lab has shown that rats prena-
tally exposed to VPA frequently exhibit hyper-connec-
tivity and enhanced plasticity in prefrontal neocortical
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networks [15,16]. Hence, from a cellular level, increased
neural activity in cortical networks may lead to abnor-
mally noisy networks thus making it difficult for neural
processing of certain sensory stimuli in the autistic
brain [17].
The postnatal maturation trajectory of the neocortex

is highly heterogeneous, exhibiting large regional varia-
bility in both structure and functional development
[18-22]. This issue is, however, rarely addressed in the
literature despite the fact that there is a growing realiza-
tion that some of the key brain abnormalities of autism
can be highly protracted and continue to evolve during
postnatal life [23,24]. This is not surprising given the
fact that certain high-order brain regions important for
social functions endure continued plastic changes and
delayed postnatal maturation [25,26]. For example,
unlike some regions of the primary sensory and motor
cortices, the speed of cortical maturation in high-order
temporal association networks is significantly slower,
often extending into adolescence [18-22]. This develop-
mental feature suggests that the trajectory of temporal
lobe development may be particularly sensitive to patho-
genic factors that can influence the speed of neuronal
maturation, especially during postnatal life [27]. For
example, culture work has shown that valproate (VPA),
and analogous compounds, are potent epigenetic factors
that can facilitate neuronal maturation in neurons
[28-30]. However, whether VPA can influence the speed
of postnatal maturation in vivo and whether this can be
associated with structural and behavioural characteristics
related to autism remains unknown.
Here we address the emerging hypothesis that it may

be the time course of postnatal cortical development
that is most disturbed in ASD. To this end, we exam-
ined the TeA network from animals treated with a VPA
dosage previously used in vivo [31]. We found that in
addition to premature electrophysiological development
of individual TeA cells, treated animals can exhibit gross
cortical hypertrophy and a reduced predisposition for
social play behaviour.

Results
Reduced social (play) interaction associated with VPA
treatment
The most prominent feature of autism is social impair-
ment [2]. We therefore first examined whether VPA-
treated animals also exhibited a similar behavioural pat-
tern. We choose to investigate social play behaviour
since it is one of the most widespread and least ambigu-
ous forms of play amongst mammals [32]. As shown in
Figure 1, we found a significant reduction in the number
of rough-and-tumble play behaviours in VPA-treated
animals as compared to age-matched (P35-37) controls
(Figure 1A-B; Mann-Whitney U = 0; p < 0.05; n = 8, 2

sessions with 4 animals). For example, there was a
reduction in the number of “attacks to the nape” and
“pins” in treated rats relative to controls ([32] also see
Methods). It is possible that reduced play behaviour fol-
lowing VPA-treatment may occur as a result of abnor-
mal physical development under the rearing conditions
for treated animals. To examine this, we first monitored
eye opening time. As previously reported [17], we
noticed a small but significant delay in eye opening by
1-2 days in treated rat pups (Figure 1C; two-way
ANOVA Bonferroni post-test t ≥ 3.246 on day 10-12
and t ≤ 1.357 for all other days; p < 0.05; n = 14 and n
= 17 for control and treated animals respectively), well
before behavioural testing was undertaken. Second, we
also measured changes in body weight between control
and treated groups during the first month of life but did
not observed any obvious difference between the two
groups (Figure 1D; two-way ANOVA Bonferroni post-
test t ≤ 1.244; p > 0.05; n = 14 and n = 17 for control
and treated animals respectively). Finally, since VPA has
previously been shown under some conditions to lead to
generalized motor impairments in rodents [33], we
tested to see if the reduced level of social play could be
explained by general motor deficits. To this end, both
VPA-treated and control animals underwent training
and learned (two-way ANOVA F(7,152) = 13.2; p <
0.001) a cue-dependent reward-based sensorimotor task
(see Methods for details). As shown in Figure 1E, VPA-
treated animals were on par or even slightly better than
controls at learning the association between the cue and
the reward in addition to retrieving the reward (Figure
1E; two-way ANOVA Bonferroni post-test for session 1
t = 3.331 p < 0.01 and for all other sessions between
treated and control groups t ≤ 2.265; n = 6 animals).
Furthermore, extinction of the learnt task (two-way
ANOVA F(7,106) = 16.99; p < 0.001) was also similar
between controls and VPA-treated animals (Figure 1F;
two-way ANOVA Bonferroni post-test t ≤ 1.774; p >
0.05). Taken together, these data indicate that the
observed reduction in play behavior was unlikely due to
general physical and/or rearing conditions [34]. Since
rough-and-tumble play behaviour is a well-established
measure of play initiation and social interaction [32],
our data suggests a reduced predisposition for social
interaction in VPA-treated animals.

Enlarged temporal association cortex in VPA-treated
animals
Since the temporal lobe is important in visual attention
and social interaction [1,35,36], it is therefore not sur-
prising that that many neuropathological findings with
respect to the autistic brain are often associated with
the temporal lobe region [8,9]. For example, evaluation
of some autistic brains has revealed an increase in
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Figure 1 Behavioural features associated with VPA-treatment. A: Typical examples of rough-and-tumble play behaviours, a measure of play
initiation and social interaction [32]. The left panel illustrates an “attack” (animal on top) to the nape and the right panel a “pin” by the rat. B:
Summarized data of rough-and-tumble play behaviours scored in a ten minute test session between control and VPA-treated animals. * p < 0.05.
C: significant delay of about 1-2 days (p < 0.05) in eye opening between control and VPA-treated animals. Eye scoring, similar to that defined
previously [17], is as follows; 0 closed, 1 half-open, 2 complete eye-opening. D: Rat pup body weight between groups (i.e. control and VPA-
treated) during the first month of life beginning on the first day of injection (P6). There was no obvious difference between groups (p > 0.05),
an indicator of normal physical development under the rearing conditions for treated animals [34]. E: Cue-dependant associative learning for
both VPA (black) and control (grey) animals. Rats were on a 47.5 h water deprivation schedule prior to training sessions. Animals were placed in
the test cage and a 10 kHz sine-wave tone (5 pulses of 1 second in duration at 1 Hz) was present at random time points once the animal was
in the opposite half of the cage relative to the reward location. Only when the 10 kHz tone was presented, was the reward (30% sucrose
solution) available. Latency measurements represent the time between cue onset and arrival and orientation to the fixed reward location. F:
Same protocol as in A, but now when the 10 kHz tone was presented, it was not reinforced (i.e. no reward was available). See Methods for
more details. * p < 0.05; ** p < 0.01; ***p < 0.001.
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cortical grey matter and an enlargement of some regions
of the temporal lobe by about 5-10% relative to typically
developing controls [9,10]. Thus, to see if a similar his-
tological pattern could be observed in our model, we
examined TeA cortical grey matter thickness in VPA-
treated and control animals similar to that done pre-
viously [37]. Although not clearly evident in all animals,
we found a marginally significant increase in cortical
thickness of just under 10% between age-matched (P20-
23) treated and control animals (Figure 2; paired t-test t
= 3.255; p < 0.05; n = 8 animals). Hence, this structural
change in cortical anatomy resembles that observed in
the human autistic brain, possibly reflecting an acceler-
ated time course in cortical development [1].

Accelerated development in the TeA network
Previous work has shown that infragranular layers in the
rat TeA consist of many slowly maturing pyramidal neu-
rons [38]. Indeed, electrophysiological recordings have
also shown that many infragranular TeA neurons in
juvenile cortex (i.e., < 1 month) have not yet acquired
adult-like intrinsic membrane properties (see Figure 3A
for example) [39]. To examine the possibility of an
accelerated time course of TeA development, we exam-
ined the intrinsic electrophysiological properties of indi-
vidual cells which are known to undergo well
characterized hallmark changes during development
[40,41]. To this end, we obtained a total of 44 infragra-
nular whole-cell recordings (n = 26 treated; n = 18 con-
trol) from juvenile VPA-treated and control animals.
We found that the network contained significantly more
cells with adult-like intrinsic neuronal properties in
VPA-treated than saline or untreated control animals,
including many neurons exhibiting intrinsic membrane
excitability and spontaneous synaptic activities (Figure

3A). Using electrophysiological features as an index of
neuronal maturation, we found that juvenile VPA-trea-
ted animals had a significantly higher number of matur-
ing neurons as compared to control animals (Figure 3B;
Mann-Whitney U = 0; p < 0.05). Hence, these data indi-
cate a temporally accelerated pattern of neuronal devel-
opment as a result of VPA-treatment.

VPA does not appear to lead to cell death or the
abnormal electrophysiological development of individual
neurons
Although VPA treatment has been shown to promote
neuronal maturation [28], its effect on cortical neurons
may also involve tissue toxicity, cell injury and death
[42]. To exclude these possibilities, we first conducted
DAPI cell counts and found no evidence of cell loss due
to VPA treatment (Figure 4; Mann-Whitney U = 4; p >
0.05; n = 6 animals). In fact, we noted a slight increase
in cell number. In the second set of experiments we
examined whether VPA can have a non-specific injury
type of an effect on the membrane properties of TeA
neurons. Of the five basic intrinsic membrane properties
examined, all but one was similar between the two
groups (Figure 5; membrane potential (Vm), Mann-
Whitney U = 17; spike threshold, Mann-Whitney U =
15; spike amplitude, Mann-Whitney U = 14; input resis-
tance (Rin), Mann-Whitney U = 16; n = 12 neurons).
Only the membrane capacitance appeared to be smaller
in treated animals relative to controls (Mann-Whitney
U = 5; p < 0.05). However, this reduction can not be
considered abnormal given the fact that it was still sev-
eral-fold larger than immature neurons and comparable
to some spiking cells in control animals (data not
shown). Taken together, these data suggest that the
effect of VPA on network and cellular development is

Figure 2 Enlarged temporal association cortex in VPA-treated animals. A: Images of the TeA area, located dorsal to the rhinal fissure
(indent), for both control (left) and VPA-treated animals (right) illustrating an increase in cortical thickness in the latter. Note that the coloured
line is identical for both images for reference. Scale bar = 200 μm. B: Normalized cortical thickness measurements of the TeA area between
control and VPA-treated animals. * p < 0.05.
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unlikely due to deleterious effects on neuronal viability
and functional integrity.

Discussion
Experimental approach
VPA has previously been associated with ASD based on
the fact that children born to pregnant women taking
VPA for seizure management had an elevated risk of
developing ASD [15,43]. However, although some of the
abnormalities observed in the autistic brain are of pre-
natal origin, postnatal factors are also considered to play
an important role [23,27]. In fact, very little research has
attempted to address how chemical agents may influ-
ence certain postnatal developmental processes [27]. In
our model, the adverse effect of VPA may be derived

from a persistent effect on the temporal lobe as it
undergoes a protracted and delayed maturation. For
example, VPA has been frequently used in infants to
manage seizure [44]. Nevertheless, the importance of
our experimental approach is that it has allowed us to
directly examine the emerging hypothesis that it is an
altered time course of brain development that is most
disturbed in autism [1].
The timing of brain insult also seems to differ in

terms of the phenotypes of ASD. For example, later
exposure in humans has largely been associated with the
nonsyndromic and sometimes high-functioning forms of
ASD [45]. By contrast, early exposure to an insult (e.g.
first trimester) represents the time when the syndromic
(i.e., multiple congenital anomalies and mental

Figure 3 Accelerated development of the TeA network in juvenile animals. A: The majority of cells in treated animals exhibited adult-like
electrophysiological properties and spontaneous synaptic activity ("VPA”), and is in stark contrast to that observed in saline or untreated control
animals ("control”). The majority of these cells exhibited immature intrinsic neuronal properties similar to that found in new born rats [41].
Voltage responses to a current step protocol were applied from a holding or resting potential of around -60 to -70 mV. In voltage-clamp, cells
were clamped at -60 mV. Sale bars: 30 mV vertical and 150 ms horizontal for top two traces; and 15 pA vertical and 400 ms horizontal for
bottom two traces. B: Based on the intrinsic membrane properties (see panel A for example), juvenile (< 1 month) VPA-treated animals have a
significantly higher maturational index as compared to juvenile control animals. *p < 0.05.

Figure 4 Lack of cell loss due to VPA treatment. A: Typical images of control and VPA-treated tissue sections illustrating a comparable
pattern of DAPI staining. Scale bar = 50 μm. B: Summarized cell count data showing that there is no significant cell loss between control (n = 3
animals) and VPA-treated animals (p > 0.05; n = 3 animals). DAPI counts were conducted age-matched littermates.
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retardation) form of ASD is thought to be initiated [45].
In this regard, the main physical developmental delay
we observed here is a short delay in eye opening (see
Figure 1) as reported previously [17]. However, in an
exceptional case, we found one pup among all litter-
mates that had a persistently low body weight and
delayed fur growth during early postnatal development
which was excluded from our analysis. Interestingly, a
persistently low body weight was also noted in most (if
not all) animals in a previous study using an early pre-
natal VPA treatment protocol [17]. Hence, the temporal
difference between VPA treatment may produce certain
biases related to behavioural and developmental pheno-
types [33] in which later insults may more closely reflect
nonsyndromic high-functioning forms of autism.

Cortical structural and electrophysiological changes
induced by VPA
The most consistent neuropathological finding with
respect to the autistic brain is cortical enlargement, par-
ticularly in the temporal lobe region [8,9]. This is not
surprising since the temporal lobe association networks

are involved in many processes including attention,
social interaction, object recognition, and biased compe-
tition where the object’s neural representation domi-
nates across multiple networks [1,11-13,35,46,47]. Post-
mortem examination of some autistic brains has
revealed an increase in cortical grey matter and hyper-
convolution of some regions of the temporal lobe [8]. In
particular, Piven and colleagues noted that the largest
relative increase in cortical grey matter was in the tem-
poral lobe [9]. Their value of around a 5% increase in
the temporal lobe for typically developing controls is
consistent with our results (Figure 2) and that of a
recent study by Schumann and coworkers of around
10% [10].
The mechanism through which VPA influences neuro-

nal development and cortical thickness is still not
entirely clear and is likely complex and multifactorial.
Although VPA is classically considered an anti-epileptic
drug, a more recent study has shown that VPA appears
to have a strong influence in mediating epigenetic mod-
ulation rather than enhanced GABA activity [31].
Indeed, in our study the accelerated appearance of

Figure 5 Intrinsic membrane properties between control and VPA-treated neurons. VPA-treatment does not appear to result in the
abnormal electrophysiological development of TeA neurons. A: Recordings from a neuron obtained from a control (top) and VPA-treated animal
(bottom) illustrating a similar voltage response to current injection. Scale bars = horizontal 100 ms; vertical 40 mV. B-F: Comparison of five basic
intrinsic membrane properties. B, resting membrane potential; C, action potential threshold; D, action potential amplitude; E, membrane
capacitance; and F, input resistance. The membrane capacitance was slightly smaller in neurons of VPA-treated animals although it is still
significantly larger than immature neurons and comparable to those obtained from control animals (not shown). Data are from animals of similar
age. * p < 0.05.
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adult-like membrane properties in VPA-treated animals
was obtained at a dosage that has been shown to inhibit
histone deacetylases in vivo and activate epigenetic sig-
nalling pathways in the rat [31]. These data indicate a
possible role of chromatin remodelling in the control
and execution of developmental gene programs involved
in different aspects of neuronal maturation [28-30,48].
However, future study is required to determine whether
potential changes to the intracellular somatodendritic
lipid and/or protein organization which may be contri-
buting to the immature electrophysiological phenotype
can also be related to the emergence of mature intrinsic
properties [49,50]. Nevertheless, in vivo VPA-treatment
does appear to facilitate premature development of the
TeA network. Interestingly however, inactivation of
PTEN signalling mechanisms can also lead to increased
cortical thickness [37], while mutations leading to the
formation of tuberous sclerosis complex, which is
strongly associated with ASD [51], can also result in
more active cortical networks in both humans and
rodents [52-54]. Thus, VPA may exert its effect on neu-
ronal development and cortical anatomy through activa-
tion of gene programs related to activity development
[29] and/or activity-dependent processes and signal
transduction mechanisms [37,55,56].

VPA-induced behavioural changes
As noted by Leo Kanner in 1943, autistic children tend
to avoid social interaction [2]. Over the past several
years, different indices of social interaction in animal
models have been investigated and are consistently
found to be reduced [17,37,57]. Social play behaviour
has been well documented in the rat and is also consid-
ered one of the most widespread and least ambiguous
forms of play amongst mammals [32]. However, this
type of social interaction, to our knowledge, has never
previously been evaluated in relation to an autistic phe-
notype under these conditions.
It is well recognized that high-order temporal lobe

networks play a critical role in auditory and visual pro-
cessing, attention, and ultimately, social interaction
[1,11-14,35,36,47,58-60]. Autistic children often have
difficulty with attention disengagement [5,6] and fre-
quently fail to react to their names so much so that
parents often suspect deafness [61]. Hence, the
reduced social play behaviour we report here may
reflect complex functional impairments in multiple
sensorimotor domains. Indeed, a recent study has
shown that the TeA network in rats can form a des-
cending reticular-like network, providing top-down
innervations to many cortical and subcortical struc-
tures including the amygdala [46]. Thus, premature
development of even a small population of TeA neu-
rons may have a powerful influence on many

downstream structures that are also involved in work-
ing memory, attention, and emotional behaviours.

Conclusions
The main finding of the present study indicates that
early postnatal exposure to VPA, at a dosage known to
inhibit histone deacetylases in vivo [31], can lead to syn-
chronous developmental alterations reminiscent of ASD.
Neurons from VPA-treated animals tended to acquired
adult-like electrophysiological properties sooner during
early postnatal development relative to controls.
Furthermore, these electrophysiological changes were
also associated with an increase in cortical thickness and
a reduced predisposition for social interaction. Such a
co-manifestation of features is consistent with the emer-
ging theory that it is the time course of early postnatal
development that may be most disturbed in ASD [1].

Methods
Preparation and electrophysiology
All experimental protocols were approved by the Uni-
versity of Calgary Conjoint Faculties Research Ethics
Board. Under this protocol, animals are housed in The
University of Calgary Animal Resource Center facility
receiving constant care throughout the year. Briefly,
newborn male and female Sprague-Dawley rats were
socially caged after weaning at day P21. Frontal tissue
sections were prepared on a Leica vibrotome (Germany).
Slices (≈300 μm) were submerged in a recording cham-
ber in oxygenated (95% 02; 5% CO2) artificial cerebrosp-
inal fluid (aCSF). The aCSF had a final pH and
osmolality of around 7.4 and 290-300 mOsm/kg respec-
tively and contained (in mM): NaCl, 110; KCl, 3.5;
MgCl2, 1.5; NaHCO3, 26; CaCl2, 2 and glucose, 10. The
patch electrode solution contained (in mM): K-gluco-
nate, 120; KCl, 10; Na-HEPES, 10; Na-GTP, 0.2; Na-
ATP, 4. Whole-cell patch-clamp recordings were tar-
geted to layer V of the posterior sector of the TeA-
ectorhinal cortex (also known as TeV). The TeA region
is identified, under DIC microscopy, as the region
located dorsally to the rhinal fissure [62,63]. The patch
electrode solution had an osmolality and pH of around
285 mOsm and 7.2 respectively. The DC resistance of
patch electrodes was 6-8 MΩ and recordings were made
at 30-33°C. The bridge-balance and liquid-junction
potential were corrected on-line. Intrinsic membrane
properties were determined according to methods pre-
viously described [64].

in vivo valproate injections
The sodium salt of VPA (NaVPA; Sigma-Aldrich, St.
Louis, MO) was dissolved in 0.9% saline (pH ≈7.3).
Treated rats received a single i.p. injection on the order
of 150 mg/kg/day [31]. It should be noted that due to
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the species variation in valproate metabolism, direct
dosage correlations can not be made with humans [65].
However, from these data, we may predict that the func-
tional dose in rat models of seizure would be slightly
higher than that of humans, which is indeed the case
[42,44,66]. Injections started on P6 and then continued
for a maximum of 2 weeks. We also injected littermate
control rats with 0.9% saline (pH ≈7.3). Recordings were
made from juvenile (< 1 month) animals ranging from
P12-P26.

Social (play) behaviour
Animals were isolated in macrolone cages measuring 43
cm × 15 cm × 28 cm for a period of 24 hours prior to
testing similar to previously described [17]. The test
consisted of placing two rats (either saline injected or
VPA injected) into the test cage for a period of 10 min-
utes. The animals (male/female pairs) were tested at the
same age (i.e., age-matched littermates ranging from
P35-P37) and weight (±20 g) as each other. Rough-and-
tumble play behaviors (e.g., a direct “attack” to the nape
on the neck of the other rat or “pinning” where one of
the animals is lying with its dorsal surface on the floor
of the test cage with the other animal standing over
them), were measured as an indicator of social interac-
tion [32].

Cued sensorimotor task
A total of 6 male and female animals (3 pairs; sex and
age-match littermates) were used. Animals were water
deprived for 47.5 h prior to behavioural testing but had
unrestricted access to food. Following each session, ani-
mals had unrestricted access to water for 0.5 h. Training
sessions consisted of ≥3 trials and began on postnatal
day 23-30. Training occurred in the same test cage with
an approximate 3-5 min break between trials. This also
allowed for the paper towel bedding of the test cage to
be replaced following each trial. The experiments were
conducted in an isolated quiet room or sound-attenuat-
ing chamber and the location did not change once train-
ing had begun. The test cage consisted of a macrolone
cage with a hole drilled a few centimeters from the bot-
tom at one end (fixed reward location) just large enough
to permit insertion of a water bottle spout. The wall was
covered so the animal could not see the bottle contents
that the spout was attached to. Latency measurements
represent the time difference between auditory cue pre-
sentation and arrival at, and orientation to, the fixed
reward location. A maximum cut-off of 20 seconds was
used. A spout was always present but only when the cue
was presented and the animal arrival at and orientated
to the fixed reward location was the 30% sucrose solu-
tion available. A computer with a National Instruments

A/D board (NI DAC-Card 6024E, 200 kSamples/s, 16
channels), a breakout box (National Instruments BNC-
2020), and a high speed IEEE 1394a port was used to
run in-house software to collect timing information. A
simple on/off switch was connected to the computer to
trigger synchronization between the tone output and
latency measurements. The software generated a 10 kHz
80-85 dB sin wave output played through speakers
placed at a short and fixed distance from the cage. The
software recorded the button press, started the audio
signal, and recorded the second button press when the
rat touched the reward (i.e. water bottle spout). The
time from the first button press to the second was
logged in a data file and presented as a temporal
latency.

Cortical thickness measurements and DAPI staining
Age-matched littermate brains from juvenile animals (e.
g. P20-P23) were removed and fixed in 4% PFA over-
night at 4°C. Frontal sections (150 μm) were then cut
on a Leica vibrotome (Germany) in PBS. Images were
acquired with a Zeiss microscope (Zeiss Axioplan Fluor-
escence Microscope; Carl Zeiss, Germany) and analyzed
off-line. Cortical thickness measurements (i.e. distance
between the underlying white matter to the pia) were
made similar to that reported elsewhere [37]. To reduce
the potential for a masking effect of relatively small dif-
ferences by the large variability between littermates, data
was normalized to animals from the same litter. For
4’,6-diamidino-2-phenylindole (DAPI) staining, sections
were counterstained with DAPI (1:104) for 5 min. at
room temperature followed by a 1 × PBS rinse 3 times
for 5 min. Deep layer TeA cell counts corresponded to
the region of electrophysiological recordings.

Analysis
Signal acquisition and analysis was accomplished using
Multi-clamp 700A and DIGIDATA 1322A 16-Bit data
acquisition system and Clampex 9 programs allowing
for data to be low-pass filtered at 2-8 kHz and digitized
at ≥10 kHz (Axon Instruments, Inc. Forster City, CA,
USA). Images analysis was accomplished using ImageJ
software (NIH). Data are expressed as mean ± SEM.
The statistical test and p value are noted when used.
Two-tailed tests were used if not otherwise stated. Sta-
tistical analysis was accomplished with GraphPad
software.

Acknowledgements
We would like to thank Sharmila Alams, Dr. Calvin Young, Dr. Keith Sharkey’s
Lab for providing technical assistance, and Dr. Wendy Edwards for helpful
comments on an earlier version of this manuscript. This study was
supported by grants from Canadian Institutes of Health Research, CIHR
Regenerative Medicine Initiative and the Sinneave Family Foundation.

Chomiak et al. BMC Neuroscience 2010, 11:102
http://www.biomedcentral.com/1471-2202/11/102

Page 8 of 10



Author details
1Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of
Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
2Department of Psychology, Mount Royal University, Calgary, Alberta, T3E
6K6, Canada.

Authors’ contributions
Conceived and designed the experiments: TC/BH. Developed and performed
the experiments: TC/VK/EB. Analyzed the data: TC/VK. Wrote the paper: TC/
BH. All authors read and approved the final manuscript.

Received: 14 January 2010 Accepted: 19 August 2010
Published: 19 August 2010

References
1. Amaral DG, Schumann CM, Nordahl CW: Neuroanatomy of autism. Trends

Neurosci 2008, 31(3):137-145.
2. Kanner L: Autistic disturbances of affective contact. Nerv Child 1943,

2:217-250.
3. Dalton KM, Nacewicz BM, Johnstone T, Schaefer HS, Gernsbacher MA,

Goldsmith HH, Alexander AL, Davidson RJ: Gaze fixation and the neural
circuitry of face processing in autism. Nat Neurosci 2005, 8(4):519-526.

4. Bryson SE, Zwaigenbaum L, Brian J, Roberts W, Szatmari P, Rombough V,
McDermott C: A prospective case series of high-risk infants who
developed autism. J Autism Dev Disord 2007, 37(1):12-24.

5. Landry R, Bryson SE: Impaired disengagement of attention in young
children with autism. J Child Psychol Psychiatry 2004, 45(6):1115-1122.

6. Bryson SE: The Autistic Mind. The Neurobiology of Autism Baltimore,
Maryland: The Johns Hopkins University PressBauman ML, Kemper TL 2005,
34-44.

7. van Kooten IA, Palmen SJ, von Cappeln P, Steinbusch HW, Korr H,
Heinsen H, Hof PR, van Engeland H, Schmitz C: Neurons in the fusiform
gyrus are fewer and smaller in autism. Brain 2008, 131(Pt 4):987-999.

8. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M,
Lantos P: A clinicopathological study of autism. Brain 1998, 121(Pt
5):889-905.

9. Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, Gilmore J,
Piven J: Magnetic resonance imaging and head circumference study of
brain size in autism: birth through age 2 years. Arch Gen Psychiatry 2005,
62(12):1366-1376.

10. Schumann CM, Bloss CS, Barnes CC, Wideman GM, Carper RA,
Akshoomoff N, Pierce K, Hagler D, Schork N, Lord C, et al: Longitudinal
magnetic resonance imaging study of cortical development through
early childhood in autism. J Neurosci 2010, 30(12):4419-4427.

11. Komura Y, Tamura R, Uwano T, Nishijo H, Kaga K, Ono T: Retrospective and
prospective coding for predicted reward in the sensory thalamus. Nature
2001, 412(6846):546-549.

12. Naya Y, Yoshida M, Miyashita Y: Backward spreading of memory-retrieval
signal in the primate temporal cortex. Science 2001, 291(5504):661-664.

13. Raz A, Buhle J: Typologies of attentional networks. Nat Rev Neurosci 2006,
7(5):367-379.

14. Moeller S, Freiwald WA, Tsao DY: Patches with links: a unified system for
processing faces in the macaque temporal lobe. Science 2008,
320(5881):1355-1359.

15. Markram H, Rinaldi T, Markram K: The intense world syndrome - an
alternative hypothesis for autism. Front Neurosci 2007, 1(1):77-96.

16. Rinaldi T, Perrodin C, Markram H: Hyper-connectivity and hyper-plasticity
in the medial prefrontal cortex in the valproic Acid animal model of
autism. Front Neural Circuits 2008, 2:4.

17. Schneider T, Przewlocki R: Behavioral alterations in rats prenatally
exposed to valproic acid: animal model of autism.
Neuropsychopharmacology 2005, 30(1):80-89.

18. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC,
Nugent TF, Herman DH, Clasen LS, Toga AW, et al: Dynamic mapping of
human cortical development during childhood through early adulthood.
Proc Natl Acad Sci USA 2004, 101(21):8174-8179.

19. Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA: Maturation of
cognitive processes from late childhood to adulthood. Child Dev 2004,
75(5):1357-1372.

20. Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL,
Gabrieli JD, Grill-Spector K: Differential development of high-level visual

cortex correlates with category-specific recognition memory. Nat
Neurosci 2007, 10(4):512-522.

21. Scherf KS, Behrmann M, Humphreys K, Luna B: Visual category-selectivity
for faces, places and objects emerges along different developmental
trajectories. Dev Sci 2007, 10(4):F15-30.

22. Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D,
Clasen L, Evans A, Giedd J, Rapoport JL: Attention-deficit/hyperactivity
disorder is characterized by a delay in cortical maturation. Proc Natl Acad
Sci USA 2007, 104(49):19649-19654.

23. Bauman ML, Kemper TL: Neuroanatomic observations of the brain in
autism: a review and future directions. Int J Dev Neurosci 2005, 23(2-
3):183-187.

24. Lathe R: Autism, Brain, and Environment. Philadelphia, PA: Jessica Kingsley
Publishers 2006.

25. Knudsen EI: Sensitive periods in the development of the brain and
behavior. J Cogn Neurosci 2004, 16(8):1412-1425.

26. Knudsen EI, Heckman JJ, Cameron JL, Shonkoff JP: Economic,
neurobiological, and behavioral perspectives on building America’s
future workforce. Proc Natl Acad Sci USA 2006, 103(27):10155-10162.

27. Rodier PM: Environmental causes of central nervous system
maldevelopment. Pediatrics 2004, 113(4 Suppl):1076-1083.

28. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH: Histone deacetylase
inhibition-mediated neuronal differentiation of multipotent adult neural
progenitor cells. Proc Natl Acad Sci USA 2004, 101(47):16659-16664.

29. Balasubramaniyan V, Boddeke E, Bakels R, Kust B, Kooistra S, Veneman A,
Copray S: Effects of histone deacetylation inhibition on neuronal
differentiation of embryonic mouse neural stem cells. Neuroscience 2006,
143(4):939-951.

30. Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET,
Monteggia LM: Histone deacetylases 1 and 2 form a developmental
switch that controls excitatory synapse maturation and function. J
Neurosci 2009, 29(25):8288-8297.

31. Jessberger S, Nakashima K, Clemenson GD Jr, Mejia E, Mathews E, Ure K,
Ogawa S, Sinton CM, Gage FH, Hsieh J: Epigenetic modulation of seizure-
induced neurogenesis and cognitive decline. J Neurosci 2007,
27(22):5967-5975.

32. Pellis SM, Pellis VC: Play fighting of rats in comparative perspective: a
schema for neurobehavioral analyses. Neurosci Biobehav Rev 1998,
23(1):87-101.

33. Wagner GC, Reuhl KR, Cheh M, McRae P, Halladay AK: A new
neurobehavioral model of autism in mice: pre- and postnatal exposure
to sodium valproate. J Autism Dev Disord 2006, 36(6):779-793.

34. Rinaldi T, Kulangara K, Antoniello K, Markram H: Elevated NMDA receptor
levels and enhanced postsynaptic long-term potentiation induced by
prenatal exposure to valproic acid. Proc Natl Acad Sci USA 2007,
104(33):13501-13506.

35. Kolb B, Buhrmann K, McDonald R, Sutherland RJ: Dissociation of the
medial prefrontal, posterior parietal, and posterior temporal cortex for
spatial navigation and recognition memory in the rat. Cereb Cortex 1994,
4(6):664-680.

36. Chelazzi L, Miller EK, Duncan J, Desimone R: A neural basis for visual
search in inferior temporal cortex. Nature 1993, 363(6427):345-347.

37. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y,
Baker SJ, Parada LF: Pten regulates neuronal arborization and social
interaction in mice. Neuron 2006, 50(3):377-388.

38. Sia Y, Bourne JA: The rat temporal association cortical area 2 (Te2)
comprises two subdivisions that are visually responsive and develop
independently. Neuroscience 2008, 156(1):118-128.

39. Chomiak T, Hu B: Latent Neurons in the Mature Mammalian Cortex:
keeping the “old” cortex “young”. Society for Neuroscience Program no
3710: 2007 San Diego, CA 2007.

40. Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM: Becoming
a new neuron in the adult olfactory bulb. Nat Neurosci 2003, 6(5):507-518.

41. Picken Bahrey HL, Moody WJ: Early development of voltage-gated ion
currents and firing properties in neurons of the mouse cerebral cortex. J
Neurophysiol 2003, 89(4):1761-1773.

42. Bittigau P, Sifringer M, Genz K, Reith E, Pospischil D, Govindarajalu S,
Dzietko M, Pesditschek S, Mai I, Dikranian K, et al: Antiepileptic drugs and
apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci
USA 2002, 99(23):15089-15094.

Chomiak et al. BMC Neuroscience 2010, 11:102
http://www.biomedcentral.com/1471-2202/11/102

Page 9 of 10

http://www.ncbi.nlm.nih.gov/pubmed/18258309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15750588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15750588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17211728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17211728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15257668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15257668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18332073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18332073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9619192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16330725?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16330725?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20335478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20335478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20335478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11484055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11484055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11158679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11158679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16760917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18535247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18535247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18982120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18982120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18989389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18989389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18989389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15238991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15238991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15148381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15148381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15369519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15369519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17351637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17351637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17552930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17552930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17552930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15749244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15749244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15509387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15509387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16801553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16801553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16801553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060202?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060202?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15537713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15537713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15537713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17084985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17084985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19553468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19553468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17537967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17537967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9861614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9861614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16609825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16609825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16609825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17675408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17675408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17675408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7703691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7703691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7703691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8497317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8497317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16675393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16675393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18674594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18674594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18674594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12704391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12704391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12611962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12611962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12417760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12417760?dopt=Abstract


43. Moore SJ, Turnpenny P, Quinn A, Glover S, Lloyd DJ, Montgomery T,
Dean JC: A clinical study of 57 children with fetal anticonvulsant
syndromes. J Med Genet 2000, 37(7):489-497.

44. Siemes H, Spohr HL, Michael T, Nau H: Therapy of infantile spasms with
valproate: results of a prospective study. Epilepsia 1988, 29(5):553-560.

45. Coleman M, Betancur C: Introduction. The Neurology of Autism New York,
NY: Oxford University Press, IncColeman M 2005, 3-39.

46. Chomiak T, Peters S, Hu B: Functional architecture and spike timing
properties of corticofugal projections from rat ventral temporal cortex. J
Neurophysiol 2008, 100(1):327-335.

47. Mooney DM, Zhang L, Basile C, Senatorov VV, Ngsee J, Omar A, Hu B:
Distinct forms of cholinergic modulation in parallel thalamic sensory
pathways. Proc Natl Acad Sci USA 2004, 101(1):320-324.

48. Hsieh J, Gage FH: Epigenetic control of neural stem cell fate. Curr Opin
Genet Dev 2004, 14(5):461-469.

49. Caron C, Boyault C, Khochbin S: Regulatory cross-talk between lysine
acetylation and ubiquitination: role in the control of protein stability.
Bioessays 2005, 27(4):408-415.

50. Rosenbluth J: Subsurface cisterns and their relationship to the neuronal
plasma membrane. J Cell Biol 1962, 13:405-421.

51. Bolton PF, Park RJ, Higgins JN, Griffiths PD, Pickles A: Neuro-epileptic
determinants of autism spectrum disorders in tuberous sclerosis
complex. Brain 2002, 125(Pt 6):1247-1255.

52. Iida K, Otsubo H, Mohamed IS, Okuda C, Ochi A, Weiss SK, Chuang SH,
Snead OC: Characterizing magnetoencephalographic spike sources in
children with tuberous sclerosis complex. Epilepsia 2005, 46(9):1510-1517.

53. Meikle L, Talos DM, Onda H, Pollizzi K, Rotenberg A, Sahin M, Jensen FE,
Kwiatkowski DJ: A mouse model of tuberous sclerosis: neuronal loss of
Tsc1 causes dysplastic and ectopic neurons, reduced myelination,
seizure activity, and limited survival. J Neurosci 2007, 27(21):5546-5558.

54. Wang Y, Greenwood JS, Calcagnotto ME, Kirsch HE, Barbaro NM,
Baraban SC: Neocortical hyperexcitability in a human case of tuberous
sclerosis complex and mice lacking neuronal expression of TSC1. Ann
Neurol 2007, 61(2):139-152.

55. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD:
Astrocytes promote myelination in response to electrical impulses.
Neuron 2006, 49(6):823-832.

56. Chomiak T, Hu B: What is the optimal value of the g-ratio for myelinated
fibers in the rat CNS? A theoretical approach. PLoS One 2009, 4(11):e7754.

57. Markram K, Rinaldi T, La Mendola D, Sandi C, Markram H: Abnormal fear
conditioning and amygdala processing in an animal model of autism.
Neuropsychopharmacology 2008, 33(4):901-912.

58. Shi C, Davis M: Visual pathways involved in fear conditioning measured
with fear-potentiated startle: behavioral and anatomic studies. J Neurosci
2001, 21(24):9844-9855.

59. Layton BS, Toga AW, Horenstein S, Davenport DG: Temporal pattern
discrimination survives simultaneous bilateral ablation of suprasylvian
cortex but not sequential bilateral ablation of insular-temporal cortex in
the cat. Brain Res 1979, 173(2):337-340.

60. Campeau S, Davis M: Involvement of subcortical and cortical afferents to
the lateral nucleus of the amygdala in fear conditioning measured with
fear-potentiated startle in rats trained concurrently with auditory and
visual conditioned stimuli. J Neurosci 1995, 15(3 Pt 2):2312-2327.

61. Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P:
Behavioral manifestations of autism in the first year of life. Int J Dev
Neurosci 2005, 23(2-3):143-152.

62. Paxinos G, Watson C: The Rat Brain: In stereotaxic coordinates. New York:
Academic Press, 4 1998.

63. Paxinos G: The rat nervous system. Amsterdam: Elsevier Academic Press, 3
2004.

64. Cruikshank SJ, Lewis TJ, Connors BW: Synaptic basis for intense
thalamocortical activation of feedforward inhibitory cells in neocortex.
Nat Neurosci 2007, 10(4):462-468.

65. Loscher W: Serum protein binding and pharmacokinetics of valproate in
man, dog, rat and mouse. J Pharmacol Exp Ther 1978, 204(2):255-261.

66. Jeavons PM: Non-dose-related side effects of valproate. Epilepsia 1984,
25(Suppl 1):S50-55.

doi:10.1186/1471-2202-11-102
Cite this article as: Chomiak et al.: Altering the trajectory of early
postnatal cortical development can lead to structural and behavioural
features of autism. BMC Neuroscience 2010 11:102.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Chomiak et al. BMC Neuroscience 2010, 11:102
http://www.biomedcentral.com/1471-2202/11/102

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/10882750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10882750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2842127?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2842127?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18463178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18463178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14691260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14691260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15380235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15770681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15770681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14493991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14493991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12023313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12023313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12023313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16146447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16146447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17522300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17522300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17522300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17279540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17279540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16543131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19915661?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19915661?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17507914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17507914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11739592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11739592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/487094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/487094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/487094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/487094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7891169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7891169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7891169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7891169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15749241?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17334362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17334362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/340640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/340640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6425047?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Reduced social (play) interaction associated with VPA treatment
	Enlarged temporal association cortex in VPA-treated animals
	Accelerated development in the TeA network
	VPA does not appear to lead to cell death or the abnormal electrophysiological development of individual neurons

	Discussion
	Experimental approach
	Cortical structural and electrophysiological changes induced by VPA
	VPA-induced behavioural changes

	Conclusions
	Methods
	Preparation and electrophysiology
	in vivo valproate injections
	Social (play) behaviour
	Cued sensorimotor task
	Cortical thickness measurements and DAPI staining
	Analysis

	Acknowledgements
	Author details
	Authors' contributions
	References

