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Abstract
Background: Developmental dyslexia is a specific cognitive disorder in reading acquisition that has genetic and
neurological origins. Despite histological evidence for brain differences in dyslexia, we recently demonstrated that
in large cohort of subjects, no differences between control and dyslexic readers can be found at the macroscopic
level (MRI voxel), because of large variances in brain local volumes. In the present study, we aimed at finding brain
areas that most discriminate dyslexic from control normal readers despite the large variance across subjects.
After segmenting brain grey matter, normalizing brain size and shape and modulating the voxels' content, normal
readers' brains were used to build a 'typical' brain via bootstrapped confidence intervals. Each dyslexic reader's
brain was then classified independently at each voxel as being within or outside the normal range. We used this
simple strategy to build a brain map showing regional percentages of differences between groups. The significance
of this map was then assessed using a randomization technique.

Results: The right cerebellar declive and the right lentiform nucleus were the two areas that significantly differed
the most between groups with 100% of the dyslexic subjects (N = 38) falling outside of the control group (N =
39) 95% confidence interval boundaries. The clinical relevance of this result was assessed by inquiring cognitive
brain-based differences among dyslexic brain subgroups in comparison to normal readers' performances. The
strongest difference between dyslexic subgroups was observed between subjects with lower cerebellar declive
(LCD) grey matter volumes than controls and subjects with higher cerebellar declive (HCD) grey matter volumes
than controls. Dyslexic subjects with LCD volumes performed worse than subjects with HCD volumes in
phonologically and lexicon related tasks. Furthermore, cerebellar and lentiform grey matter volumes interacted
in dyslexic subjects, so that lower and higher lentiform grey matter volumes compared to controls differently
modulated the phonological and lexical performances. Best performances (observed in controls) corresponded
to an optimal value of grey matter and they dropped for higher or lower volumes.

Conclusion: These results provide evidence for the existence of various subtypes of dyslexia characterized by
different brain phenotypes. In addition, behavioural analyses suggest that these brain phenotypes relate to
different deficits of automatization of language-based processes such as grapheme/phoneme correspondence and/
or rapid access to lexicon entries.
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Background
Developmental dyslexia consists of a specific and persist-
ent failure to acquire efficient reading skills despite con-
ventional instruction, adequate intelligence, and socio-
cultural opportunity [1]. Many competing neuro-cogni-
tive hypotheses aim to explain dyslexia. The phonological
hypothesis, which is the most influential account for read-
ing problems, postulates deficits related to the access or
the manipulation of phonemic information, or both, pre-
venting efficient learning of graphemes/phonemes corre-
spondences that are crucial to reading; e.g. [2,3]. By
contrast, the auditory processing deficit theory proposes
that phonological deficits are secondary to a more basic
impairment in (rapid) auditory processing [4,5]. The vis-
ual magnocellular hypothesis posits the existence of low
level visual disorders related to abnormal thalamic
magno-cells [6] that are involved in the processing of
moving stimuli and would thus be important for reading
activities related to saccadic eye movements [7]. Alterna-
tively, the visuo-attentional hypothesis situates the
impairment in the encoding of letter sequences, and this
latter deficit would be dissociated from phonological def-
icits [8]. The cerebellar hypothesis relates dyslexia to a
general learning disorder that includes a failure to autom-
atize reading and writing skills, i.e. dyslexia is regarded as
an impaired automatization of high-order sensory-motor
procedures essential in reading [9,10]. Finally, the general
magnocellular theory encompasses the latter four theories
(basic auditory, basic visual, attentional and cerebellar)
by discussing each deficit as a consequence of a general
magnocellular defect [11]. According to this last theory,
phonological deficits are secondary in comparison to
other deficits.

This multiplicity of theories aiming to explain dyslexia
reflects the heterogeneity of behavioural deficits. It is
indeed becoming accepted that dyslexia is not a unique
entity but might reflect different neuro-cognitive patholo-
gies [12]. As a matter of fact, dissimilar behavioural types
have been proposed for a long time. One of the first clas-
sification was proposed by Boder in 1973 [13]. Dyslexic
children were distinguished on the basis of their 'sensory'
deficit, i.e. they would either be classified as dysphonetic
(having phonological problems), or dyseidetic (having
visual problems). More recently, based on the classifica-
tion of patients with acquired dyslexia, Castles and Colt-
heard [14] proposed to distinguish phonological from
surface developmental dyslexic children. In this case, dys-
lexics are split into patients with assembling problems, i.e.
grapheme/phoneme association, vs. patients with
addressing problem, i.e. lexicon access. However, it is also
recognized that developmental dyslexic children can have
both assembling and addressing problems. Recent data
and modelling also suggest that different subgroups can
be distinguished within each subtype and that signs can
be shared between these subgroups [15]. For instance,

whereas patients with acquired surface dyslexia have pre-
served phonological abilities [14], developmental surface
dyslexics present, in addition to a lexicon addressing defi-
cit, mild phonological disorders sometimes in conjunc-
tion with a letter decoding deficit. In addition, this latter
deficit (letter decoding) could also be observed in some
developmental phonological dyslexics [15]. In another
study [16] on adult dyslexics, Ramus et al. also found that
the phonological/surface distinction does not hold for
developmental dyslexia as all subjects presented phono-
logical problems. In addition, for 70% of the subjects,
phonological problems were associated with cerebellar,
visual and/or auditory deficits. Other studies also pointed
out the existence of different subgroups that often do not
strictly follow the above mentioned theories. For instance,
Heim and colleagues [17] identified, using a combined
cluster/discriminant analysis, three behavioural sub-
groups. One subgroup had phonological deficits only
(33.3% of the dyslexic subjects), another group had pho-
nological, basic auditory and visual magnocellular deficits
(35.6%), whereas the remaining group had attentional
problems only (31.1%). Reid et al. [18] also observed dif-
ferent clusters, but using a deviance analysis: 6.6% of dys-
lexics had a magnocellular deficit only, another 6.6% had
a cerebellar deficit only, 26.6% had a naming (fluency)
deficit only, and another 20% had a phonological aware-
ness deficit only. Other subjects (40%) presented a com-
bination of the mentioned deficits. These and other
studies [19-23] therefore suggest that one theory cannot
explain all of the behavioural deficits associated with dys-
lexia. It is therefore not surprising that brain studies that
aim to find the biological counterparts of cognitive defi-
cits do not always agree one with the other, depending on
the sample at hand and the cognitive tests used.

From a theoretical point of view, several arguments favour
the idea that developmental disorders like dyslexia cannot
be 'specific', i.e. cannot reflect an impairment in only one
aspect of cognition like e.g. phonology [24], and this
would explain why one cannot find one unique biological
(area or network) counterpart of dyslexia. From the cogni-
tive science perspective, developmental disorders should
not be interpreted as an impairment in one cognitive
process but rather as the endpoint of an abnormal devel-
opmental process, reflecting the interaction of deficient
and compensatory processes [25]. Similarly, from a
behavioural genetic perspective, genes that are involved in
developmental disorders have both, specific and general
effects [26] such that additional cognitive disorders or
comorbidities, or both, should be observed. From an
experimental point of view, recent reviews pointed out
several brain areas with structural [27], or functional [12]
abnormalities. Nevertheless, those reviews also agree on
the heterogeneity of results across studies. In a recent
paper, we [28] suggested that dyslexia has a multifocal ori-
gin in terms of brain morphology. Using a Voxel Based
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Morphometry (VBM) approach [29] we demonstrated
that dyslexic subjects do not linearly differ from control
subjects in term of local grey matter volumes. In other
words, dyslexics (as a group) do not have lower or higher
local grey matter volumes. By contrast, dyslexic subjects
had significantly different patterns of volume variations
from controls, mainly in the superior temporal suslcus,
fusiform gyri and in the cerebellar declives. These patterns
of volume variations correlated with pseudoword reading
performances in both groups, such that dyslexics repre-
sented the lower tail of the distribution both in terms of
volumes and in terms of performances. Significantly dif-
ferent correlations were also observed regarding phono-
logical performances with stronger correlations in control
than dyslexic subjects for the cerebellum and significant/
present correlations for controls vs. absent for dyslexic
subjects in the cerebrum. Finally, crisscrossed correlation
patterns between dyslexic and control readers were also
observed regarding the spelling performances. Our inter-
pretation of the absence of net volume differences
between groups is that, by testing a large sample of dys-
lexic subjects (N = 38), measures of brain volumes have
too high variances (both in control and dyslexic readers),
leading to accept the hypothesis of an absence of differ-
ence between groups (H0). Similarly, the possible hetero-
geneity of dyslexic subjects led to reject the hypothesis of
a difference between groups (H1). In the present study, we
further investigated this hypothesis of sample homogene-
ity by re-analysing the data from the same subjects tested
in Pernet et al. [28]. We looked for brain areas where dys-
lexic subjects, as a group, were maximally different from
controls. This was performed by classifying, on a single
subject basis (as opposed to group comparison), each
voxel of dyslexics' brains as within or outside the grey
matter confidence interval observed in control subjects.
Based on this brain classification, dyslexic subgroups were
identified and we investigated if those subgroups showed
behavioural differences. Our method contrasts with
purely linear techniques (e.g. t-test) as it does not assume
homogeneity of the patient population (the distribution
can be e.g. bi-modal). This also contrasts with behavioural
studies as subgroups are not defined by their task per-
formances but rather defined by their brain distributions,
i.e. their 'intermediate' or endophenotype [30].

Based on our previous results [28], we hypothesized that
dyslexic subjects would differ maximally from controls
over the left superior temporal gyrus (STG), the left and
right fusiform gyri, and the left and right cerebellar declive
(lobe VI). In addition, we expected only one group of dys-
lexic subjects over the left STG (as there was a tendency for
group differences in [28]) but possibly several subgroups
of dyslexics over the fusiform gyri and the cerebellum;
leading to observe several brain phenotypes [30]. The new
analyzes reported here revealed that dyslexics are best dis-

criminated from controls (100% of dyslexics outside the
confidence intervals) on the basis of cerebellar and lenti-
form nucleus volumes only. Furthermore, subgroups with
higher or lower volumes in these areas differed behaviour-
ally one from another, therefore comforting our hypothe-
sis that dyslexia is an heterogeneous condition and, by
extension, that it cannot be explained by a single 'specific'
hypothesis.

Methods
Participants
Thirty-nine control subjects (four women; mean age
27.83 years, SD 5.75 years) and thirty-eight dyslexic sub-
jects (four women; mean age 27.25 years, SD 7.92 years)
participated in this study. All subjects were adult (i.e.
above 18 years old) native French speakers, had 12 years
or more of schooling corresponding for all of them to at
least an A level (French baccalaureate level, passed or not).
All subjects were free from any history of sensory deficits,
neurological or psychiatric illness, or medical treatment.
Seven subjects were left-handed and the remaining sub-
jects were right-handed (minimal score 65% on the Edin-
burgh inventory test, [31]). The Toulouse local ethic
committee approved the different study's protocols and
all subjects gave informed written consent.

The diagnosis of developmental dyslexia was established
using both inventory and testing procedures in accord-
ance with the guidelines of the ICD-10 Classification of
Mental and Behavioral Disorders. The clinical examina-
tion included a clinical interview, regular, irregular, and
"loan" (foreign words that are used in French and prima-
rily call upon addressing, lexical reading procedure), and
pseudo-word reading tasks, a rapid digit-strings reading
task, phonological and metaphonological tasks (syllabic
deletion, phoneme deletion, spoonerisms, phonologi-
cally incongruent word search, phonological-based rime
decision from visual stimuli), and spelling tasks of irregu-
lar words and pseudowords (see [32] for details). In addi-
tion, the IQ was controlled using either the full WAIS-IVR
battery or the vocabulary, similarity, blocks, and assembly
subtests from the WAIS-IVR. Performances (scores and
RTs) of each subject were classified according to normal-
ized scores. A participant was diagnosed as dyslexic and
included into the study if his/her performance was two
standard deviations below the average on at least 10 out
of 21 scales of the clinical tests (scores or RTs) whereas
his/her IQ was within the normal range.

Imaging parameters
High resolution T1-weighted 3D MRI images (MPRAGE)
were obtained for all subjects. Fifty-two subjects (25 dys-
lexic readers and 27 control readers) were scanned in a 1.5
tesla Magneton Vision Siemens scanner (FOV 300 mm,
matrix 256 × 256 × 256, voxel size 1.17 mm3). The other
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twenty-five subjects (13 dyslexic readers and 12 control
readers) were scanned on a 2 teslas Magneton Vision Sie-
mens scanner (FOV 256 mm, matrix 256 × 256 × 108,
voxel size 1 × 1 × 1.5 mm for 8 subjects and matrix 162 ×
256 × 256, voxel size 1 mm3 for the other 17 subjects).

Brain classification
Figure 1 summarizes the different processing steps of the
method. First, all images were pre-processed in order to
extract grey matter volume information for each voxel of
the brain and spatially standardize each brain to a com-
mon space (step 1). Second, control subjects' brains were
used to build 95% confidence intervals (CI) using a boot-
strap procedure (step 2). Third, each voxel of each dyslexic
subjects' brain was classified as being within or outside
the 95% CI. Averaging across subjects resulted in a per-

centage map of difference (PMD) in which each voxel
value reflected the percentage of dyslexic subjects falling
outside the CIs, i.e. different from control subjects (step
3). Finally, the probability to find by chance the observed
results was assessed by sampling subjects with replace-
ment and assigning them randomly to the control and the
dyslexic groups, and repeating steps two and three one
hundred times (step 4). The average values obtained after
repeating steps 2 and 3 therefore reflected the expected
PMD under H0. Multiple comparison correction was per-
formed using a maximum cluster size statistics under H0.

Pre-processing (step 1)
MRI data were processed in order to obtain local (voxel)
grey matter volume (LGMV) information. Images were
segmented into grey- and white-matter and 'other tissues',

Illustration of the processing steps from raw data to the final brain map resultFigure 1
Illustration of the processing steps from raw data to the final brain map result. After pre-processing (bias correc-
tion, segmentation, normalization, modulation and smoothing), confidence intervals (CI) were obtained for each voxel of the 
brain. This allowed to construct a 'typical brain', i.e. a 5D matrix with 3 spatial dimensions, 1 dimension for the low and high 
bounds of the CI and the last dimension for number of CI). In this study, 5 CI were built after 3000, 3500, 4000, 4500 and 5000 
bootstrap resamples. The 'typical brain' was therefore of dimensions 91*109*91*2*5 (91 voxels in x, 109 in y, 91 in z, 2 for 
upper/lower bound/5 for the 5 CI). Each voxel of each dyslexic subject was then classified as within or outside the 5 CIs. 
Results were then averaged, resulting in a percentage map of difference (PMD). A random attribution of scans to the control 
and dyslexic groups was used to compute the probability to find the observed values under H0, the null hypothesis according 
to which dyslexics and controls were sampled by chance from the same population.
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and simultaneously bias corrected and warped into a
standard space (MNI) using the SPM5 (R186) toolbox
running on Matlab® 7 (R14) software. The 'unified-seg-
mentation' approach implemented in SPM5 [33] uses an
iterative algorithm so that the optimal solution is
obtained for each component. The bias correction (i.e. of
spatial MR inhomogeneity) is applied such as it allows an
optimal segmentation and this segmentation is optimal
regarding the warping/normalization step. Both segmen-
tation and normalization rely on the use of spatial priors
(maps) indicating the probability of grey matter, white
matter and other tissues. The resulting outputs were grey
matter images in which the value in each voxel is the prob-
ability that a particular voxel belongs to that class. Images
were then thresholded such as only probabilities superior
to 0.2 were kept. As part of the process, the probability val-
ues associated with the segmentation were modulated by
the local stretching and compression induced by the
warps (post multiplication by the Jacobian determinant
of the deformation field) such that the total content of any
tissue class was the same in the warped images as it would
have been in their original space, therefore reflecting the
local volume [34]. Parameters used to perform the analy-
ses were "light regularization" and 60 mm full-width at
half maximum (FWHM) cutoff for bias correction, two
Gaussian functions per tissue class for segmentation, 25
mm warp-field cutoff for normalization. Data were resam-
pled at 2 mm3 using a trilinear interpolation and
smoothed with a 8 mm FWHM isotropic Gaussian kernel
to make data more normally distributed [35].

Building confidence intervals (step 2)
Non-normality of data is a major pitfall in confidence
interval construction. To circumvent this problem, a boot-
strap procedure was used. Values within each voxels and
across subjects were comparable (all between 0.2 and 1)
as they reflected the local volumes (see step 1). Confi-
dence intervals were built by sampling subjects with
replacement and computing means across subjects. The
sampling was repeated 4,999 times (total of 5000 sam-
ples). Each time, the same subjects' sample was used for
each voxel, following that subjects, but not voxels, are
independent variables. The resampling procedure led to a
distribution of bootstrapped estimates of the mean, aver-
aged across subjects. The 95% percent confidence inter-
vals were computed based on theses histograms (alpha =
0.05). This bootstrap technique relies on an estimation of
H1, and tends to have more power than other robust
methods like permutation tests and related bootstrap
methods that evaluate the null hypothesis H0 [36]. To
illustrate the advantage and robustness of the bootstrap
approach over the one-sample t-test CIs, these two types
of CIs are presented in the result section. Additional anal-
yses (CI computation and classification) were also carried
out on data smoothed with a 4 mm and a 12 mm FWHM

isotropic Gaussian kernel in order to evaluate the robust-
ness of the method (Fig. 2).

Classification (step 3)
For each dyslexic subject and for each voxel of the brain, a
binary decision was made: outside (below or above), or
within the CI. This procedure was repeated for 5 different
CIs, computed from 3000, 3500, 4000, 4500 and 5000
resamples of control subjects. The average over the 5 clas-
sifications was computed and a percentage map of differ-
ence (PMD) created. The PMD thus reflects the percentage
of dyslexics' subjects different from the theoretical normal
population. Only voxels where all patients were outside
the 5 CIs, i.e. showing 100% of difference, were consid-
ered here (i.e. with a priori type I error of p ~ 5 × 5% =
1%). This allowed a better control of false positive since
the average classification did not depend on a particular
resample. The choice of the maximum number of resam-
ples (5000) was arbitrary. It was nevertheless sufficient
since the CI size was stable after 3000 resamples (Fig. 2).

Test of significance (step 4)
To estimate the probability to find by chance results sim-
ilar to those observed, the analysis described above was
performed 100 times under the null hypothesis of no dif-
ference between groups. Each time, two groups were
selected randomly, with replacement, from a data set con-
taining controls and patients mixed together. One group
was used as a control group to create the bootstrapped CIs
(5000 resamples), whereas the other group was used as a
patient group on which the classification was performed.
The maximum likelihood estimates (mean and standard
deviation) of the distributions of percentages of difference
at each voxel over the 100 classifications were obtained,
allowing the computation of p-values for the observed dif-
ferences at each voxel. To correct for multiple compari-
sons, we considered cluster sizes [37]. Since we were
interested in voxels showing 100% of difference, the max-
imum cluster size of voxels with 100% difference was
obtained, over the whole brain, for each of the 100 rand-
omizations. This gave a distribution under H0 of the clus-
ter sizes for voxels with 100% difference, located
anywhere in the brain, thus correcting for multiple testing.
Confidence intervals were then build using a bootstrap
procedure (5000 resamples with replacement) to com-
pute the probabilities associated with cluster sizes.

Specificity and sensitivity
In addition to the estimation of the probability to find by
chance results similar to those observed, we also tested the
sensitivity and internal specificity of the classification
results using a K-fold cross-validation. First, we computed
CIs for all voxels of the whole brain from two third of the
control data (step 2). Second, we classified patients and
the remaining members of the control group based on the
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Comparison of the bootstrapped CI for data smoothed with a 4, 8 or 12 mm FWHM isotropic Gaussian kernelFigure 2
Comparison of the bootstrapped CI for data smoothed with a 4, 8 or 12 mm FWHM isotropic Gaussian kernel. 
From A to D, histograms of the grey matter values across subjects (blue histograms) are plotted for the maximum of the aver-
age image, the standard deviation image, the kurtosis image and the skewness image obtained with the 8 mm FWHM smooth-
ing kernel. The confidence interval (CIs) evolution graphics show the size of the CIs after each bootstrap. As illustrated, CI 
sizes differed depending on the smoothing kernel size. However, in all cases, CI sizes converged (i.e. were stable) after 3000 
resamples (vertical black line). Similarly, the final histograms of the means obtained after 5000 resamples (red histograms titled 
'Means distributions'), show that the estimated data ranges differed with the smoothing kernel size but that, in all cases, it was 
sufficient to obtain more closely normally distributed data.
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CIs computed from two third of the control data (step 3).
We performed those analysis three times, by knocking out
one third of the control subjects each time. Last, we com-
pared the mean 3-fold classifications results to the initial
one. This analysis tested the robustness of the patient clas-
sification results relative to the control sample used, and
evaluated the specificity of the results, relative to normal
subjects.

Correlations with behaviour
Based on the brain classification results, we isolated 4 sub-
groups of dyslexic subjects depending on whether they
had lower or higher grey matter volumes than controls in
the right cerebellar declive and the right lentiform nucleus
(see results). Three sets of analyses were then carried out
to investigate the relationship between brain classifica-
tions and behavioural performances.

In the first set of analyses, non-linear correlations were
computed to investigate the brain/behavioural mapping.
Using the Kendall's Tau correlation (concordance of
ranks), we investigated if brain classifications mapped
directly onto behavioural deficits and classifications. Dys-
lexics' brain data were classified according to their posi-
tion above (1) or below (-1) the CIs in the cerebellum and
the lentiform nucleus (2*2 groups). Behavioural perform-
ances were classified in a similar fashion relative to each
normative test (1 or -1 = 2 groups for each behavioural
test). Correlations between brain and behavioural classifi-
cations were then computed for each behavioural test sep-
arately. Each dyslexic subject was also classified based on
his or her behavioural scores in pseudo-word and irregu-
lar word reading, in comparison with the control group.
Phonological dyslexia is a condition in which subjects
show difficulties in reading pseudo-words (i.e. using
grapheme to phoneme conversion rules), whereas surface
dyslexia is a condition in which subjects show difficulties
in reading irregular words (i.e. using their lexicon). To
identify surface vs. phonological dyslexics, CIs were com-
puted for the regression between pseudo-word and irreg-
ular word reading performances from the control subjects.
Patients below the 90% CI for the regression pseudo-
words against irregular words and within the interval for
the regression irregular words against pseudo-words were
classified as phonological dyslexics. Surface dyslexics were
defined conversely and the remaining subjects were classi-
fied as mixed [14]. This resulted in 3 behavioural groups
(phonological, surface or mix), and we tested how this
behavioural classification correlated with the brain classi-
fication.

In a second set of analyses, a linear trend analysis was per-
formed across groups and for each test separately (cor-
rected p-values < .0033). Based on the mean
performances in each group, linear regressions were per-
formed between subject performances and the groups

coded as a continuous regressor (1, 2, 3, 4, 5). The statis-
tical significance was assessed via bootstrap with 600 resa-
mples [36]. Specifically, subjects in each group were
drawn randomly with replacement and linear regressions
were computed each time. This allowed constructing
empirical confidence intervals of the regression coeffi-
cients. If a 99.67% CI did not encompass 0, i.e. if a regres-
sion coefficient was not null with a corrected probability
of .0033, the linear effect was significant. In order to assess
if group assignment linearly explained all of the data,
non-linear effects were also computed and tested for each
resample (i.e. we compared the sum square of differences
between the data and the regression model [38]).

Finally, differences between subgroups were assessed with
one-way MANOVAs. Variance analyses were computed
separately for the phonological, lexicon, and reading tests
(3 MANOVAs on scores and 3 MANOVAs on RT, corrected
p-values < .008). MANOVAs were computed using Roy's
test because, for all analyzes, dependant variables were
collinear (i.e. only one high eigenvalue was obtained for
the sum of squares and cross product matrix [39]).
Although scores and RTs tend to be correlated, analyzes
were carried out separately as those two measures tend to
be affected differently according to the type of dyslexia
and the nature of the language material used (transparent
or not [24]). For all analyzes, group assignment was
entered as an independent factor (1 control group and 3
dyslexic groups: Lower Cerebellar Declive/Lower Lenti-
form Nucleus, Lower Cerebellar Declive/Higher Lenti-
form Nucleus, Higher Cerebellar Declive/Higher
Lentiform Nucleus). Subjects from the Higher Cerebellar
Declive/Lower Lentiform Nucleus were not taken into
account because of the small sample size (N = 3). Differ-
ences between groups were assessed using post-hoc Fisher
LSD tests (p < .05).

Results
Classification
Based on control subjects bootstrap 95% CIs, areas that
best discriminated dyslexic subjects were the right cerebel-
lar declive (6 voxels: MNI 26 -64 -28; Fig. 3A) and the
right lentiform nucleus (7 voxels: MNI 17 9 -7; Fig. 3B)
with 100% of differences between control and dyslexic
subjects. The bootstrap performed under H0, the null
hypothesis assuming that the two groups of subjects were
sampled by chance from the same population, revealed
significant effects with a probability at the voxel level to
find 100% of difference of p uncorrected = 0.01 for both
the cerebellum and lentiform nucleus. In addition, when
considering the cluster size, these two clusters had proba-
bility close to 100% (p corrected ~ 0; mean of the biggest
cluster under H0 for the whole brain = 0.531 +/- 0.07).
Additional analyses performed with different smoothing
kernel sizes also showed clusters with 100% of differences
over the right cerebellar declive (Fig. 4). In the lentiform
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Illustration of the results of the classification performed on the dyslexic subjectsFigure 3
Illustration of the results of the classification performed on the dyslexic subjects. In A and B, the right cerebellar 
and lentiform nucleus clusters observed for each classification are presented (classification performed on CI computed after 
3000, 3500, 4000, 4500 and 5000 resamples) as well as the final classification (the average of previous classifications). Each clus-
ter was homogenous as illustrated in C: Among the 21 voxels showing 100% of differences between groups, two clusters can 
be observed with a correlation of ~1, i.e. voxels in each cluster have identical classification values (Spearman rank correlation), 
and identical (or nearly identical) grey matter volume values (Pearson correlations). As illustrated in D, all dyslexic subjects 
(red dots) were located outside the bootstrapped 95% CI (blue lines) of local grey matter volumes (LGMV). Those values are 
the observed value in each voxel and derived from preprocessing (step 1). Simulations (5000 resamples) of the dyslexics' distri-
butions (red histograms) compared to the control distributions (blue histograms) show a clearer separation over the right cer-
ebellum compared to the lentiform nucleus.
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nucleus, only 1 voxel was observed with 100% of differ-
ence for both the 4 mm and 12 mm FWHM smoothing
kernel. In this case, because no cluster appeared for
smaller nor for bigger smoothing kernel size, it seems
likely that the difference observed with the 8 mm FWHM
relates to the spatial extent of the effect (match filter theo-
rem).

For the left superior temporal gyrus (MNI -61 -20 6) and
the fusiform gyri (MNI -44/42 -65 -18), no clusters of vox-
els with identical classifications were observed, suggesting
that those areas, although previously hypothesized as
biomarkers for dyslexia, cannot discriminate controls
from dyslexics. The classification values around the left
superior temporal gyrus were about 84% (uncorrected p =
.06 voxel level) and about 87% and 82% for the left/right
fusiform gyri (uncorrected p = .05, voxel level).

Classification vs. t-test
At variance with a two-sample t-test where most patients'
data have to be located below or above the CIs (sample
homogeneity) to observe differences, our method made it
possible to identify areas in which patients differ from
controls even if patients' data were distributed below and
above the CIs (sample inhomogeneity – see Fig. 2A and
2B). Concretely, using a two-sample t-test, we could not
observe a significant difference between controls and
patients in the cerebellum (t(75) = -.48 p = .6), or in the
lentiform nucleus (t(75) = -0.9 p = .37). Similarly, because
the classification was performed on bootstrapped CIs that
have a better control on type I error and narrower intervals
than one sample t-test CIs (Fig. 5), the classification per-
formed using the 95% one sample t-test CI failed to show
any areas with 100% of differences. Using the classical
approach, the classification performed on cerebellar and
the lentiform nucleus voxels only reached a maximum of
94% difference.

Specificity
Using a 3-fold cross validation, 1/3 of control subjects
were classified based on 3 three different sets (folds) of
CIs (computed using the other 2/3 of control subjects),
leading to 3 PMD. We averaged the PMDs to test the inter-
nal specificity of the method, i.e. test if differences can be
observed even if subjects are 'normal'. The average 3-fold
classification showed a maximum of 95% difference (1
voxel) and the first cluster (7 voxels) appeared at 92% of
difference. For the regions of interest (cerebellar declive,
lentiform nucleus), clusters were observed at 85% of dif-
ference.

Sensitivity
Using the same 3-fold cross validation, dyslexic subjects
were also classified against the three different folds of CIs.
The averaged PMD allowed testing the sensitivity of the
method at detecting differences between groups. Over the

whole brain, the average PMD revealed a maximum of
99% difference between controls and dyslexics (1 voxel).
The first cluster appeared at 96% of difference in the right
cerebellar culmen (MNI 8 -46 -21). Differences between
groups over the right cerebellar declive (which here
extended toward the right cerebellar culmen) and the
right lentiform nucleus were observed at 94% of differ-
ence for both areas.

Behavioural relevance of the brain differences
Based on the results above, each dyslexic subject was clas-
sified as belonging to one of four groups: (1) lower cere-
bellar declive and lower lentiform nucleus grey matter
volumes than controls (LCD/LLN, N = 11, 3 females,
mean age 26.8 ± 8.6); (2) lower cerebellar declive and
higher lentiform nucleus grey matter volumes than con-
trols (LCD/HLN, N = 7, 1 female, mean age 30.8 ± 10.5);
(3) higher cerebellar declive and higher lentiform nucleus
grey matter volumes than controls (HCD/HLN, N = 17,
mean age 26.17 ± 5.87); (4) higher cerebellar declive and
lower lentiform nucleus grey matter volumes than con-
trols (HCD/LLN, N = 3, mean age 27.3 ± 11). This classi-
fication was valid regardless of the voxels considered, i.e.
the same classification was observed for all cerebellar
declive and lentiform nucleus voxels (inter-voxel correla-
tion of 1 within a cluster – Fig. 3C).

Correlations between brain classes and behavioural classes
Kendall's rank correlation computed between each brain
classification (either the cerebellum or the lentiform
nucleus) and the behavioural classifications revealed only
one significant effect between the classification obtained
over the right cerebellum and RTs in phoneme deletion (r
= -.47 p = .0039), such that dyslexic subjects with higher
volumes than control subjects tended to perform well (17
subjects out of 20), whereas dyslexic subjects with lower
volumes than control subjects tended to be more
impaired (11 subjects out of 18). To further investigate
this dissociation, dyslexic subjects were classified as pho-
nological, surface or mixed (see method). Behaviourally,
we obtained 15 phonological dyslexics, 2 surface dyslexics
and the remaining 21 were classified as mixed, but this
behavioural classification did not correspond to any of
the brain classifications (correlations between brain clas-
sification and behavioural subtype were r = -0.16 for the
cerebellum, and r = 0.15 for the lentiform nucleus).

Linear trends across groups
The same group ordering showed significant regression
results with all the scores in phonological (syllabic dele-
tion, phonemic deletion, sound categorization, spooner-
ism) and lexicon (irregular word reading and spelling)
tasks. Scores across groups followed the linear ranking
LCD/LLN (=1), LCD/HLN (=2), HCD/HLN (=3), HCD/
LLN (=4), Controls (=5) (corrected p-values < .0033; Fig.
6). For reaction times, phonological tasks also showed sig-
Page 9 of 19
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Comparison of the dyslexic subjects' brain classifications for data smoothed with a 4, 8 or 12 mm FWHM isotropic Gaussian kernel (from left to right)Figure 4
Comparison of the dyslexic subjects' brain classifications for data smoothed with a 4, 8 or 12 mm FWHM iso-
tropic Gaussian kernel (from left to right). For the three sizes, significant clusters of differences were obtained in the 
right cerebellar declive (corrected p values ~0; cluster size under H0 for voxels with 100% of difference = 0.36 +/- .05 at 4 mm 
smoothing, 0.531 +/- 0.07 at 8 mm smoothing, 1.33 +/- .09 at 12 mm smoothing). By contrast, only one cluster was observed in 
the right lentiform nucleus with a 8 mm smoothing kernel vs. 1 voxel only with a 4 mm or 12 mm smoothing kernel. As illus-
trated, the coordinates of the centres of mass (or single voxel) differed with the smoothing kernel. However, by lowering the 
threshold of the PMD from 100% to 95%, there is a clear overlap between the three PMD (right hand side), confirming the 
robustness of the results.
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Illustration of the advantage and robustness of the bootstrap procedure over the one-sample t-test confidence intervalFigure 5
Illustration of the advantage and robustness of the bootstrap procedure over the one-sample t-test confidence 
interval. From A to D, histograms of the grey matter values across subjects are plotted for the maximum of the average 
image, the standard deviation image, the kurtosis image and the skewness image. As illustrated (data distribution in blue), data 
did not conform well (bias) to the normal distribution. This resulted in an over-estimation of the CI size using a one sample t-
test (red dotted lines on the CI evolution graphics). By contrast, bootstrapped CI sizes were narrower (blue lines on the CI 
evolution graphics). This is illustrated over the whole brain on brain renders E and F. Overall, bootstrapped and t-test CI were 
similarly distributed (E) but bootstrapped CI were in general narrower (warm colours in F). The average one-sample t-test CI 
size was 0.0486 ± 0.0096 (min 0.0198, max 0.096, median 0.0474) vs. 0.0461 ± 0.0091 (min 0.0188, max 0.0895, median 0.045) 
for the 5000 resamples bootstrap CIs. This difference was statistically significant (t(251572) = 65.25 p < .00001), illustrating the 
advantage of the bootstrap approach, even if the majority of brain voxels have a close to Normal distributions (G – Lilliefors 
test > .05 – arrows and circles indicates the few 'non-normal' voxels). Graphics titled 'CI size' illustrate the evolution of the 
bootstrapped CI size with the number of resamples. The vertical dotted line mark the 3000th resample, from which CI size 
tend to be stable. On the right hand side, graphics titled 'Means' show the distribution of the data means after 5000 resample 
(to compare with the original 'data distribution') from which the last bootstrapped CIs were obtained.
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nificant linear trends (p < .0033). Reading performances
showed more complicated results. Scores in word reading
and pseudoword reading had distinct patterns. In both
tasks the LCD/HLN group had the lowest performance,
and the HCD/LLN group was the best dyslexic group.
However, the LCD/LLN and HCD/HLN groups had
reversed ranking between tasks with the LCD/LLN worse
than HCD/HLN in pseudoword reading (see Table 1).
These differences in ranking led to observe a significant
linear trend for pseudowords, but not for word reading
scores. Finally, for RTs, all tasks (word, pseudoword and
digit reading) showed significant linear trends but with
different orderings. Analyses (Fig. 6 and 7) revealed that
linear adjustments across groups explained most of the
phonological and lexicon scores (no significant non-lin-
ear effects), whereas non-linearities were observed in all
RTs and in reading scores.

Brain classification and phonological processing
MANOVAs/ANOVAs were computed to investigate differ-
ences between dyslexic sub-groups in comparison to con-
trol subjects. For this last set an analysis, the HCD/LLN
group was not taken into account due to the small
number of subjects (N = 3). Overall, analyses show that
the subdivision of dyslexic subjects into subgroups based
on their brain volumes was relevant with dyslexic subjects
with lower cerebellar declive volumes showing signifi-

cantly stronger phonological and lexicon access deficits
than dyslexic subjects with higher cerebellar declive vol-
umes.

In terms of accuracy, the four auditory/phonological tests
showed a significant difference between groups (q = .83
F(4,69) = 4.45 p = 1.2 10-8) with all 3 dyslexic subgroups
having lower scores than control subjects for the syllabic
deletion (F(3,70) = 3.68 p = .01), phonemic deletion
(F(3,70) = 12.06 p = .000002) and spoonerism (F(3,70) =
11.7 p 1.2 10-7) tasks. Interestingly, for the sound catego-
rization task, only dyslexic subjects with lower cerebellar
volumes differed from controls (F(3,70) = 4.04 p = .006)
with no significant difference between the HCD/HLN
group and controls (p = .09), Similarly, the HCD/HLN
group performed significantly better the LCD/LLN group
in phonological deletion (p = .001) and the LCD/HLN in
spoonerism (p = .02). In terms of processing speed, the 3
tests for which RTs were available (syllabic deletion, pho-
nemic deletion and sound categorization) also showed
significant differences between groups (q = .59 F(3,70) =
13.77 p = 3.7 10-7) with stronger differences in the syllabic
and phonemic deletion tasks (syllabic deletion: F(3,70) =
7.54 p = .0002; phonemic deletion: F(3,70) = 7.16 p =
.0003 vs. sound categorization: F(3,70) = 0.6 p = .6).
Again, the HCD/HLN group did not differ from controls
in phonological deletion (p = .9) and performed faster

Table 1: Mean behavioural results split by brain sub-groups

Controls LCD/LLN LCD/HLN HCD/LLN HCD/HLN

Syllabic deletion
Scores 27.1 ± 5.7 17.1 ± 3.8 17.4 ± 1.6 18.6 ± 1.1 17.9 ± 3.1
RTs 90.7 ± 14.8 162.7 ± 102 127.4 ± 29.7 104.6 ± 25.3 120 ± 44.3
Sound categorization
Scores 16.3 1.9 13.7 ± 2.3 13.8 ± 4.8 13.6 ± 2 15.1 ± 2.6
RTs 235.6 ± 73.6 265 ± 79.5 248.5 ± 61.7 302 ± 100 256.5 ± 76
Phoneme deletion
Scores 38.2 ± 2.9 29.5 ± 8.3 32.4 ± 5.5 38.3 ± 1.5 35.5 ± 3.6
RTs 136.5 ± 49.5 188.36 ± 78 232.7 ± 106 162.6 ± 45.7 135.5 ± 34
Spoonerism
Scores 11.5 ± 0.7 8.5 ± 2.9 8 ± 2.7 11.3 ± 0.5 9.8 ± 1.9
Irregular word spelling
Scores 13.1 ± 1.3 7.2 ± 3.3 8.5 ± 3.7 10 ± 2.6 9.2 ± 2.1
Loan word reading
Scores 29.3 ± 0.8 24.4 ± 5.5 24.8 ± 4 28.6 ± 1.2 26.6 ± 2.8
Word reading
Scores 35.7 ± 8.1 33 ± 8.8 31 ± 11 39.6 ± 0.5 31.8 ± 10
RTs 512 ± 58.7 756.2 ± 159 753.2 ± 52 689 ± 158.9 726 ± 236
Pseudoword reading
Scores 34.7 ± 8.2 27.8 ± 9.7 24.2 ± 9.7 37.3 ± 2 28 ± 10.5
RTs 620 ± 113.6 1033 ± 313.9 982.9 ± 172 996 ± 254.8 1056 ± 412
Digit reading
RTs 14.9 ± 2.1 19.85 ± 3.56 22.9 ± 2.4 17.5 ± 1.8 19.63 ± 2.8

Table 1: For each behavioural test, the mean and standard deviation is reported for control subjects (controls) and each of the dyslexic brain 
subgroups (controls, lower cerebellar declive and lower lentiform nucleus grey matter volumes than controls (LCD/LLN), lower cerebellar declive 
and higher lentiform nucleus grey matter volumes than controls (LCD/HLN), higher cerebellar declive and lower lentiform nucleus grey matter 
volumes than controls (HCD/LLN), higher cerebellar declive and higher lentiform nucleus grey matter volumes than controls (HCD/HLN)).
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Illustration of subjects raw performances in the boxplots titled 'Data' (the red lines indicate the median, the blue boxes extend from the upper to the lower quartile values, the whiskers show the most extreme points within 1.5 times the inter-quartile range and the red plus signs indicate outliers) and bootstrapped performances with linear adjustments (graphic lines titled 'Means and linear fits'; vertical lines show the standard deviation of the bootstrapped means and the red lines the linear fits)Figure 6
Illustration of subjects raw performances in the boxplots titled 'Data' (the red lines indicate the median, the 
blue boxes extend from the upper to the lower quartile values, the whiskers show the most extreme points 
within 1.5 times the inter-quartile range and the red plus signs indicate outliers) and bootstrapped perform-
ances with linear adjustments (graphic lines titled 'Means and linear fits'; vertical lines show the standard devi-
ation of the bootstrapped means and the red lines the linear fits). Distribution plots titled 'Non linear F values' show 
the distributions of F values measuring the distances between the bootstrapped data and the bootstrapped regression lines. 
Non central distribution suggests non linear effects; significant effects are marked with a star. For 'Data' and 'Means and linear 
fits' graphics, groups are ordered by increasing/decreasing mean values: (1) LCD/LLN, (2) LCD/HLN, (3) HCD/HLN, (4) HCD/
LLN, (5) Controls. By contrast, the last (right end side) graphics show the bootstrapped data (blue circles) with smoothed 
interpolated data (in green – piecewise cubic hermite interpolating polynomial). Best scores (controls) reflected an optimal in 
the volume distribution: low cerebellar volumes on the left (groups 1 and 2) and high cerebellar volumes on the right (3 and 4).
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Illustration of subjects raw performances in the boxplots titled 'Data' (the red lines indicate the median, the blue boxes extend from the upper to the lower quartile values, the whiskers show the most extreme points within 1.5 times the inter-quartile range and the red plus signs indicate outliers) and bootstrapped performances with linear adjustments (graphic lines titled 'Means and linear fits'; vertical lines show the standard deviation of the bootstrapped means and the red lines the linear fits)Figure 7
Illustration of subjects raw performances in the boxplots titled 'Data' (the red lines indicate the median, the 
blue boxes extend from the upper to the lower quartile values, the whiskers show the most extreme points 
within 1.5 times the inter-quartile range and the red plus signs indicate outliers) and bootstrapped perform-
ances with linear adjustments (graphic lines titled 'Means and linear fits'; vertical lines show the standard devi-
ation of the bootstrapped means and the red lines the linear fits). Distribution plots titled 'Non linear F values' show 
the distributions of F values measuring the distances between the bootstrapped data and the bootstrapped regression lines. 
Non central distributions suggest non linear effects; significant effects are marked with a star. For all graphics, numbers below 
the graphics stand for the different groups: (1) LCD/LLN, (2) LCD/HLN, (3) HCD/HLN, (4) HCD/LLN, (5) Controls. Note 
that although linear adjustments can be observed based on the ranking of the means, the different behavioural tests have differ-
ent ranking (in contrast to the behavioural tests illustrated on the figure 6). The last (right end side) graphics show the boot-
strapped data (blue circles) with smoothed interpolated data (in green – piecewise cubic hermite interpolating polynomial).
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than the LCD/LLN (p = .02) and LCD/HLN (p = .004)
subgroups. Similarly for the syllabic deletion task, the
HCD/HLN group was faster than the LCD/LLV subgroup
(p = .02).

Brain classification and lexicon
Lexicon access/integrity was assessed by testing accuracy
in irregular word spelling and irregular (loan) word read-
ing. Both tasks showed a significant difference between
groups (q = 1.27 F(3,70) = 29.7 p = 1.6 10-12) with all dys-
lexic subgroups less accurate than controls (irregular word
spelling F(3,70) = 29.3 p = 2.1 10-12; irregular word read-
ing F(3,70) = 12.2 p = .000002). In addition, for both
tasks, the HCD/HLN group performed better than the two
subgroups with lower cerebellar volumes (pmax = .04).

Brain classification and reading performances
The behavioural relevance of the brain classifications in
terms of reading was assed by analysing data from the
words, pseudowords, and digit reading tasks, but no
major differences between dyslexic subgroups were
observed. Accuracy in word and pseudoword reading
showed significant differences between groups (q = .36
F(3,70) = 8.56 p = .00006) with a main effect (i.e. controls
> all dyslexic subgroups) observed in the pseudoword
reading task only (word reading: F(3,70) = 1.1 p = .3;
pseudoword reading F(3,70) = 4.4 p = .006). In terms of
reading speed, a similar pattern of results was observed
with control subjects always faster than dyslexic subjects
(q = 1.88 F(3,70) = 43.9 p = 4.4 10-16; word reading:
F(3,70) = 16.5 p = 3.1 10-8; pseudowords reading: F(3,70)
= 17.1 p = 1.8 10-8; digit reading: F(3,70) = 30.7 p = 8.4
10-13). The only difference between dyslexic subgroups
concerned the LCD/HLN group which was faster than the
LCD/LLN (p = .01) and the HCD/HLN (p = .004) sub-
groups in the digit reading task.

Discussion
As it is the case in clinical practice, a normative reference
was used in this study to enquire anatomical differences in
dyslexic subjects; technically, control subjects' brains were
used to compute a probabilistic norm, i.e. confidence
intervals and each dyslexic's brain classified accordingly.
The percentage of patients that differed from the norm at
each voxel of the brain was then computed. Although rel-
atively straightforward, this method allowed us to identify
two areas where 100% of dyslexic subjects were out of the
normal range: the right cerebellar declive and the right
lentiform nucleus. If those areas happen to be reliable
candidates to identify dyslexia (see discussion on specifi-
city below), brain measurements could be used as a com-
plementary tool to behavioural assessment for diagnostic
[40]. In these two areas, we also observed that patients'
data were distributed below and above the 95% CIs,
which prevented to identify abnormalities in these areas

using a linear approach [28]. This method may prove par-
ticularly relevant for patient populations with develop-
mental or psychiatric disorders where it is often difficult
to bring out a clear diagnosis based on behavioural tests
only. In fact, it is even possible to have patients with sim-
ilar behavioural disorders, but with physiologically or
genetically different origins (e.g. [41]). Thus, being able to
distinguish brain subgroups, i.e. intermediate or endo-
phenotypes [30], could be a valuable tool for therapeu-
tics, an idea in agreement with our discovery that brain
subgroups show significant behavioural differences.

Evaluation of the method
The use of confidence intervals to estimate group differ-
ences is at the heart of statistics [36]. Possibly because rel-
atively new and computationally intensive, few
neuroimaging studies have used resampling statistic
approaches and CIs. The most popular use of bootstrap-
ping has been in diffusion tensor imaging and tractogra-
phy. On 52 hits for a search on Pubmed using 'MRI' AND
'Bootstrap' as keywords (search performed the 10th Nov.
2008), 12 studies (~23%) were on DTI. In most of the
studies, repetition and wild bootstrap methods have been
used to quantify the uncertainty of diffusion tensors and
their derived parameters (for a review see [42]). Other
studies investigating morphological differences between
groups have used different bootstrap methods on MRI/
brain parameters derived for different regions of interest
(e.g. [43]) to estimate the adequate level of probability (p-
value). Here, we made full use of the resampling methods
to i) estimate the normal range of grey matter volumes in
each voxel of the brain and ii) provide a probabilistic clas-
sification of dyslexic subjects in different brain clusters.

Overall, the detection of areas showing 100% of differ-
ence was robust to variations in random sampling, as
demonstrated by the reliability of the results with 5 differ-
ent confidence intervals. In addition, differences obtained
using the bootstrap were more sensitive than those
detected with a one sample t-test CI (maximum of 94% of
difference using one-sample t-tests CIs), a result expected
because bootstrapped CIs are less sensitive to outliers and
robust to deviation from normality [36] (see Fig. 5). One
could argue that results were very localized with only 2
small clusters (k = 6 and 7). However, although small,
those clusters had a probability to be true close to 100%.
In other words, after controlling for multiple compari-
sons, the probability to find by chance clusters of that size
with a 100% probability of being associated with a signif-
icant group difference is almost null. In addition, in each
of the 5 classifications, the average cluster size was bigger
(~40 voxels for the cerebellum and ~20 voxels for the len-
tiform nucleus; Fig. 3), but the method only keeps voxels
with 100% in all 5 classifications (intersection of the 5
classifications). In fact, these two areas show strong differ-
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ences in a larger extend when lowering the threshold (see
e.g. Fig. 4), but we focused here on voxels with 100% of
difference, hence the small cluster size.

Regarding the ability to detect areas with 100% of differ-
ence, the 3-fold validation revealed that our results were
slightly dependent on the data at hand, since the mean 3-
fold classification failed to obtain 100% patients different
from controls (maximum at 98%). Further investigation
is needed to determine why the mean K-fold classification
failed. It is for instance possible that the control sample
was not large enough to represent accurately the popula-
tion when split in 2/3 (N = 26) and therefore the K-fold
CIs were biased. Another possibility is that the dyslexic
group was biased due to the selection of high-achieving
adult dyslexic subjects (see below for further discussion).
However, simulation of the distributions of each sub-
group relative to controls (Fig. 3D) suggests that the
effects would still be observed for the cerebellum with a
larger group of dyslexic subjects, but would be lower for
the lentiform nucleus. In all cases, because the mean K-
fold classification showed again the right cerebellum and
right lentiform nucleus as highly different areas and
because voxels showing differences clustered again in
those areas and not others, one can be confident about the
results. Formal testing of our findings would request to
test a new group of dyslexic subjects. However, results
from the cross-validation and the bootstrap simulation of
the expected populations already provide a good indicator
of the long-term reproducibility of the results reported
here.

The specificity of the method relative to dyslexia cannot
be assessed directly without testing against other patient
populations. Yet, the discovery of the right cerebellum as
a major area distinguishing dyslexic from control subjects
is not completely unexpected since cerebellar abnormali-
ties have been proposed to be at the origin of dyslexia
[9,10]. The implication of the right lentiform nucleus is,
by contrast, unexpected. The striatum is generally
involved in motor syndromes and dopamine related cog-
nitive disorders. Some studies have implicated the stria-
tum in language via the cortico-striato-thalamo-cortical
loops that play a critical role in sequence skill learning
and increasing automaticity over practice [44]. In addition
Nicolson and Fawcett [10] have put forward a neurofunc-
tional hypothesis involving both the cerebellum and the
striatum in the underpinnings of different learning disor-
ders including dyslexia. With regards to the internal spe-
cificity of these two areas, the mean K-fold classification
performed on control subjects revealed 85% of difference.
This suggests that the method, although relatively sensi-
tive, is not highly specific and further work is requested to
address this issue.

Implication for dyslexia
As suggested in the introduction, dyslexia is a condition
likely to reflect dissimilar neuro-cognitive disorders and
no theoretical account seems able to predict the range of
anatomical deficits observed in dyslexic readers [28].
Here, we show that the right cerebellar declive and the
right lentiform nucleus are the two areas that maximally
differ between control and dyslexic readers. Our conclu-
sion does not imply that there are no other areas involved
in dyslexia. In fact, we previously argued for the involv-
ment of other brain areas in dyslexia [28]. However, the
right lentiform nucleus, and, and in particular the right
cerebellar declive (lobe VI) are the two areas showing the
strongest effects. Results regarding the involvement of the
cerebellum in dyslexia are not new and different histolog-
ical [45], anatomical e.g. [46-51] and functional e.g. [52-
54] studies pointed out abnormalities in this region. Here,
we not only demonstrate abnormalities in this area, but
also that dyslexic subjects could be divided into different
brain phenotypes [30,55].

It is possible that our sample of dyslexic subjects was
biased as they all had at least 12 years of education. How-
ever, selecting high-achieving adult dyslexics would have
only potentially decreased the difference with control sub-
jects. Despite this potential confound, we still found
strong effects and distinct brain phenotypes. In addition,
our samples compare well with other studies (e.g.
[4,16,18-21,32,46,50,51,53]), which also worked with
data from high-achieving adult dyslexic subjects.The brain
variability observed among our dyslexic subjects tied up
with the range of behavioural deficits observed in dyslexia
(see introduction) and with genetic studies that have
revealed multiple loci for chromosomal abnormalities (in
particular on chromosomes 16 and 6, but also 2, 3 and 18
– [56-60]). Thus, the multifactorial and polygenic nature
of developmental dyslexia strongly suggests the existence
of various subtypes of patients, which could be reflected
in our study by the combination of lower or higher grey
matter volumes compared to controls. Furthermore, the
distinction of 4 brain phenotypes of dyslexic subjects
proved itself relevant because those groups differed from
controls and one from each other in terms of behavioural
performances. Noteworthy, none of the brain classifica-
tions, based on the cerebellum, lentiform nucleus or com-
bined areas, followed the surface/phonological
distinction. This result is however not surprising because
previous data driven approaches based on behaviour did
not either found groups that follow this distinction (see
introduction and [16-23]). Thus, the lack of concordance
between brain and behavioural classifications highlights
the need for a better delineation of behavioural deficits in
order to better distinguish subtypes of dyslexic readers.
Finally, the linearity observed in 8 out of the 14 tests (Fig.
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6 and 7) suggests that variations in Gaussian distributed
brain volumes can lead to symmetrical behavioural varia-
tions, in which normal readers have the best behavioural
performances associated with optimal (middle range) vol-
umes, and dyslexic patients fall on either side of the distri-
bution.

As mentioned earlier, the discovery of the right cerebellar
declive as an area that distinguishes dyslexic from control
readers could fit with the cerebellar deficit hypothesis
[9,10]. In fact, the co- occurrence of the right cerebellum
and the right lentiform nucleus suggests automatization
deficits as a common trait across dyslexic subjects. Doyon
and co-workers proposed a neural model for motor learn-
ing (see [61] for a review), in which the cerebellum is
involved in early sequence learning and the basal ganglia
in the automatization of motor sequences. Anatomical
abnormalities in both areas therefore suggest that dyslex-
ics present a default in motor sequence learning (cerebel-
lum abnormality), which in turn would lead to a lack of
automatization (lentiform abnormality). Although sub-
jects have not been specifically tested for motor deficits in
this study, none of them exhibited or reported motor
problems during the clinical examination. In addition,
because anatomical abnormalities (in particular in the
cerebellum) strongly correlated with linguistic deficits; it
seems plausible that cerebellar and lentiform abnormali-
ties lead to language, not motor problems. In fact, accord-
ing to Nicolson and colleagues [10], procedural learning
difficulties could either appear in the language system
(dyslexia), or the motor system (dyspraxia) or both. This
idea is in keeping with recent reviews of language litera-
ture which highlight the cerebellum as a major locus for
many linguistic tasks [62,63], and more generally in cog-
nitive processing [64,65]. In fact, the cerebellum cluster
we observed here (MNI 26 -64 -28) falls exactly within the
main cerebellar/language cluster identified in a recent
meta-analysis on the cerebellum [65]. Similarly, whilst
right declive volumes could be used to separate dyslexic
subjects into groups having strong phonological and lexi-
con differences, this same area has also been shown to be
involved in speech perception, and more precisely in the
perception of sequential inter-syllabic durations [66], i.e.
phonological perception. Thus, following the idea that
the cerebellum is involved in sequence learning and
automatization [10,51], but that the right cerebellar
declive supports language processing, we propose that cer-
ebellar and lentiform abnormalities in dyslexia reflect spe-
cific, linguistic and reading automatization impairments
[67].

Conclusion
Using the clinician's approach, we compared each dys-
lexic subject to a probabilistic norm. At variance with the
clinician's approach, this was performed, not for one or
several behavioural measures, but for each voxel of the

brain. This new method allowed us to construct a percent-
age map of difference that showed that 100% of dyslexic
subjects differed from controls in the right cerebellar
declive and the right lentiform nucleus. Further investiga-
tions showed that different brain phenotypes could be
distinguished based on the cerebral volumes in those two
regions. Furthermore, we demonstrated that these brain
phenotypes are characterized by significantly different
behavioural performances. Overall, our analyzes demon-
strate that dyslexia is an heterogeneous condition (differ-
ent brain phenotypes) with marked cerebral differences in
the right cerebellum and lentiform nucleus. They also sug-
gest a general, rather than specific, common deficit in lin-
guistic automatization for all dyslexic readers.
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