BMC Neuroscience

Poster presentation

Open Access

K_A channels suppress cellular responses to fast ripple activity – implications for epilepsy

Jenny Tigerholm and Erik Fransén*

Address: School of Computer Science and Communication; Stockholm Brain Institute, Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden

Email: Erik Fransén* - erikf@nada.kth.se

* Corresponding author

from Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Berlin, Germany. 18–23 July 2009

Published: 13 July 2009

BMC Neuroscience 2009, 10(Suppl 1):P226 doi:10.1186/1471-2202-10-S1-P226

This abstract is available from: http://www.biomedcentral.com/1471-2202/10/S1/P226

© 2009 Tigerholm and Fransén; licensee BioMed Central Ltd.

Background

During cognitive tasks, synchrony of neural activity varies and is correlated with performance. There may however be an upper limit to the level of normal synchronicity and epileptogenic activity is characterized by excess spiking at high synchronicity. Very high field oscillations (fast ripples), in the range of 250-600 Hz, have been recorded from patients with mesial temporal lobe epilepsy [1]. Furthermore, in epilepsy an A-type potassium channel (K_A) has been implicated. More specifically, a mutation in a K_A gene was found in a temporal lobe epilepsy patient [2] and a highly selective blocker of K_A induced seizures [3]. In previous work we have showed that K_A can suppress synchronized synaptic input to a neuron while minimally suppressing semi-synchronous input. As high frequency implies high synchronicity we set out to investigate if K_A could suppress the cellular response from fast ripple activity.

Methods

We used a cell model of a hippocampal CA1 pyramidal neuron based on [4]. It is a detailed compartment model with Na, $K_{\rm dr}$ and $K_{\rm A}$ -type currents of Hodgkin-Huxley type. The high frequency of fast ripples has been hypothesis to occur from combining two ripples with lower frequency [5]. According to [6], only 11% of the neurons participating in a ripple are activated at each ripple. Due to these two factors we used 60 Hz as the frequency of individual neurons. In a fast ripple, the 50 synaptic inputs

were activated simultaneously and in control/desynchronized the input were evenly distributed in time.

Results

 K_A channels suppress cellular responses to fast ripple activity. The left figures of Figure 1 represent the simulation K_A present and the right with K_A absent. Top figures represent fast ripple activity and bottom figures the case when the input is control/desynchronized. Note that when K_A is present there is no spike activity from fast ripple input even though it is present in control/desynchronized.

Discussion

Our model shows that K_A can prevent the cell form getting activated by fast ripple activity. Understanding how K_A can reduce synchronized and fast ripple activity can provide insight in how epileptic drug work or suggests new drugs targeting K_A .

References

- Engel J Jr, Bragin A, Staba R, Mody I: High-frequency oscillations: What is normal and what is not? Epilepsia 2008 in press.
- Singh B, Ogiwara I, Kaneda M, Tokonami N, Mazaki E, Baba K, Matsuda K, Inoue Y, Yamakawa K: A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy. Neurobiol Dis 2006, 24:245-253.
- 3. Juhng K, Kokate T, Yamaguchi S, Kim B, Rogowski R, Blaustein M, Rogawski M: Induction of seizures by the potent K+ channel-blocking scorpion venom peptidetoxins tityustoxin-K-∞ and pandinustoxin-K-∞. Epilepsy Res 1999, 34:177-186.
- Migliore M, Hoffman D, Magee J, Johnston D: Role of an A-type K+ conductance in the back-propagation of action potentials in

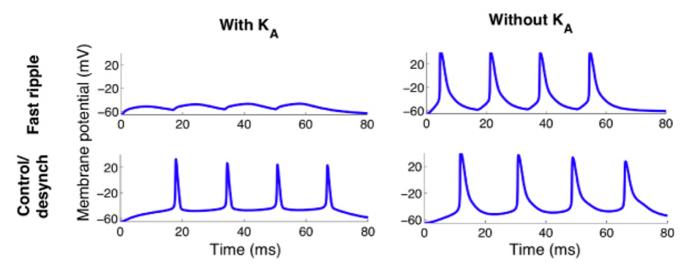


Figure I

the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 1999, 7:5-15.

- Staley KJ: Neurons skip a beat during fast ripples. Neuron 2007, 55:828-830.
- Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabó I, Sik A, Buzsáki G: Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 1995, 15:30-46.

Publish with **Bio Med Central** and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- \bullet yours you keep the copyright

Submit your manuscript here: http://www.biomedcentral.com/info/publishing_adv.asp

