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Abstract
Background: Information theory is an increasingly popular framework for studying how the brain
encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons
and of small neural populations, its application to the analysis of other types of neurophysiological signals
(EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which
affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack
of publicly available fast routines for the information analysis of multi-dimensional responses.

Results: Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically
developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm
for estimating many of the main information theoretic quantities and bias correction techniques used in
neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these
algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e.
LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since
existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the
analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes
locations, frequencies and signal features carrying the most visual information. Third, we explain how the
toolbox can be used to break down the information carried by different features of the neural signal into
distinct components reflecting different ways in which correlations between parts of the neural signal
contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex
during presentation of naturalistic movies.

Conclusion: The new toolbox presented here implements fast and data-robust computations of the most
relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used
within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing
and plotting of neural data. It can therefore significantly enlarge the domain of application of information
theory to neuroscience, and lead to new discoveries about the neural code.
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Background
Information theory [1,2], the mathematical theory of
communication, has been successfully used to address a
number of important questions about sensory coding [3-
5]. For example, information theoretic tools have been
used to characterize the stimulus selectivity of neurons, by
revealing the precise sensory features (or combinations of
them) which modulate most reliably the responses of
neurons or of neural populations [6-8]. Information the-
ory has been used to investigate whether the fine temporal
structure of neural activity contains important informa-
tion which is lost when neural signals are averaged over
longer time scales. These studies have shown that the pre-
cise timing of spikes measured with respect to the stimu-
lus onset [5,9-12], or the relative time of spikes with
respect to the ongoing network fluctuations [13,14] pro-
vides important information that cannot be extracted
from the spike count. Information theory has also been
used to study population codes: several studies have
developed measures to quantify the impact of cross-neu-
ronal correlations in population activity [15-19] and have
applied them to the study of population coding across
various sensory modalities [20-22]. Another application
of information theory to neuroscience is the measure of
causal information transfer [23] to quantify the amount
of interactions between neural populations [24].

Information theory has been used widely for the analysis
of spike trains from single neurons or from small popula-
tions [3], and is now beginning to be applied systemati-
cally to other important domains of neuroscience data
analysis, such as the information analysis of analog brain
signals like BOLD fMRI responses [25-27] and Local Field
Potentials (LFPs) [28-30]. However, the application of
information theory to analog brain signals has remained
relatively limited compared to the potentials it offers. One
reason that has limited a wider use of the information
analysis to analog signals is that estimates of information
from real neurophysiological data are prone to a system-
atic error (bias) due to limited sampling [31]. The bias
problem can be alleviated by the use of several advanced
techniques [5,32-36] or by combinations of them [31].
However, a detailed implementation and testing of these
(often complicated) techniques is in many cases beyond
the time resources available to experimental laboratories.
Moreover, the performance of bias correction techniques
was so far tested thoroughly primarily on spike trains, and
much less on analog brain signals. Since the performance
of bias correction techniques depends on the statistics of
the data [31], it is crucial that tests and comparisons of the
performance of the various techniques are also carried out
on analog brain signals. Clearly, the availability of a tool-
box that implements several of these accurate information
calculation techniques after having validated them on
analog brain signals would greatly increase the size of the

neuroscience community that uses information theoretic
analysis.

Another problem, which is particularly prominent when
computing information quantities for multiple parallel
recordings of neural activity, is the speed of computation.
Multielectrode recordings now allow the simultaneous
measurement of the activity of tens to hundreds of neu-
rons, and fMRI experiments allow a broad coverage of the
cerebral cortex and recording from a large number of vox-
els. Therefore speed of calculation is paramount, espe-
cially in cases when information theory is used to shed
light on the interactions between pairs or small groups of
recorded regions. In fact, the number of these subgroups
(and thus the time needed to compute their information
or interaction) increases fast with the number of recorded
regions.

This article aims at meeting the demand for fast and pub-
licly available routines for the information theoretic anal-
ysis of several types of brain signals, by accompanying and
documenting the first release of the Information Breakdown
ToolBox (ibTB). This toolbox can be downloaded from the
URL http://www.ibtb.org or from the Additional Files
provided with this Article (Additional file 1: ibtb.zip).
The toolbox has several key features that make it useful to
the neuroscience community and that will widen the
domain of application of information theory to neuro-
science. In particular (i) it can be used within Matlab (The
Mathworks, Natick, MA), one of the most widely used
environments for the collection, preprocessing and analy-
sis of neural data, (ii) it is algorithmically optimized for
speed of calculation (iii) it implements several up-to-date
finite sampling correction procedures (iv) it has been
thoroughly tested for the analysis of analog neural signals
such as EEGs and LFPs (v) it implements the information
breakdown formalisms [17,18,37] that are often used to
understand how different groups of neurons participate in
the encoding of sensory stimuli.

Definitions and meaning of neural Entropies and 
Information
Before proceeding to describe the implementation of the
Toolbox and to discuss its use, in the following we will
briefly define the basic information quantities and
describe their meaning from a neuroscientific perspective.

Consider an experiment in which the experimental sub-

ject is presented with Ns stimuli s1,...  and the corre-

sponding neural response r is recorded and quantified in
a given post-stimulus time-window. The neural response
can be quantified in a number of ways depending on the
experimental questions to be addressed and on the exper-
imenter's hypotheses and intuition. Here, we will assume

sN s



BMC Neuroscience 2009, 10:81 http://www.biomedcentral.com/1471-2202/10/81

Page 3 of 24
(page number not for citation purposes)

that the neural response is quantified as an array r = [r1,...,

rL] of dimension L. For example, the experimenter may be

recording the spiking activity of L different neurons and
may be interested in spike count codes. In this case ri

would be the number of spikes emitted by cell i on a given
trial in the response window. Alternatively, if the experi-
menter is recording the spiking activity of one neuron and
is interested in spike timing codes, the response could be
quantified by dividing the post-stimulus response win-

dow into L bins of width t, so that ri is the number of

spikes fired in the i-th time bin [33]. Or, the experimenter
may be recording LFPs from L channels and be interested
in how their power carries information. In this case ri

would be quantified as the LFP power in each recording
channel [29].

Unless otherwise stated, we will assume that the neural
response in each element of the response array is discrete.
If the signal is analogue in nature – such as for LFP or EEG
recordings – we assume it has been discretized into a suf-
ficient number of levels to capture the most significant
stimulus-related variations. For example, the power at L
distinct frequencies extracted from a single-trial LFP
recording will be quantized, for each frequency, into a
finite number of levels [29]. This assumption is (unless
otherwise stated) necessary for the analysis and the correct
functioning of the algorithms in the toolbox. The reason
why it is convenient to quantify the neural response as a
discrete variable is that it makes it easier to quantify the
probabilities necessary for information calculation (see
below). For analog signals, the discretization can be cir-
cumvented only when there are suitable analytical models
for the probability distribution (e.g. a gaussian distribu-
tion), in which case particular algorithms can be applied
(see e.g. the Gaussian Method detailed below).

Having defined the response, we can quantify how well it
allows us to discriminate among the different stimuli by
using Shannon's mutual information [1,2]:

The first term in the above expression is called the response
entropy. It quantifies the overall variability of the response
and is defined as

P(r) being the probability of observing r in response to
any stimulus. The second term, called noise entropy, quan-
tifies the response variability specifically due to "noise",

i.e. to trial-to-trial differences in the responses to the same
stimulus. H(R|S) is defined as

where P(r|s) is the probability of observing response r
when stimulus s is presented; P(s) is the probability of
presentation of stimulus s, and is defined as

, Ntr(s) being the number of trials

available for stimulus s and  is the total number of

trials to all stimuli. Mutual information quantifies how
much of the information capacity provided by stimulus-
evoked differences in neural activity is robust to the pres-
ence of trial-by-trial response variability. Alternatively, it
quantifies the reduction of uncertainty about the stimulus
that can be gained from observation of a single trial of the
neural response.

The mutual information has a number of important qual-
ities that make it well suited to characterizing how a
response is modulated by the stimulus. These advantages
have been reviewed extensively [3-5,25,27,38]. Here we
briefly summarize a few key advantages. First, as outlined
above, it quantifies the stimulus discriminability achieved
from a single observation of the response, rather than
from averaging responses over many observations. Sec-
ond, I(S; R) takes into account the full stimulus-response
probabilities, which include all possible effects of stimu-
lus-induced responses and noise. Thus, its computation
does not require the signal to be modeled as a set of
response functions plus noise and can be performed even
when such decomposition is difficult. Third, because
information theory projects all types of neural signals
onto a common scale that is meaningful in terms of stim-
ulus knowledge, it is possible to analyze and combine the
information given by different measures of neural activity
(for example: spike trains and LFPs) which can have very
different signal to noise ratios.

The contribution of correlations between different neural 
responses to the transmitted information
Neural signals recorded from different sites are often
found to be correlated. For example, spikes emitted by
nearby neurons are often synchronous: the probability of
observing near-simultaneous spikes from two nearby neu-
rons is often significantly higher than the product of the
probabilities of observing the individual spikes from each
neuron [39-41]. LFPs recorded from different electrodes
are typically correlated over considerable spatial scales

I S H H S( ; ) ( ) ( | ).R R R= − (1)

H P P( ) ( ) log ( ),R r r
r

= −∑ 2 (2)

H S P s P s P s
s

N s

( | ) ( ) ( | ) log ( | ),R r r
r

= −
=

∑ ∑
1

2
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P s N s Ntr tr
tot( ) ( ) /=

Ntr
tot



BMC Neuroscience 2009, 10:81 http://www.biomedcentral.com/1471-2202/10/81

Page 4 of 24
(page number not for citation purposes)

[42,43]. Moreover, neural signals can be correlated in
time as well as in space. In fact, different temporal aspects
of the neural activity from the same location are often cor-
related. For example, spike counts and latencies covary in
some systems [44], and the powers of different LFPs bands
recorded from the same location can also exhibit signifi-
cant correlations [29].

The ubiquitous presence of correlations of neural activity
across both space and time has raised the question of what
is the impact of this correlation upon the information
about sensory stimuli carried by a combination of distrib-
uted sources of neural activity (see [16,45] for recent
reviews). Theoretical studies have suggested that correla-
tions can profoundly affect the information transmitted
by neural populations [16,46]. It is therefore of great
interest to quantify the impact of correlations on the
information carried by a population of simultaneously
recorded neurons. Mutual information, Eq. (1), can tell us
about the total information that can be gained by simul-
taneously observing the L considered neural responses,
but not about the specific contribution of correlations to
this total value. However, a number of information-theo-
retic quantities have been developed to quantify how cor-
relations affect the information carried by different neural
signals (see below). In our information toolbox we have
implemented several of such approaches, which will be
briefly define and summarize in the rest of this section.

Different types of correlations affecting information
Before we describe the information theoretic tools for
quantifying the impact of correlations on coding, it is use-
ful to briefly define the types of correlations usually con-
sidered in the studies of neural population activity.

The most commonly studied type of correlation of neural
activity is what is traditionally called "noise correlation",
that is the covariation in the trial-by-trial fluctuations of
responses to a fixed stimulus [16,47]. Because these noise
covariations are measured at fixed stimulus, they ignore
all effects attributable to shared stimulation. Although we
will stick with the well-established "noise" terminology,
we point out that the name is potentially misleading since
noise correlations can reflect interesting neural effects.
Mathematically speaking, we say that there are noise cor-
relations if the simultaneous joint response probability
P(r|s) at fixed stimulus is different from the "conditionally
independent" response probability

The conditional probability Pind(r|s) can be computed by
taking the product of the marginal probabilities of indi-

vidual elements of the response array, as in Eq. (4), or
alternatively by the empirical "shuffling" procedure
described as follows. One generates a new set of shuffled
responses to stimulus s by randomly permuting, for each
element of the response array, the order of trials collected
in response to the stimulus s considered, and then joining
together the shuffled responses into a shuffled response
array. This shuffling operation leaves each marginal prob-
ability P(rj|s) unchanged, while destroying any within-
trial noise correlations. The distribution of shuffled
responses to a given stimulus s is indicated by Psh(r|s).

Many authors further distinguish noise correlations
(which, as explained above, exclude sources of correla-
tions due to shared stimulation) from "signal correla-
tions" [47], which are correlations entirely attributable to
common or related stimulus preferences. Signal correla-
tions manifest themselves in similarities across stimuli
between the response profiles of the individual elements
of the response array. For example, neurons in different
channels may all have a very similar mean response to the
stimuli. There are several ways to quantify the amount of
signal correlations [17,37,47]. We will not report them in
this Article, but we will only focus on quantifying their
impact on the information carried by the response array
(see next section).

The importance of separating noise from signal is, as
revealed by theoretical studies, that signal and noise cor-
relations have a radically different impact on the sensory
information carried by neural populations (see below). In
particular, signal correlations always reduce the informa-
tion, whereas noise correlations can decrease it, increase it
or leave it unchanged, depending on certain conditions
[46,48].

Information Breakdown
We next describe and define briefly several mathematical
techniques to quantify the impact of correlations of infor-
mation. Several different approaches have been proposed
(see e.g. [17,18,21,49,50]). Here we present one, called
the "information breakdown" [17], which takes the total
mutual information I(S; R) and decomposes it into a
number of components, each reflecting a different way
into which signal and noise correlations contribute to
information transmission. We decided to focus on the
information breakdown formalism partly because it was
developed by one of the authors of this article, and partly
because it naturally includes several of the quantities pro-
posed by other investigators [18,21].

The information breakdown writes the total mutual infor-
mation into a sum of components which are related to
different ways in which correlations contribute to popula-
tion coding [17], as follows:

P s P r sind j

j

L

( | ) ( | ),r =
=

∏
1

(4)
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The meaning and mathematical expression of each of the
components is summarized in Figure 1 and is described in
the following.

The linear term Ilin is the sum of the information provided
by each element of the response array. This is a useful ref-
erence term because if all the elements of the array were
totally independent (i.e. with both null noise and signal
correlation) then the total information transmitted by the
response array would be equal to Ilin.

The amount of synergistic information Syn. The difference
between I(S; R) and Ilin is called synergy. Positive values of
synergy denote the presence of synergistic interaction
between elements of the response array, which make the
total information greater than the sum of that provided by
each element of the response array. Negative values of
synergy (called "redundancy") indicate that the elements
of the response array carry similar messages, and as a con-
sequence information from the response array is less than
the sum of the information provided by each individual
element. The synergy can be further broken into the con-
tributions from signal and from noise correlations, as fol-
lows.

The signal similarity component Isig-sim is negative or zero and
quantifies the amount of redundancy specifically due to
signals correlation. We note that the negative of Isig-sim
equals the quantity named Isignal which was defined in
Ref. [18].

The noise correlation component Icor quantifies the total
impact of noise correlation in information encoding.
Originally introduced in [51], it equals the difference
between the information I(S; R) in the presence of noise
correlations and the information Iind(S; R) in the absence
of noise correlation. (Iind(S; R) is the information
obtained replacing Pind(r|s) for P(r|s) and Pind(r|s) for
P(r|s) in the entropies entering Eq. (1)). Icor quantifies
whether the presence of noise correlations increases or
decreases the information available in the neural
response, compared to the case where such correlations
are absent but the marginal probabilities of each element
of the response array are the same. Icor can be further bro-
ken into two terms Icor-ind and Icor-dep, as follows:

The stimulus independent correlational term, Icor-ind, reflects
the contribution of stimulus-independent correlations. In
general, if noise and signal correlations have opposite
signs, Icor-ind is positive. In this case, stimulus-independent
noise correlations increase stimulus discriminability com-
pared to what it would be if noise correlations were absent
[17,48]. If, instead, noise and signal correlations have the
same sign, Icor-ind is negative and stimuli are less discrimi-
nable than the zero noise correlation case. In the absence
of signal correlation, Icor-ind is zero, whatever the strength
of noise correlation.

The stimulus dependent correlational term Icor-dep is a term
describing the impact of stimulus modulation of noise
correlation strength. Icor-dep is non-negative, and is greater
than zero if and only if the strength of noise correlation is
modulated by the stimulus. Icor-dep was first introduced in

I S I syn

I I I
lin

lin sig sim cor

( ; )R = + =
= + +−

(5)

I I Icor cor ind cor dep= +− − (6)

Components of the information breakdownFigure 1
Components of the information breakdown. This figure shows a schematic representation of the terms of the informa-
tion breakdown of Ref. [17]. The information breakdown takes the joint mutual information I(S; R) and breaks it down into the 
sum of two terms: Ilin (the sum of information carried by each element of the response array) and syn (the amount of synergistic 
information). The synergy can be further broken down into the terms Isig-sim and Icor which highlight the effect of different modes 
of correlation. Isig-sim quantifies the impact of signal correlations on the total information, while Icor quantifies the effect of noise 
correlation. The term Icor is finally broken down into Icor-ind and Icor-dep, which describe the effects of stimulus-independent and 
stimulus-dependent correlations respectively.
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arising from correlations 
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response array

(+)Icor−dep
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Ref. [21] with the name I. Icor-dep is an upper bound to the
information lost by a downstream system interpreting the
neural responses without taking into account the presence
of correlations [19].

All quantities in the information breakdown can be
expressed in terms of the six quantities H(R), H(R|S),
Hlin(R), Hind(R), Hind(R|S), and (R) where H(R), H(R|S)
were defined above in Eqs. (2,3), and:

The components of the information breakdown can be
quantified from the above quantities as follows:

Implementation
Computing environment
Our Information Breakdown Toolbox (ibTB) has been imple-
mented in Matlab (The Mathworks, Natick, MA) and C
taking advantage of Matlab's MEX technology. It has been
tested on several platforms (Mac OS X, Windows 32 and
64 bits, Ubuntu Linux) and it can be downloaded,
together with a documentation for its installation and its
use, from our website [52].

Data input/output
The main routine in the toolbox is entropy.m (see the
workflow of the toolbox in Figure 2) which allows the
computation of the fundamental quantities necessary for
the computation of the terms which appear in the break-
down decomposition. This routine receives as input a
matrix storing the L responses to each trial for each stim-
ulus. The user also needs to specify the estimation
method, the bias correction procedure and which entropy
quantities need to be computed. These can be any of the
following: H(R), H(R|S), Hlin(R), Hind(R), Hind(R|S), (R)

and Hsh(R), Hsh(R|S) (see below for a definition of these
last two quantities).

As shown in Figure 2, two routines are available for the
pre-processing of the input to entropy.m. buildr.m
allows to build the response-matrix, to be fed to

entropy.m, starting from L + 1 -long arrays: the first

array stores a list specifying, for each trial, which stimulus
was presented to the subject while the L remaining arrays
specify the L corresponding recorded responses. binr.m
allows to discretize continuous response-matrices – prior
to calls to entropy.m with the the Direct Method –
according to a binning method chosen among a list of
available binning options. This list includes the equi-popu-
lated binning (which returns responses whose stimulus-
independent probabilities are approximately uniform)
and different types of equi-spaced discretizations. Users are
also given the opportunity to define their own binning
strategies by easily linking their binning routine to
binr.m (we refer the reader to the documentation to this
function for more information on how to define custom
binning methods).

Finally, information.m is a wrapper around
entropy.m which directly computes the breakdown
terms by combining the outputs from this main function.
Its input is identical to that of entropy.m except for the
list of possible outputs options which can be any or sev-
eral of the following: I(S; R), Ish(S; R), syn, synsh, Ilin, Isig-sim,
Icor, Icor-sh, Icor-ind, Icor-dep and Icor-dep-sh.

Direct Method
The Direct Method [33] for computing information and
entropies consists in estimating the probabilities of the
discrete neural responses by simply computing the frac-
tion of trials in which each response value is observed,
and then by simply plugging into the information and
entropy equations the response probabilities estimated in
this way. In this subsection, we describe a novel, compu-
tationally optimized algorithm for computing the empir-
ical estimates of the probabilities, which is at the core of
our toolbox and is the principal reason for its speed.

To describe this algorithm, let's consider, as an example,
the calculation of the response probability P(r). Its direct
estimator is given by

where C(r) is the number of times the response r has been

observed within the total number of available trials .

H P P
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Figure 2 (see legend on next page)
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By plugging  into Equation (2), we obtain the direct

response-entropy estimator

The steps required for computing (R) according to
(7) are the following. First the routine has to run through

all of the  available trials and compute the C(r) val-

ues. The program must then loop through all the Nr pos-

sible r responses, normalize each C(r) by  and sum

the C(r) log C(r) values together:

for trial from 1 to 

read r in current trial

C(r)  C(r) + 1

end loop

for r from 1 to Nr

end loop

A problem with this approach comes from the rapid grow-
ing of Nr as L increases. Let us assume that each element
in the response array can take on M different values. We
have Nr = ML. One can thus see that estimating the infor-
mation quantities according to this two-loops method
becomes prohibitive for Nc and M larger than a few units.
However, some simple algorithmic observation can help
simplifying the problem significantly. We have

where (R) = r f(C(r)) and f (·) denotes the function f(x)
= x · log x.

First of all, Equation (8) suggests that, instead of normal-
izing each count C(r) and then summing over r, we can
instead first compute (R) and then normalize. This has the
advantage of reducing the number of division operations
from Nr to just one.

Equation (8) tells us even more. Suppose that an addi-
tional trial is provided in which the response  is
observed. The total number of trials thus increases from

 to  + 1. We also need to update the value of

ˆ( )P r
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Structure of the main routines in the ToolBoxFigure 2 (see previous page)
Structure of the main routines in the ToolBox. The core function is entropy.m which allows to compute the entropy-
like quantities which constitute the building blocks for the calculation of mutual information and of all the other breakdown 
terms. It is important to note how the modular structure allows for new methods and extrapolation procedures to be easily 
created and linked to the existing software. In particular, starting with the next release of the toolbox, users will be given the 
opportunity to easily plug-in their custom bias correction m-files in order to extend the capabilities of the existing code. Other 
routines in the toolbox are available for the pre-processing of the input to entropy.m. buildr.m allows to build the 

response-matrix to be fed to the information routines starting from L + 1 -long arrays: the first array stores a list specify-

ing, for each trial, which stimulus was presented to the subject while the L remaining arrays specify the L corresponding 
recorded responses. binr.m allows to discretize continuous response-matrices – prior to calls to entropy.m with the the 
Direct Method – according to a binning method chosen among a list of available binning options. Again, users are given the pos-
sibility to define their own binning strategy (in addition to the built-in binning methods) and to easily link their code to the tool-
box. Finally, information.m is a wrapper around entropy.m which directly computes the breakdown terms by 
combining the outputs from this main function, thus skipping all the complex computations necessary for the the calculation of 
the breakdown quantities.
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C( ) by incrementing it by one. As a result of this change

(R) is increased by an amount  given by

This observation suggests that, instead of computing the
final value of C(r) we can update (R) directly at each trial,
inside the first loop, therefore skipping the second loop
over the Nr responses. The procedure for computing

(R) thus becomes:

for trial from 1 to 

read r in current trial

(R)  (R) + f(C(r) + 1) - f(C(r))

C(r)  C(r) + 1

end loop

normalize (R)

where the length of the loop is determined only by the
number of available trials.

The previous procedure can be extended to the direct com-

putation of (R|S), (R) and (R|S). Since the

argument of f(·) is always an integer, we can store the val-
ues computed for f(·) and use them for the computation
of all four entropic quantities. In the current implementa-
tion of the toolbox, the values of f(·) persist in memory as

long as  does not change. Calls to the toolbox with

matrices with the same number of trials perform increas-
ingly faster and the maximum computation speed is

achieved when all values of f(x) for x = 1,...,  have

been computed.

Finally, let's describe the computation of (R) and

(d)(R). Consider a very simple example in which only
two responses are recorded (L = 2) each of which can only
take two possible values 0 and 1. For each stimulus s we
can thus build the probability arrays

where we used the compact notation Pi(x|s) = P (ri = x|s).
If we now wish to build a probability array for Pind(r|s), as

done for the stimulus-conditional response probabilities,
we have

where P1(s) � P2(s) denotes the Kronecker's product
between the two probability arrays P1(s) and P2(s). Equa-
tion (9) can be extended to any L and any number of val-
ues taken by the responses

The number of products required to compute Pind(s) and,

consequently, also the time required to compute Pind(r),

(R) and (d)(R), increases rapidly together with the

number, L, of responses.

Since L is not known a priori but it is chosen by the user,
in order to minimize the number of multiplications and
of iterations while also reducing the overhead due to calls
to sub-functions, we implemented Eq. (10) by recursively
partitioning the problem into half until pairwise products
are reached. For example, for L = 6 the routine performs
the products in the following order:

Bias Correction for the Direct Method: plug-in vs bias-
corrected procedures
The Direct Method relies on the empirical measure of the
response probabilities as histograms of the fraction of tri-
als in which each discrete response value was observed.
Naturally, this procedure gives a perfect estimate of the
information and entropies only if the empirical estimates
of the probabilities equal the true probabilities. However,
any real experiment only yields a finite number of trials
from which these probabilities have to be estimated. The
estimated probabilities are thus subject to statistical error
and necessarily fluctuate around their true values. If we
just plug the empirical probabilities into the information
equations (a procedure often called the "plug-in" proce-
dure in the literature), then the finite sampling fluctua-
tions in the probabilities will lead to a systematic error
(bias) in the estimates of entropies and information [31].
In some cases, the bias of the plug-in information esti-
mate can be as big as the information value we wish to
estimate. It is therefore crucial to remove this bias effec-
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tively in order to avoid serious misinterpretations of neu-
ral coding data [31].

Next, we describe and compare four bias correction proce-
dures that we implemented in our toolbox. These proce-
dures, which are among those most widely used in the
literature, were selected for inclusion in our toolbox
because they are applicable to any type of discretized neu-
ral response (whatever its statistics), because they are (in
our experience) among the most effective, and because
they are guaranteed to converge to the true value of infor-

mation (or entropy) as the number of trials  increases

to infinity.

Quadratic Extrapolation (QE)

This bias correction procedure [33] assumes that the bias
can be accurately approximated as second order expan-

sions in 1/ , that is

where a and b are free parameters that depend on the stim-
ulus-response probabilities, and are estimated by re-com-
puting the information from fractions of the trials as
follows. The dataset is first broken into two random parti-
tions and the information quantities are computed for
each sub-partition individually: the average of the two val-
ues obtained (for each quantity) from the two partitions
provides an estimate corresponding to half of the trials.
Similarly, by breaking the data into four random parti-
tions, it is possible to obtain estimates corresponding to a
fourth of the trials. Finally, a and b are extrapolated as
parameters of the parabolic function passing through the

/2 and /4 estimates.

Panzeri & Treves (PT) Bias Correction
This correction technique computes the linear term a in
the expansion (11) through an analytical approximation
rather than from the scaling of the data of the QE proce-
dure. This approximation depends on the number of
response bins with non-zero probability of being
observed which is estimated through a bayesian-like pro-
cedure. The implementations of this algorithm in our
toolbox follows closely the one originally described in
Ref. [32].

The Shuffling (sh) Procedure
Obtaining unbiased information estimates is particularly
challenging when the response array is multidimensional
(i.e. L > 1), because in this case the number of possible dif-

ferent responses grows exponentially with L and it
becomes difficult to sample experimentally the response
probability. This difficulty arises because, as previously
discussed, different elements of the response array are
usually correlated. As a consequence, the sampling of the
full probability of a response array cannot be reduced to
computing the probabilities of each individual array ele-
ment ("marginal probabilities") as would be legitimate if
the response-elements were independent. Fortunately, a
technique (called the shuffling method [31,36]) can keep
the bias introduced by correlations under control, thereby
greatly improving our ability to estimate multi-dimen-
sional information. This method [31,36] consists of com-
puting information I(S; R) not directly through Eq. (1),
but through the following formula:

where Hsh(R|S) is the shuffle noise entropy, i.e., the noise

entropy computed after randomly permuting, independ-
ently for each response, the order of trials collected in
response to a stimulus (in other words, it is the noise
entropy of the distribution psh(r|s)). Ish(S; R) has the same

value of I(S; R) for infinite number of trials but has a

much smaller bias for finite , owing to the bias can-

celation created by the entropy terms in the right hand
side of Eq. (12).

It should be noted that, if one is interested in breaking
down Ish(S; R) (rather than I(S; R)) into the information
components of [17], then syn, Icor and Icor-dep need to be re-
defined as follows:

This three shuffled-corrected quantities, synsh, Icor-sh and
Icor-dep-sh, converge to the same values of their uncorrected
counterparts syn, Icor and Icor-dep, respectively, for infinite
number of trials. However the bias of the shuffle-corrected
quantities is much smaller when the number of trials is
finite. This is especially critical for the computation of Icor-

dep which is by far the most biased term of the information
breakdown [36].

Bootstrap Correction
The bootstrap procedure [53,54] consists of pairing stim-
uli and responses at random in order to destroy all the
information that the responses carry about the stimulus.

Ntr
tot

Ntr
tot

bias
a

Ntr
tot

b

Ntr
tot

= +
( )

,
2 (11)

Ntr
tot Ntr

tot

I S H H S

H S H S
sh ind

sh

( ; ) ( ) ( | )

( | ) ( | )

R R R

R R

= − +
+ −

(12)

Ntr
tot

syn I S I

I I S I S

I H

sh sh lin

cor sh sh ind

cor dep sh

= −
= −
=

−

− −

( ; )

( ; ) ( ; )

R

R R

(( ) ( | )

( | ) ( )

R R

R R

− +

+ −

H S

H Ssh



BMC Neuroscience 2009, 10:81 http://www.biomedcentral.com/1471-2202/10/81

Page 11 of 24
(page number not for citation purposes)

Because of finite data sampling, the information com-
puted using the bootstrapped responses may still be posi-
tive. The distribution of bootstrapped information values
(over several instances of random stimulus-response pair-
ings) can be used to build a non-parametric test of
whether the information computed using the original
responses is significantly different from zero. Moreover,
the average of the bootstrapped values instances can be
used to estimate the residual bias of the information cal-
culation, which can be then subtracted out. The bootstrap
evaluation and subtraction of the residual error can be
applied to any method to compute information (such as
the Direct Method explained above and the Gaussian
Method which will be explained below), with or without
one of the bias correction procedures described above. In
our toolbox, bootstrap estimates can be computed for the
quantities H(R|S), Hlin(R|S), Hind(R), Hind(R|S), (R) and
Hsh(R|S) from which bootstrapped estimates of I(S; R)
and Ish(S; R) are easily obtained. The remaining quanti-
ties, H(R) and Hsh(R), are not affected by the bootstrap-
ping.

Gaussian Method
The Direct Method, being based on empirically comput-
ing the probability histograms of discrete or discretized
neural responses, does not make any assumption on the
shape of the probability distributions. This is a character-
istic which makes the Direct Method widely applicable to
many different types of data.

An alternative approach to the Direct estimation of infor-
mation is to use analytical models of the probability dis-
tributions; fit these distributions to the data; and then
compute the information from these probability models.
This method has been applied so far relatively rarely in
Neuroscience (e.g. [55]). In fact this approach may prove
difficult to apply to distributions of spike patterns since in
this case appropriate analytical forms of probability distri-
butions are usually not available. However, several situa-
tions exist for which it is possible to fit the response
distribution to Gaussian functions, especially when deal-
ing with analog brain responses and their transforma-
tions, such as Fourier transforms (see the Results section).
The Gaussian Method for computing information and
entropies is the one based on fitting response probabili-
ties to Gaussian functions.

Under the Gaussian hypothesis, the noise and response
entropy and the information are given by simple func-
tions of their variance [2]

where | 2(R)| and | (R)| are the determinants of the

matrices of covariance computed across trials and stimuli,
and across trials to stimulus s, respectively.

Note that the Gaussian Method – which we implemented
using a straight computation of variances which are then
fed into the above equations – does not necessarily
require data discretization prior to the information calcu-
lation.

The advantage of the Gaussian Method is that it depends
only on a few parameters that characterize the neural
response (i.e., the variances and covariances of the
responses), and is thus more data-robust, and less prone
to sampling bias than the Direct calculation. The potential
danger with this approach is that the estimates provided
by Eq. (15) may be inaccurate if the underlying distribu-
tions are not close enough to Gaussians.

Although less severe than in the Direct case, the upward
bias of the information calculation due to limited sam-
pling is still present when using the Gaussian Method.
When the underlying distributions are Gaussian and
when no discretization is used for the responses, an exact

expression for the bias of (R) and (R|S) can be
computed. The result is as follows [56-58]:

where gbias(·) is defined as

and (·) is the polygamma function (implemented in
Matlab as the psi function).

Our toolbox allows the computation of Gaussian esti-
mates without bias correction, with the analytical Gaus-
sian bias correction, Eqs. (16,17), and also with the
quadratic extrapolation correction QE. However, using
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simulated data, we found that quadratic extrapolation did
not correct well for bias for the Gaussian Method (results
not shown). This can be understood by noting that Eqs.
(16,17) indicate that a quadratic data scaling may not nec-
essarily describe well the bias in the Gaussian case.

The Gaussian Method can also be used to compute the
terms Ilin, Isig-sim and Icor of the information breakdown [17]
by approximating, Hind(R) with Hsh(R), the response
entropy computed after shuffling the neural responses at
fixed stimulus. Note that in this case also Hind(R|S) needs
to be replaced by Hsh(R|S). The calculations of all these
quantities is implemented in the Toolbox. Note that the
quantity (R) cannot be easily computed with the Gaus-
sian Method, thereby preventing the separation of Icor into
Icor-ind and Icor-dep.

Results and discussion
In the following we present several case studies and tests
of the performance of our ibTB Toolbox on analog neural
signals, such as EEGs and LFPs. We emphasize that the
toolbox can be effectively applied to spike trains as well as
to EEGs and LFPs. The reason why we focus our presenta-
tion on EEGs and LFPs is that the very same algorithms
implemented in our toolbox have been already illustrated
and tested heavily on spike trains; therefore the illustra-
tion and test on EEGs and LFPs is more interesting. We
however report that we have thoroughly tested our tool-
box on spike trains. In particular, we have used our Tool-
box to successfully replicate a number of previously
published spike train information theoretic studies from
our group, reported in Refs. [8,13,14,17,31,36,59].

Finite sampling bias corrections of information measures 
from analog neurophysiological signals
We start by testing the performance of bias correction pro-
cedures on simulated data. These procedures have been
previously tested on simulated spike trains [31], but not
yet on analog neural signals. We therefore tested the bias
corrections on realistically simulated LFPs whose statisti-
cal properties closely matched those of real LFPs recorded
from V1 of an anaesthetized macaque in responses to Hol-
lywood color movies presented binocularly to the animal
(data from [29]). Details of the simulations procedure are
reported in Appendix A. Our goal is to estimate the infor-
mation (about which of 102 different 2.048 s long movie
scenes was presented) carried by the two-dimensional
response array made of the power of the simulated LFP at
frequencies 4 and 75 Hz. The power in each frequency was
discretized into 6 equipopulated bins. Choosing the
boundaries of the discretization bins so that each bin is
equi-populated is a simple but effective way to obtain
high information values even when discretizing an analog
signal into a relatively small number of bins. This is
because equipopulated binning maximizes the response

entropy H(R) that can be obtained with a given number
of response bins [2].

In order to illustrate both the origin and magnitude of the
bias, it is useful to start the analysis by considering the
sampling behavior of the plug-in Direct estimator (we
remind that the plug-in estimator is the one that does not
uses any bias correction after plugging the empirically esti-
mated probabilities into the information and entropy
equations). Figure 3A shows that the plug-in estimates of
H(R|S) decrease when decreasing the number of trials.
That is, finite sampling makes plug-in entropy estimates
biased downward. Intuitively, this can be understood by
noticing that entropy is a measure of variability: the
smaller the number of trials the less likely we are to fully
sample the full range of possible responses and the less
variable the neuronal responses appear. Consequently,
entropy estimates are lower than their true values [34].

Figure 3A also shows that, in contrast to H(R|S), estimates
of H(R) are essentially unbiased. It is a very common find-
ing that H(R) is less biased than H(R|S) [31] because the
former depends on P(r) which, being computed from data
collected across all 102 stimuli, is better sampled than
P(r|s). However, in this specific case, the fact that H(R) is
unbiased stems from the chosen response discretization
method: by discretizing each analog LFP power response
at the two considered frequencies into 6 equi-populated
bins we obtain 36 equi-probable bidimensional
responses which provide H(R) = log2(36) ~ 5.17.

Figure 3C shows that the plug-in estimate of information
I(S; R) is biased upward: it tends to be higher than the true
value for small number of trials, and then it converges to
the true value as the number of trials grows. This upward
sampling bias, which originates from the downward sam-
pling bias of H(R|S) (see Eq. (1)), can be as large as the
true information value if the number of available trials is
low (Figure 3C). Previous research [32] showed that the
most crucial parameter in determining the size of the bias
for the plug-in estimator is the ratio between the number
of trials per stimulus, Ntr(s), and the cardinality of the
response space, which we denote by Nr. (In this particular
example, the cardinality Nr of the two dimensional
response space equals 36). The ratio Ntr(s)/Nr tells us how
well-sampled are the responses.Figure 3C shows that the
plug-in estimator requires Ntr(s) to be at least two orders
of magnitude larger than Nr for it to become essentially
unbiased, a characteristic that makes this estimator of lim-
ited experimental utility. This is why bias correction pro-
cedures are needed.

The performance of two such procedures implemented in
our Toolbox (PT and QE) is reported in Figure 3C. Both
corrections substantially improve the estimates of I(S; R),
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Comparison of the sampling properties of different information quantities and of bias correction techniquesFigure 3
Comparison of the sampling properties of different information quantities and of bias correction techniques. 
The estimates of information and entropies obtained with a number of techniques are tested on simulated data and plotted as 
a function of the number of generated trials per stimulus. Results were averaged over a number of repetitions of the simulation 
(mean value ± st. dev. over 50 simulations). We generated simulated LFPs which matched the second order statistics of LFPs 
recorded from primary visual cortex during visual stimulation with color movies (see Appendix A). The neural response r used 
to compute information was a two dimensional response array r = [r1, r2] containing the simulated LFP power at frequencies f1 
= 4 Hz and f2 = 75 Hz, respectively. The power at each frequency was binned into 6 equi-populated values. A: Values of the 
four plug-in entropies H(R), H(R|S), Hind(R|S) and Hsh(R|S). B: Values of the bootstrap estimates of the quantities in Panel (A), 
computed by randomly pairing trials and stimuli. C: Mutual information values obtained with plug-in estimate (black line) and 
following the application of two bias correction procedures, namely QE (red line) and PT (green line). D: values of the same 
quantities reported in panel (C), but after further subtracting the bootstrap correction. E: Values of the information Ish(S; R) 
computed using the shuffling procedure with the following bias corrections: plug-in (black line); QE (red line) and PT (green 
line). F: values of the same quantities reported in panel (E), but after further subtracting the bootstrap correction.
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which, in this simulation became accurate for Ntr(s)  27 =
128 (i.e. Ntr(s)/Nr  3, to be compared with Ntr(s)/Nr  100
for pure plug-in).

Figure 3D reports the effect of subtracting bias corrections
based on data bootstrapping [53,54]. Computing the
bootstrap value of the plug-in estimate and then subtract-
ing it from the plug-in information value is not very effec-
tive: it leads to a large overestimation of the bias and thus
to a big underestimation of the information. The reason
why this is the case can be understood by comparing the
sampling behavior of the plug-in estimator of H(R|S)
before (Figure 3A) and after (Figure 3B) the data boot-
strapping. For large numbers of trials, bootstrapping
makes H(R|S) equal to H(R). However, the bias of H(R|S)
is much greater after bootstrapping. This is because boot-
strapping enhances the support and spread of the stimu-
lus-response distributions P(r|s), which makes these
probabilities more difficult to sample [32]. As a conse-
quence the bootstrap estimate of the bias of I(S; R) is exag-
gerated and its subtraction from the plug-in estimate of
I(S; R) leads to a severe underestimation of the informa-
tion. However, if we apply a PT or QE bias correction first,
and then estimate and subtract out the remaining residual
error by bootstrap, we obtain a far more effective bias
removal (Figure 3D). This shows that (consistent with the
analytic arguments in [32]), the data bootstrapping gives
a good evaluation of the residual bias error after correc-
tion, though it overestimates the actual value of the bias
per se.

Finally, we considered the effect of computing informa-
tion through Ish(S; R) (Eq. (12) rather than through I(S;
R)). Let us consider first the sampling behavior of the
plug-in estimate of the four entropies that make up Ish(S;
R). Because Hind(R|S) depends only on the marginal prob-
abilities of the response array, it typically has very small
bias (Figure 3A). Hsh(R|S) has the same value of Hind(R|S)
for infinite number of trials, but it has a much higher bias
than Hind(R|S) for finite number of trials. In fact, Figure 3A
shows that the bias of Hsh(R|S) is approximately of the
same order of magnitude as the bias of H(R|S). Intuitively,
this is expected because Psh(r|s) is sampled with the same
number of trials as P(r|s) and from responses with the
same dimensionality [21,36]. In this simulation, the
biases of Hsh(R|S) and H(R|S) were not only similar in
magnitude but actually almost identical (Figure 3A). This,
as explained in [36], reflects the fact that for the data sim-
ulated here (which represent a low and a high LFP fre-
quency from the same electrode) the correlations among
elements of the response array were relatively weak [29]
and thus Hsh(R|S) and H(R|S) were very close both in
value and sampling properties. Because the biases of
Hsh(R|S) and H(R|S) almost cancel each other and since
H(R) is unbiased, the bias of Ish(S; R) is almost identical

to that of Hind(R|S). This in turn implies that the plug-in
estimator of Ish(S; R) must have a much smaller bias than
I(S; R), a fact clearly demonstrated by the results in Figure
3E.

Due to its intrinsically better sampling properties, Ish(S; R)
has an advantage over I(S; R) not only when using a plug-
in estimation but also when using bias subtraction meth-
ods. Figure 3E shows that when using PT or QE correc-
tions, Ish(S; R) can be computed accurately even when
using only 26 = 64 trials per stimulus (corresponding to
Ntr(s)/Nr  2). When using an additional bootstrapping
procedure to subtract the residual bias (Figure 3F), the
estimate of Ish(S; R) becomes almost completely unbiased,
independently of the bias correction used, even with as lit-
tle as 25 = 32 trials (corresponding to Ntr(s)/Nr  1).

It should be noted that this behavior applies to cases in
which (like the one we simulated) correlations among ele-
ments of the response array are relatively weak. In condi-
tions when the correlations among elements of the
response array are very strong (as it is often case with both
LFPs and spikes recorded from the nearby electrodes),
then the sampling behavior of Ish(S; R) is still qualitatively
similar to that reported here, with the main difference that
in cases of stronger correlation Ish(S; R) tends to have a
small downward (rather than upward) bias. This stems
from the fact that in the presence of stronger correlations
the bias of Hsh(R|S) tends to be more negative than that of
H(R|S) [36], and was verified extensively on simulated
spike trains in previous reports [36] and by increasing the
level of correlations in these simulated LFPs (results not
shown).

In summary, we presented the first detailed test of bias
corrections procedures (originally develop for spike
trains) on simulated analog neural signals. These simula-
tions (i) confirm that these procedures are effective also
on data with statistics close to that of LFPs; (ii) show that
in such case it is highly advisable to use Ish(S; R) as
method to compute information; (iii) indicate that evalu-
ating and subtracting the residual bootstrap errors of Ish(S;
R) (as done in [29]) is particularly effective. We recom-
mend this procedure to Toolbox users interested in com-
puting information form multidimensional LFP or EEG
responses.

Correlations between different frequency bands of Local 
Field Potentials in Primary Visual Cortex
In this section we illustrate the Information Breakdown
formalism [17] to study whether signal or noise correla-
tions between the LFP powers at different frequencies
made them to convey synergistic or redundant informa-
tion about visual stimuli with naturalistic characteristics.
For this study, we analyzed LFPs recorded from the pri-
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mary visual cortex of anesthetized macaques in response
to a binocularly presented naturalistic color movie [29].
Each recording site (51 in total) corresponded to a well-
defined V1 visual receptive field within the field of movie
projection. From each electrode, we measured LFPs as the
1–250 Hz band-passed neural signal. Each movie was 5
min long and was repeated 40 times in order to sample
the probability distribution over the neural responses to
each scene. Full details on the experimental procedures
are reported in Ref. [29]. The correlation between the LFP
activity in different frequency bands on this dataset was
studied in Ref. [29] using only linear (Pearson) correla-
tion. Here, we extend these previous results by using the
information breakdown, which takes into account both
linear and non-linear correlations at all orders [17].

We used the information-theoretic procedure to compute
how the power of LFPs at these different frequencies
reflects changes in the visual features appearing in the
movie. We divided each movie into non-overlapping time
windows of length T = 2.048 s. Each window was consid-
ered as a different "stimulus", s, and the corresponding
power spectra (obtained in each trial and in each window
by means of the multitaper technique [60,61]) were con-
sidered as the neural response. From the distribution
across trials of the power at each frequency and stimulus
window, we computed the mutual information between
the stimulus (i.e. the considered movie fragment) and the
joint power of the LFP at two selected frequencies f1 and
f2. (Thus, the response r was a two dimensional array [r1,
r2] containing the power at frequency f1 and f2, respec-
tively.) To compute information, we used the Direct
Method together with the shuffled information estimator
corrected with the Quadratic Extrapolation bias correction
and the bootstrap subtraction (as done in Figure 3F for
simulated data).

Figure 4A reports the average over all datasets of the infor-
mation I(S; R) carried by the LFP powers about which part
of the movie was being presented, as a function of the fre-
quencies f1 and f2 at which the power was extracted. Three
local maxima of information are present, which involve
frequencies either in the low LFP frequency range (below
12 Hz) and in the so-called high-gamma LFP frequency
range (60–100 Hz).

The first maximum I(S; R) occurs when f1 and f2 are in the
low (below 12 Hz) frequency range. A second, broader
maximum is present for f1 and f2 in the high gamma range.
The highest maximum, however, is obtained when com-
bining a low power response with an high-gamma one.
An interesting question is whether the LFP powers belong-
ing to the highly informative low-frequency range and the
high-gamma range carry independent or redundant infor-
mation about the stimuli, and whether any potential

redundancy is due to shared sources of variability (i.e.
noise correlation) or to similarities in the tuning to differ-
ent scenes of the movie (i.e. signal correlation). In the fol-
lowing, we will use the information breakdown to address
this question.

Let's first consider any two frequencies f1 and f2 belonging
to the low frequency range. A comparison of I(S; R) (Fig-
ure 4A) and Ilin (Figure 4B) shows that I(S; R) is only
slightly less than Ilin. Thus, as made explicit in Figure 4C,
there is only a very small negative synergy (i.e. a positive
redundancy) between low LFP frequencies. To understand
the origin of this small redundancy, we used the informa-
tion breakdown [17]. This formalism shows that low LFP
frequencies have little redundancy not because they are
independent, but because they share noise correlations
whose effect cancel out. In particular, there is a negative
stimulus-independent correlation component Icor-ind (Fig-
ure 4E) which is almost exactly compensated by a stimu-
lus-dependent correlation component Icor-dep (Figure 4F).
Unlike noise correlations, signal correlations have a very
little specific impact on the information carried by the two
frequencies (because Isig-sim is zero; Figure 4D). These
results suggest that the low-frequency LFP bands share a
strong common source of variability and thus do not orig-
inate from entirely distinct processing pathways, even
though they add up independent information about the
external correlates.

We then considered the case in which f1 belongs to the the
low frequency range while f2 is in the high-gamma range.
In this case, the powers at f1 and f2 added up independent
information about the external correlates, because the
joint information I(S; R) (Figure 4A) was equal to Ilin (Fig-
ure 4B), and as a consequence there is zero synergy
between (Figure 4C) between the low and high-gamma
LFP frequencies. The information breakdown [17] shows
that signal correlations have no impact on the informa-
tion carried by the two frequencies (because Isig-sim is zero;
Figure 4D), and that the same applies to both stimulus-
dependent and stimulus-independent noise correlations
(Figure 4F and 4E). Thus, low LFP frequencies and high-
gamma LFPs generated under naturalistic visual stimula-
tion share neither noise nor signal correlations. They
appear to be uncorrelated under naturalistic visual stimu-
lation, and are thus likely to arise from fully decoupled
neural phenomena.

We finally examined the case in which both f1 and f2
belong to the high-gamma frequency range. In this case,
there is considerable negative synergy (i.e. positive redun-
dancy) between such frequencies. This redundancy can be
attributed to signal correlation (because Isig-sim is strongly
negative), which means that high gamma frequencies
have a similar response profile to the movie scenes. The
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redundancy between high gamma frequencies is further
enhanced by a negative effect of stimulus-independent
noise correlation Icor-ind, Figure 4E. This can be explained
by the results of a previously reported linear correlation
analysis [29] which suggested a presence of a small
amount of positive noise correlation between high
gamma frequencies that accompanies the positive signal
correlation, and with the fact that a combination of signal
and noise correlation with the same sign leads to a nega-
tive Icor-ind.

It is interesting to note that the results obtained with the
information breakdown are compatible with those
obtained on the same dataset using a simpler linear signal
and noise correlation [29]. Since the information break-

down, unlike the linear correlation theory, is able to cap-
ture the impact of non-linear signal and noise correlations
if they were present, the equivalence between linear corre-
lation theory and information breakdown can be taken as
strong evidence that the linear correlations individuated
in [29] are a sufficient description of the functional rela-
tionship between LFP responses at different frequencies.

Performance of the Gaussian Method
In this section, we illustrate the accuracy and performance
on real LFPs responses of the Gaussian Method. We con-
sider again the calculation of how the LFP power encodes
information about naturalistic movies, and we use again
the same set of LFPs recorded from the primary visual cor-
tex of an anesthetized macaque in response to a binocu-

The information conveyed jointly by V1 LFPs at pairs of frequencies and its breakdown in terms of different correlational com-ponentsFigure 4
The information conveyed jointly by V1 LFPs at pairs of frequencies and its breakdown in terms of different 
correlational components. The breakdown of the information about naturalistic color movies carried by the power of LFPs 
at two different frequencies f1 and f2. Results are plotted as function of f1 and f2, and averaged over a set of 51 recording sites 
obtained from primary visual cortex of anaesthetized macaques. All estimates were computed using the Direct Method cor-
rected with the QE bias correction procedure and the bootstrap subtraction. Each analog LFP power response was binned into 
6 equi-populated values. A: The information, I(S; , ), conveyed jointly about the stimulus by pairs of LFP power 

responses B: The linear sum, Ilin(S; , ), of the information conveyed independently by each response. C: The synergy 

syn( , ), between the responses at the two frequencies. D: The signal-similarity term Isig-sim E: The stimulus-independent 

noise correlation component Icor-ind F: the stimulus-dependent correlational component Icor-dep.
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larly presented naturalistic color movie [29], which were
analyzed in the previous section. We computed the infor-
mation I(S; R) – about which of the 2.048 s long movie
scene in which we divided the movie was being presented
– carried by the LFP power at a given frequency f. The
response r was a scalar, rf, containing the power at fre-
quency f. We estimated the information I(S; R) either with
the Gaussian Method or with the Direct Method.

When using the Gaussian Method, we first estimated the
power in each stimulus window and trial using the mult-
itaper technique. We then took the cubic root of this
power; we fitted the distribution of this response to each
stimulus to a Gaussian; and we finally computed the
information through Eqs. (13) and (14) subtracting the
analytic gaussian bias correction, Eqs. (16) and (17). The
reason for applying the cubic root transformation is that
multitaper power estimates are asymptotically chi-square
distributed [60] thus their cubic root is approximately
Gaussian [62]. The cubic root operation, being monot-
onic, does not affect the underlying information values of
the power, but it makes response probabilities much more
Gaussian and thus facilitates information estimation with
the Gaussian Method. When using the Direct Method, we
simply discretized these transformed power values into M
equi-populated bins and computed information through
Eq. (1) and corrected it for bias using QE. The number of
response bins M was varied in the range 4–8 (see below).

Figure 5A reports a scatter plot of the gaussian informa-
tion I(g) and the direct information I(d) (the latter com-
puted using a discretization with M = 8 bins) carried by
the power of an example V1 recording channel (electrode
7 in monkey D04) at any given frequency in the range up
to 250 Hz. It can be appreciated that the two information
estimates are almost identical and are distributed along a
line with unitary slope: I(g) = 1.0 · I(d). This demonstrates
that the Gaussian approximation is extremely precise for
the response computed from this dataset, consistent with
mentioned properties of multitaper spectral estimators.

A comparison between Gaussian and direct estimates may
be useful to evaluate the effect of refining the discretiza-
tion of neural responses. For this dataset, we found that
when using more bins to discretize responses for the
Direct Method (e.g. M = 10 or M = 12 bins), the direct
information values I(d) do not change appreciably (data
not shown). However, when decreasing the number of
bins to M = 4 and M = 6 the resulting scatterplot of I(g) ver-
sus I(d) was again distributed along a line (like in Figure
5A) but with slopes of I(g) = 1.1 · I(d) and I(g) = 1.2 · I(d),
respectively. These findings suggest several conclusions.
First, differences that could be observed between gaussian
and direct estimates were due to loss of information
caused by poor discretization when using low number of

bins for the Direct estimate. Second, using 8 response bins
is sufficient to capture of the information of the LFP
power and using less bins leads to very moderate informa-
tion losses (of the order of 10–20%). Third, this suggests
that knowledge of the second order statistics of the root-
transformed power-values is sufficient for extracting the
bulk of the information from the LFP power fluctuations.

To demonstrate the sampling properties and data robust-
ness of the Gaussian information estimates, we proceed as
we did previously for the Direct Method, generating real-
istically simulated LFPs whose statistical properties closely
matched those of real V1 LFPs (see Appendix A for a
description of how data were generated). This time we
considered the information about the 102 presented
movie sequences carried by the power of either one, two
or three different simulated LFP frequencies (i.e., the
response was, respectively, one, two or three dimen-
sional). Results are reported in Figure 5B. We found that if
no bias correction was used, the Gaussian information
values were all upward biased, and the bias grew with the
dimensionality of the response space (Figure 5B). How-
ever, using the analytic bias correction in Eqs. (16) and
(17) eliminated the bias completely, with essentially iden-
tical accuracy for all considered dimensions.

Taken together, these results indicate that the Gaussian
Method can be an extremely accurate and useful tool for
studying the information content of analog neural signals.
Because of its great data robustness, we strongly recom-
mend its use on any neural signal whose response proba-
bilities are consistent with Gaussian distributions.

EEGs frequencies encoding visual features in naturalistic 
movies
We next demonstrate the applicability of our toolbox to
the analysis of single-trial EEGs. We considered EEGs
recorded from a male volunteer with a 64-channel elec-
trode cap while the subject was fixating the screen during
the repeated presentation of a 5 s-long naturalistic color
movie presented binocularly. Full details on experimental
procedures are reported in Appendix B. We then used our
Toolbox to investigate which frequency bands, which sig-
nal features (phase or amplitude), and which electrode
locations better encoded the visual features present in
movies with naturalistic dynamics.

To understand which frequency bands were more effective
in encoding the movie, we used a causal bandpass filter
(see Appendix B for details) to separate out the range of
EEG fluctuations at each electrode into distinct frequency
bands (delta: 0.1–4 Hz; theta: 4–8 Hz; alpha: 8–12 Hz;
beta: 12–20 Hz). We then extracted, by means of Hilbert
transforms of the bandpassed signal, the instantaneous
phase and power of the EEG fluctuations in each elec-
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trode, frequency band, and trial and examined the time
course of amplitude and phase during the movie.

Figure 6A shows the EEG response bandpassed in the 0.1–
4 Hz (delta) frequency band recorded from electrode PO8
during the 5 s of movie presentation in one randomly
selected trial. To visualize how EEG phase was modulated
by the movie, we divided the phase range into four equi-
spaced quadrants (each spanning a quarter of the oscilla-
tion cycle) and labeled each with a different color (Figure
6A). When we considered how the phase changed over
repeated trials to the same movie (Figure 6C) it was appar-
ent that the delta phase values were modulated by the
movie time, and this modulation was extremely reliable
across trials at several times during the movie. This sug-
gests that the delta phases recorded from electrode PO8
carried information about the movie. To quantify this pre-
cisely, we computed the mutual information, about
which part of the movie was being presented, carried by
the EEG delta phase (binned as in Figure 6C). The infor-
mation calculation was performed by subdividing the
time axis into non-overlapping stimulus windows of
length T = 4 ms, by computing (from the the data plotted

in Figure 6C) the probability of phase bins at each differ-
ent stimulus time, and then using Eq. (1) while correcting
for the finite sampling bias with the QE procedure. We
found that the information carried by the delta band EEG
phase at this electrode was 0.4 bits.

To compare the reliability of phase and power of the
delta-range fluctuations at different points of the movie,
we discretized the power of the delta band EEG from elec-
trode PO8 at each time point into four equipopulated
bins. We found that power was much less reliable across
trials than phase (Figure 6D). As a consequence, we also
found that power carried only 0.05 bits of information
about the movie, and was thus much less informative
than the delta phase from the same electrode.

Having illustrated the encoding of the movie by EEGs
with an example recording channel and a selected EEG
frequency range, we next characterized the behavior across
all electrodes and over a wider range of EEG frequencies.
Results are plotted in Figure 6E (phase information) and
6F (power information). We found that only low fre-
quency ranges (delta) were informative, and that phase

A comparison of Gaussian and Direct information estimation on V1 LFPsFigure 5
A comparison of Gaussian and Direct information estimation on V1 LFPs. A: This panel compares the values of 
information about naturalistic movies carried by V1 LFPs with the Gaussian and the Direct methods. It shows a scatter plot of 
the information conveyed about the movie by a single LFP frequency computed either with the Gaussian Method, or as a 
Direct estimate with data discretized into 8 bins. Data were taken from channel 7 of session D04 of the dataset reported in 
Ref. [29]. Each dot represents an information value obtained at a different LFP frequency with the two techniques considered. 
This figure shows that, on this dataset, the Gaussian and the Direct calculations provide similar values. The Pearson correlation 
coefficient between the values computed with the two methods was 0.99. B: We tested the Gaussian estimates of information 
on simulated data. We generated simulated LFPs which matched the second order statistics of LFPs recorded from primary 
visual cortex during visual stimulation with color movies (see Appendix A). The neural response r used to compute informa-
tion was either a one, a two or a three dimensional response array containing the simulated LFP power at frequencies of 4, 25 
and 75 Hz. The estimates of the mutual information carried by the power at either one, two or three frequencies were com-
puted using these data and the Gaussian Method and was plotted as function of the generated number of trials per stimulus 
(mean value ± the standard deviation over 50 simulations). Solid lines and dotted lines represent Gaussian estimates obtained 
without and with the subtraction of the analytic gaussian bias correction (see text) respectively.

A B

2 4 6 8 10

1

2

3

4

I(S;R)

log
2
(trials/stimulus)

in
fo

rm
at

io
n

 [
b

it
s]

 

 
Power 4 Hz
Power 4, 75 Hz
Power 4, 25, 75 Hz

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Direct Method

G
au

ss
ia

n
 M

et
h

o
d



BMC Neuroscience 2009, 10:81 http://www.biomedcentral.com/1471-2202/10/81

Page 19 of 24
(page number not for citation purposes)

Figure 6 (see legend on next page)
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was far more informative than power at all electrodes.
This is consistent with the attenuation properties of the
skull, which is more likely to attenuate power but with rel-
atively little introduction of phase shifts. The most
informative regions were found in the right occipital pari-
etal lobe covering the right visual cortices. It has been
hypothesized that such informative low frequency fluctu-
ations observed in visual cortex may reflect the entrain-
ment to slowly changing informative features in the
sensory signal [63,64]. To gain some insights on why
EEGs recorded from the right hemisphere were far more
informative about the movie than those recorded from
the left hemisphere, we calculated the mean pixel lumi-
nance of the movie clip over the 5 s stimulation window
separately for left and right hemifields. We found that the
mean luminance was greatest in the left visual field as
compared to the right. This provides one potential reason
to explain the lateralization of information about the
movie observed in this subject.

This example demonstrates the capabilities of the infor-
mation analysis to extract the most informative compo-
nents of EEG signals even when using complex dynamic
stimulation paradigms and illustrates the potentials of
this toolbox for single-trial EEG analysis.

In order to allow users to familiarize with the Toolbox, we
have included (as Additional File to this Article) the entire
dataset of EEG Delta Phases for all 64 channels and all tri-
als, together with a commented script that loads the data
and computes information through the appropriate calls
to the Toolbox (Additional file 2: eegtest.zip). Run-
ning the script contained in the afore mentioned file out-
puts the results plotted in top left plot of Fig 6E.

Comparison with other available toolboxes
Other groups have developed, or are currently developing,
toolboxes for the information analysis of neural
responses. Here we briefly discuss some of the relative fea-

tures of current releases of other information theoretic
toolboxes, and their complementariness.

Ince and colleagues [65] recently released an information
theoretic toolbox for neuroscience data called pyentropy
based on the Python programming language [66]. This
toolbox has the so far unique feature of including an
advanced and memory-efficient algorithm for the compu-
tation of entropies which are maximal under given con-
straints, thereby allowing an easy calculation of many of
the "maximum entropy" quantities which have received
substantial attention in recent years for the study of neu-
ronal interactions [67-69]. The choice of Python as a pro-
gramming language comes with several advantages
provided by its open source nature, its flexibility, and its
very efficient use of memory. The use of Python could
however be problem for most experimental neuroscience
laboratories, which currently make use of Matlab for pre-
processing, analysing and plotting the data.

Another available information theoretic toolbox for spike
train analysis is the Spike Train Analysis Toolkit (STAToolkit)
[70,71]. STAToolkit is, like our toolbox, based on C-MEX
technology and like ours can be easily used in Matlab by
experimental neuroscience laboratories. A unique and
important feature of STAToolkit is the large number of esti-
mation methods for the information carried by spike
trains, including techniques such as the binless estimation
[72] and the metric space approach [73].

With respect to the two above toolboxes, our new toolbox
presents two distinctive features. First, it is the only pack-
age which has been tested heavily non only on spike trains
but also on analog brain recordings such as LFPs, and
EEGs. It also includes algorithms which are specific for
these signals, such as the Gaussian Method information
calculation and its bias correction. The second distinctive
features of our toolbox is the speed of computation. This
speed advantage is not only due to the C implementation,

Information analysis of EEG recordings during vision of naturalistic moviesFigure 6 (see previous page)
Information analysis of EEG recordings during vision of naturalistic movies. The Figure shows EEG responses, and 
their information, recorded from a human subject watching 5 s-long repeated presentations of a color movie. Data from Panels 
(A-D) were taken from an example electrode (whose location is reported by the arrow in Panels E-F). A: The time course of 
the phase of the delta-band (0.1 – 4 Hz) EEG during a single trial (i.e., a single movie presentation). The single-trial delta-band 
EEG has been color-coded according to its phase-angle binned into four equally spaced intervals between -  and . B: The 
same single-trial delta-band EEG from the example electrode was color-coded according to the instantaneous power binned 
into four equally probable intervals. C: Time course of the instantaneous phases of the 0.1 – 4 Hz (delta) EEG from the exam-
ple electrode over 30 repetitions of the movie. Phase values were color coded into quadrants exactly as illustrated in Panel (A). 
D: Time course of the binned instantaneous power of the 0.1 – 4 Hz (delta) EEG from the example electrode over 30 repeti-
tions of the movie. Power values were color coded into quadrants exactly as illustrated in Panel (B). E: The information con-
veyed by the binned phase in the delta (0 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 15 Hz) and beta (15 – 30 Hz) frequency bands is 
plotted topographically across the electrode locations. F: The same topographic plot for the EEG instantaneous power infor-
mation.
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but also to the new algorithm for fast entropy calculation
that we presented here. By comparing systematically the
speed of our toolbox on simulated data with the speed of
pyentropy [65], we found that our toolbox has a speed
advantage of typically an order of magnitude to the one of
pyentropy. We found similar speed advantage in compari-
son to STAToolkit.

Future Directions
This paper accompanies the first release of ibTB, which we
will continue to be developed over the coming years.
Some features that we are working to implement in future
releases include:

• Additional bias corrections procedures. Currently, we imple-
mented some of the best known and most useful bias cor-
rection procedures for the computation of mutual
information. Other important corrections exist (e.g.
[34,35]), however, which we plan to implement and
include in the toolbox in the near future. Additionally,
starting with the next release of ibTB, users will be given
the opportunity to plug-in their own custom bias correc-
tion routines linking them very easily to the main routines
in the toolbox.

• Additional methods. The Gaussian Method is one of the
many analytical procedures existing for the computation
of entropy and mutual information: actually, several other
methods are available which take into account other
probability distributions [74]. The modular structure of
the toolbox allows to very easily add new methods to the
toolbox: these will be gradually introduced with future
releases.

• fMRI analysis. We are currently in the process of testing
and adapting our toolbox to its use with BOLD fMRI data.
Although we developed [32] the bias procedure used suc-
cessfully in recent information analysis of fMRI data some
papers [26,75], more work is needed to understand the
specific problems caused by the statistics of fMRI data,
and how best to use information theory to detect voxels
significantly tuned to the stimuli [25]. We plan to report
thorough studies of this issues on the toolbox website as
soon as possible.

Conclusion
Neuroscientists can now record, simultaneously and from
the same brain region, several types of complementary
neural signals, such as spike, LFP, EEG or BOLD
responses, each reflecting different and complementary
aspects of neural activity at different spatial and temporal
scales of organization. A current important challenge of
computational neuroscience is to provide techniques to
analyze and interpret these data [27,76-81]. We believe
that the new fast information theoretic Matlab Toolbox

presented here offers a useful technology tool to analyze
these complementary brain signals and understand how
the brain may combine together the information carried
by aspects of neural activity at these different levels of its
organization.

Availability and requirements
• Project name: Information Breakdown ToolBox

• Project home page: http://www.ibtb.org

• Operating system: tested on Mac OS X, Windows 32 and
64 bits, Linux

• Programming language: Matlab (toolbox tested on
R2008a and successive releases) and C

• Other requirements: Microsoft Visual C++ 2008 Redis-
tributable Package x86 (or x64) for use on Windows 32 bit
(or 64 bit) machine. The package is freely downloadable
from Microsoft's website and is only required if Visual
C++ is not installed.

• Licence: ibTB is distributed free under the condition that
(1) it shall not be incorporated in software that is subse-
quently sold; (2) the authorship of the software shall be
acknowledged and the present article shall be properly
cited in any publication that uses results generated by the
software; (3) this notice shall remain in place in each
source file.

• Any restriction to use by non-academics: none.
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fMRI: functional magnetic resonance imaging; LFP: Local
Field Potential; ibTB: Information Breakdown ToolBox;
EEG: Electroencephalogram; BOLD: Blood-oxygenation-
level-dependent
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Appendix A – Simulation of LFP responses
We simulated the LFP power of a recording site in primary
visual cortex (V1) in response to many different movie
scenes. In brief, data were simulated as follows. We
selected from the dataset of [29] a given example record-
ing channel (channel 7 from animal D04), and we com-
puted multitaper estimates of the power at three chosen
frequencies (4, 25 and 75 Hz) in response to approxi-
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mately 2-s-long scenes of Hollywood color movies pre-
sented binocularly to the animal. The multitaper
technique allows to reduce the variance of the spectral
estimates while keeping the bias under control: this is
achieved by means of taking the average of different direct
spectra computed using tapers which are orthogonal to
each other (see [60] for more details). The maximum
number of averaged spectra is a free parameter (named K)
which is set by the user. Here we chose K = 3, thereby pro-
viding power estimates which are distributed approxi-
mately as a chi-square with 6 degrees of freedom. We then
applied Wilson and Hilferty's cube-root transformation
[62]: this transformation, being monotonic does not
affect the information content of the responses while
making the response-distributions to a fixed movie scene
approximately gaussian (a fact that we also verified empir-
ically). We use the same approach for simulation of multi-
dimensional responses, by assuming that the joint distri-
bution of the root-transformed power at two or three dif-
ferent frequencies during each fixed movie scene was a
multivariate Gaussian. We generated many instances of
this Gaussian power-responses by means of Matlab's
mvnrnd function using mean and standard deviation val-
ues which were computed, for each scene, from the real
data. For entropy estimates computed using the Direct
Method, the data simulated in this way have been further
discretized into 6 equi-populated response bins.

Appendix B – Methods of EEG recording during 
presentations of short naturalistic movies
The EEG was acquired using a 64 channel electrode cap
(BrainAmp MR, BrainProducts). Electrode placement fol-
lowed the International 10–20 System and electrodes
were all referenced to a frontal central electrode (FCz).
Electrode impedances were kept below 15 KOhms. Hori-
zontal and vertical eye movements were recorded using an
electro-oculogram (EOG) with electrodes placed over the
outer canthus of the left eye as well as below the right eye.
Subjects were comfortably seated in a dimly lit room. EEG
recordings were digitally recorded at 1000 Hz with a
bandpass of 0.1–250 Hz and stored for offline analysis. A
small fixation cross on black background was shown in
order to indicate the beginning of the trial. After 2 seconds
of fixation, a 5 second movie segment (full field) was pre-
sented, followed by 2 seconds of continued fixation,
resulting in trials totaling 9 seconds of fixation. A movie
clip, consisting of fast moving and colorful scenes from a
commercially available movie, was presented 50 times.
All data analysis procedures were implemented with the
Matlab programming language in combination with the
EEGlab analysis toolbox [82] as described below. Post-
processing was performed using the EEGlab analysis soft-
ware (Neuroscan). EEG epochs (-1000 to 5000 ms
temporal range) were created based on the onset of trig-
gers recorded during the recording session. An EOG arti-

fact correction algorithm was used to remove all trials
with amplitudes that exceed ± 75 mV. After artifact rejec-
tion, 30 movie presentation trials remained.

To obtain bandpassed EEGs from each electrode, we
bandpassed the raw EEG signal sampled at 1 KHz with a
zero-phase-shift Kaiser filter with sharp transition band-
width (1 Hz), very small passband ripple (0.01 dB), high
stopband attenuation (60 dB), and bandwidth corre-
sponding to the considered band (e.g. 0.1–4 Hz for delta;
4 – 8 Hz for theta, etc. – see main text). These filters were
exactly equal to those used for LFPs in Refs [13,14]; we
refer to these references for more details.
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