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Abstract

Background: Reuptake of synaptic norepinephrine (NE) via the antidepressant-sensitive NE
transporter (NET) supports efficient noradrenergic signaling and presynaptic NE homeostasis.
Limited, and somewhat contradictory, information currently describes the axonal transport and
localization of NET in neurons.

Results: We elucidate NET localization in brain and superior cervical ganglion (SCG) neurons,
aided by a new NET monoclonal antibody, subcellular immunoisolation techniques and quantitative
immunofluorescence approaches. We present evidence that axonal NET extensively colocalizes
with syntaxin |A, and to a limited degree with SCAMP2 and synaptophysin. Intracellular NET in
SCG axons and boutons also quantitatively segregates from the vesicular monoamine transporter
2 (VMAT2), findings corroborated by organelle isolation studies. At the surface of SCG boutons,
NET resides in both lipid raft and non-lipid raft subdomains and colocalizes with syntaxin | A.

Conclusion: Our findings support the hypothesis that SCG NET is segregated prior to transport
from the cell body from proteins comprising large dense core vesicles. Once localized to
presynaptic boutons, NET does not recycle via VMAT2-positive, small dense core vesicles. Finally,
once NET reaches presynaptic plasma membranes, the transporter localizes to syntaxin |A-rich
plasma membrane domains, with a portion found in cholera toxin-demarcated lipid rafts. Our
findings indicate that activity-dependent insertion of NET into the SCG plasma membrane derives
from vesicles distinct from those that deliver NE. Moreover, NET is localized in presynaptic
membranes in a manner that can take advantage of regulatory processes targeting lipid raft
subdomains.
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Background

The neurotransmitter norepinephrine (NE) is synthe-
sized, stored, and released by a distributed collection of
neurons in the brainstem, by neurons of the sympathetic
branch of the autonomic nervous system and by endo-
crine cells of the adrenal medulla [1-3]. The powerful and
widespread actions of NE include the regulation of metab-
olism, cardiovascular function, memory, emotion, atten-
tion, arousal, and appetite [4-7]. These actions are
supported by the plasmalemmal NE transporter (NET)
[8,9] an integral membrane protein that binds and clears
NE following release [10-12]. NET is a clinically impor-
tant drug target, particularly for the treatment of mood
and cognitive disorders, including depression and atten-
tion-deficit hyperactivity disorder [12,13]. NET is also tar-
geted by psychostimulants, including cocaine and
amphetamines [9,14-16]. NET dysfunction has been
linked to attention, mood and cardiovascular disorders
[17-25]. The importance of NET for normative physiology
and behavior has been amply confirmed with studies of
NET knock out (KO) mice that display altered seizure sus-
ceptibility and opiate/cocaine sensitivities, as well as
maladaptive responses to social and cardiovascular stres-
sors [26-33].

Given the powerful control exerted by NET over NE sign-
aling, it is not surprising that the NET protein itself has
been found to be highly regulated [12,34]. Changes in
NET distribution and/or activity arise through the acute
engagement of signaling pathways, that in turn may sup-
port the actions of psychostimulants [16,35]) as well as
chronic stressors [36]. NET regulatory pathways impact
both transporter surface trafficking and catalytic activity
and are supported by multiple Ser/Thr and Tyr kinases
[37-39] and phosphatases [40], as well as interacting pro-
teins [41-43]. NET regulation appears to be supported by
interactions with multiple associated proteins. Thus, NET
has been shown to physically associate with PP2Ac, syn-
taxin 1A, Hic-5, PICK-1, 14-3-3 proteins, and a-synuclein
[40,41,43-45]. How these interactions are coordinated is
unclear. One possibility is that membrane subdomains
may serve as a site at which distinct NET associations are
acquired or stabilized. For example, in placental trophob-
lasts, NET localizes, in part, to lipid raft-containing mem-
brane subdomains [46,47]. Surprisingly, similar data are
currently lacking for neuronal NET.

In neuronal preparations and endocrine cell lines, NETs
localize to both the plasma membrane as well as to intra-
cellular vesicles, consistent with either biosynthetic trans-
port vesicles or recycling compartments [36,48-50]. In the
brain, NET surface expression in axonal varicosities is
most prominent in fibers that express high levels of the
catecholamine biosynthetic enzyme tyrosine hydroxylase
(TH), whereas NET localizes to cytoplasmic compart-
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ments in axons relatively deficient in TH, suggesting a pos-
sible link of surface trafficking to NE synthesis capacity
[36,49,50]. Interestingly, several investigators have pro-
vided evidence that NET traffics via dense core vesicles, the
vesicles responsible for NE storage [49,51]. Thus, Kippen-
berger and colleagues [51] provided evidence that in
PC12 cells NET-containing membranes co-fractionate
with organelles competent for NE storage, presumably
Golgi-derived large dense core vesicles [52]. Consistent
with these findings, Schroeter and coworkers [49] pro-
vided evidence that the predominantly intracellular local-
ization of NET in rat adrenal chromaffin cells involves
localization to large dense core granules. Whereas
Schroeter and coworkers also noted that NET is enriched
at presynaptic sites colocalized with dopamine-beta
hydroxylase, a protein component of dense core vesicles
[49], these studies were not conducted at sufficient resolu-
tion to permit distinctions between subcellular compart-
ments. Savchenko et al. demonstrated calcium-dependent
increases in surface NET in neurons [53], strengthening
the hypothesis that NET may be trafficked to the surface of
NE neurons by fusion of dense core vesicles [53].

Like vesicular NE release, fusion of NET storage vesicles
with the plasma membrane depends on SNARE machin-
ery [43,54]. Thus, botulinum C1 toxin-mediated cleavage
of syntaxin 1A reduces NET surface expression [43]. More-
over, NET grossly colocalizes with the SNARE protein syn-
taxin 1A in both CNS and sympathetic axons in vivo
[43,49]. Possibly, NET stored on dense core vesicle mem-
branes can traffic to the plasma membrane upon Ca2*
influx, leading to incorporation of NET at release sites.
However, Leitner and colleagues [48] provided evidence,
using bovine splenic nerve preparations, that NET and the
bona fide dense core vesicle marker, VMAT?2, are localized
to distinct populations of axonally transported vesicles.
This study did not address or compare the organelles
responsible for storing NET and NE at presynaptic termi-
nals. Therefore, previous gross colocalization of NET and
DBH at presynaptic compartments could be due to NET
sorting to small dense core vesicles at these presynaptic
terminals, since the biogenesis of small dense core vesicles
occurs in the terminals [52,55,56].

To gain a better understanding of the subcellular distribu-
tion of NET, we developed a rodent-specific, NET mono-
clonal antibody (NET-05) and here demonstrate its
suitability for the detection of native NET by both immu-
nocytochemical and immunoblot techniques. We docu-
ment NET-05 utility and specificity via staining of
noradrenergic neurons in wildtype and NET knockout
mice in situ. Further, we utilize this reagent in combina-
tion with other probes of NET and NET-associated pro-
teins to gain insight into the subcellular distribution of
NET within SCG axons and at the plasma membranes of
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SCG boutons. Our findings underscore a presynaptic
enrichment of surface NET that colocalizes with syntaxin
1A and, in part, with lipid rafts. Importantly, using quan-
titative biochemical and immunocytochemical methods,
we detect a clear segregation of NET from NE-containing
dense core vesicles marked by VMAT?2.

Results

Development and characterization of a rodent NET-
specific monoclonal antibody

Given sensitivity and species detection issues inherent in
our available NET-directed antibodies, we sought to gen-
erate a monoclonal antibody against the mouse NET
(mNET) suitable for rodent-targeted Western blots,
immunoprecipitation studies, and immunocytochemis-
try. We selected a sequence in mNET (amino acids 5-17)
based on predicted antigenicity, and lack of conservation
with other monoamine transporters such as the serotonin
transporter (SERT) and dopamine transporter (DAT). This
peptide is found in the N-terminal intracellular domain.
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Among NET paralogs, however, the mNET sequence cho-
sen is highly conserved, differing from the rat NET (rNET)
at only one amino acid (Figure 1A). Figure 1A provides an
alignment of the NET amino termini from several species
as well as the orthologs DAT and SERT from mouse, rat
and human [57,58]. BLAST searches of mammalian pro-
tein databases yielded no significant matches to the
epitope except those found in NET paralogs (data not
shown). Following immunization with the coupled pep-
tide (see Methods), we developed multiple hybridoma
cell lines that produced antibodies yielding positive sig-
nals in peptide-based ELISA assays (data not shown).
From these data, we selected a hybridoma (NET-05) for
further characterization and use it throughout the experi-
ments presented in this report.

Immunoblots using cell lysates from COS cells expressing
NET demonstrate that NET-05 recognizes rNET despite
the one amino acid change relative to the mouse NET pep-
tide (Figure 1B). However, NET-05 fails to detect human

Mus musculus DAT
Rattus norvegicus DAT
Homo sapiens DAT
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Homo sapiens SERT
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NET-05 monoclonal antibody specifically recognizes rodent NET. A. Alignment of the NET-05 peptide antigen with
mNET amino terminus (starting at the first amino acid) and related monoamine transporters from various species. B. Repre-
sentative Western blot analysis of cell extracts from nontransfected COS-7 cells or from COS-7 cells expressing either rat or
human NET (rNET and hNET, respectively). C. Western blot assessment of NET expression in mouse brain (S| fraction, cor-
tex) using S| membranes from either wild type or NET KO mice.
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NET (hNET), which differs from mNET at two consecutive
amino acids (Figure 1B). To verify whether NET-05 recog-
nizes mNET in native tissue, we prepared post-nuclear
fractions (S1) from wild type mouse cortex and from mice
with mNET genetically deleted (NET KO). [28,59]. Our
blots identify a ~70 kDa band present in wildtype but not
NET KO samples (Figure 1C). These results demonstrate
that NET-05 recognizes rodent NETs via Western blots of
extracts from both heterologous expression systems and
native tissues.

Detection of specific NET expression in mouse brain
noradrenergic neurons

The distribution of noradrenergic neurons and processes
in rodent brain is well-known [4] and the distribution of
NET has been previously described in these pathways
using polyclonal antisera [49,53,60]. To verify the utility
of NET-05 for immunocytochemistry, we assessed the
staining pattern obtained using NET-05, marking catecho-
lamine neurons in parallel using anti-tyrosine hydroxy-
lase (TH). As shown in a low magnification view (10x) of
the locus ceruleus (LC), NET-05 immunoreactivity colo-
calizes extensively with staining for TH (Figure 2A-C) and
extends into dendrites (arrow). Higher magnification
(63x) views are shown in Figure 2D-F. NET-05 and TH
staining similarly colocalize in the bed nucleus of the stria
terminalis (BNST), an area rich in NE axons and varicosi-
ties (Figure 2G-L) [61-64]. NE fibers are more dense than
in the ventral BNST (vBNST) as compared to the dorsal
division (dBNST) [61-64]. Confirming this pattern, we
observed a higher density of NET fiber labeling in the
vBNST (Figure 2J-1) as compared to the dBNST (Figure
2G-I). Inset panels of Figure 2G-L using a stack from
multiple confocal sections (n = 6) demonstrate NET labe-
ling along individual fibers. Both TH and NET antigens
appear enriched in punctate domains along individual
fibers, presumably the well-known beaded varicosities
that comprise NE release sites [4]. In these fields, some
fibers are TH positive but show no NET immunoreactivity
(see inset Figure 21). These fibers are most likely dopamin-
ergic fibers that express TH but lack NET and which are
known to innervate this region [65]. To demonstrate spe-
cificity of the NET-05 reagent, we stained vBNST sections
from wildtype and NET KO mice (Figure 2J-O). Although
the pattern of TH staining in sections from NET KO (Fig-
ure 2M) appeared similar to that from wild type mice (Fig-
ure 2J), no NET staining was evident in the NET KO
(Figure 2N). Similar negative staining results were
obtained with sections incubated without primary anti-
body or pre-absorbed with peptide (data not shown).

Subcellular distribution of neuronal NET in relation to
VMAT2 in mouse brain

Having validated the utility of NET-05 antibody for detec-
tion of mouse brain NET in multiple assays, we examined
the hypothesis that NET is sorted to dense core vesicles
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that harbor VMAT?2. Figure 3 illustrates the distribution of
NET (Figure 3A) and VMAT?2 (Figure 3B) immunoreactiv-
ity in the mouse hippocampus, focusing on the NE rich
hilus of the dentate gyrus. Labeling of NET in these fields
is similar to that achieved with polyclonal NET antisera
[49,53]. Although colabeling was evident in most neuro-
nal varicosities, colocalization was not uniform as some
NET-positive elements displayed low levels of VMAT2
immunoreactivity and some varicosities appeared to have
high levels of VMAT? relative to NET. Regardless, staining
in the hippocampus, as in the LC and BNST, is absent in
the NET KO (data not shown), confirming NET-05 specif-
icity. These light-level immunocytochemical data confirm
expression of NET at discontinuous axonal in the CNS
and indicates that the relative abundance of NET and
VMAT? differs across individual fibers.

NET distribution in cultured superior cervical ganglion
(SCG) neurons

Although we achieved evidence of specific NET labeling
within or on neuronal membranes, the small size of CNS
NE varicosities, unfortunately, precluded quantitative
immunocytochemical analysis of NET distribution. Previ-
ously, we observed that NET is enriched in sympathetic
varicosities in situ [43,53]. Therefore, we continued our
studies using SCG neurons that elaborate profuse
noradrenergic fibers in culture [49,53]. Furthermore, SCG
preparations present large varicosities extending laterally
from axonal membranes (for example see 8A). As with the
CNS preparations described above, we verified the specif-
icity of NET-05 in the SCG cultures and then examined
NET subcellular distribution in relation to multiple mark-
ers of vesicles and membrane subdomains. Figure 4 shows
single confocal sections and corresponding DIC images of
cultured SCGs focused on either the cell bodies (Figure
4A-C) or the processes (Figure 4D-F). In the cell bodies,
NET labeling surrounds the nucleus in a pattern consist-
ent with Golgi compartments. A low level of immunore-
activity was associated with the plasma membrane, most
evident at sites where cell bodies contact one another (Fig-
ure 4B). Importantly, NET-05 labeling exhibited a punc-
tate pattern throughout SCG processes (Figure 4E). To
demonstrate specificity of NET-05 labeling in this prepa-
ration, we stained SCG cultures prepared from NET KO
mice (Figure 4G-L). As shown in Figure 4H and 4K, the
KO neurons lack NET staining.

Next, we compared the distribution of NET as detected
with NET-05, which requires permeabilization, to that of
NET 43408, a polyclonal NET antibody that targets the
NET 2nd extracellular loop and which therefore reports
NET expression at the cell surface when used in the
absence of detergent [53]. Whereas NET-05 detects trans-
porter throughout neuronal processes (Figure 4E), NET
43408 reveals NET surface expression particularly evident
at boutons (Figure 4N, arrows, for higher magnification,
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Figure 2

NET colocalizes with TH in the locus ceruleus and bed nucleus of the stria terminalis. Mouse brain sections were
processed for confocal-assisted imaging of NET immunoreactivity as described in Methods. A-C. Coronal sections encompass-
ing the locus ceruleus (LC) were doubled-labeled using antibodies against both tyrosine hydroxylase (TH, red) (A, D) and NET
(B, E, green). Panels C and F are merged images of A/B and D/E, respectively. Arrow in B identifies a dual labeled LC dendrite.
Scalebar in A-C =200 pm; scalebar in D-F = 20 um. G-I. Projections of six confocal sections (63%) taken from the dorsal BNST
(dBNST). TH and NET immunoreactivities are shown in panel G (red) and panel H (green), respectively. Panel | is the merge of
G and H. Insets of G-I show a digital zoom to illustrate individual fibers. J-L: Projections of six confocal sections (63%) taken
from the ventral BNST (VBNST). TH immunoreactivity is shown in panel | (red) and NET immunoreactivity is shown in panel K
and the overlap in panel L. All scalebar =20 puM.
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NET immunoreactivity colocalizes with VMAT2 in the hippocampus. Images were collected from the dentate gyrus
of the mouse hippocampus. Sections were immunostained using NET-05 (A, green) and VMAT2 antibody (B, red). Panel Cis a
merge of A and B. Extensive colocalization of VMAT2 and NET is evident on many fibers. Essentially all VMAT?2 positive puncta
colocalize with NET immunoreactivity. In contrast, some NET-positive fiber segments appear to have low or absent VMAT?2

staining (note green profiles in C inset). Insets shows a digital zoom of each field. Scalebar A-C = 50 uM. Scalebar for inset pan-

els =10 uM.

see Figure 8a-d). These boutons store NPY (see below)
and thus may represent one class of NE neurons that
innervate smooth muscle [66,67].

SCG NET does not colocalize with markers of dense core

vesicles (DCVs)

The studies above indicate that the NET-05 labeling asso-
ciated with SCG neurites, in the presence of detergent, rep-
resents largely intracellular pools of transporter-
containing membranes, whereas boutons are the primary
sites of surface NET expression. To test if intracellular NET
resides on large dense core vesicles, we double stained
SCGs for NET and NPY (a neuropeptide sorted to large
dense core vesicles in SCGs [66,68]. As indicated above,
NET-05 labeled the surface and intracellular membranes
of single SCG boutons (Figure 5A, B). NPY labeling was
enriched in the cytoplasm of boutons and relatively low in
abundance within processes, relative to that observed for
NET (Figure 5C). Importantly, we observed no colocaliza-
tion with NET in boutons (Figure 5A-D see arrows and
Figure 5D inset) suggesting NET is not sorted to large
dense core vesicles (LDCVs). We considered the possibil-
ity that bouton resident NET vesicles might represent
small dense core vesicles (SDCVs) which originate at pre-
synaptic sites. Upon fusion with the plasma membrane,
LDCVs release NPY and LDCV membrane proteins,
including VMAT2, are endocytosed to form SDCVs
[52,55,56,69]. Just as we observed for NPY, VMAT?2 labe-
ling was also enriched in the cytoplasm of SCG boutons
and in relatively low abundance in processes as compared
to NET (Figure 5G). Importantly, within the bouton of
double labeled neurons, VMAT?2 displayed little apparent

colocalization with NET (see arrows and Figure 5H inset).
Additionally, we found little if any colocalization of syn-
aptophysin, which labels an endocytic compartment
through which SDCVs [52,56,70] (Figure 5I-L, 5L inset).
Together these findings support the contention that in
SCG boutons, NET is not sorted to any class of dense core
vesicles.

The evaluations presented above of NET colocalization
with VMAT?2 and other proteins are qualitative, based on
visual inspection of chromatic changes in labeling when
using multiple fluorophore-labeled secondary antibodies.
To investigate colocalization quantitatively, we plotted
the normalized intensities for NET and VMAT2 (Figure
5M upper left plot) or NET and synaptophysin (Figure 5N
upper left plot) in both axonal regions lacking varicosities
as well as in boutons, and found no evidence of correla-
tion. To achieve a quantitative evaluation of colocaliza-
tion, we implemented an unbiased analytical method that
has been validated for determination of protein colocali-
zation in intact cells [71]. Stanley's group reasoned that if
two proteins are on the same organelle or interacted, then
the paired pixel intensities should vary in synchrony over
space [71]. This method, termed Intensity Correlation
Analysis (ICA) plots the normalized pixel intensity for a
particular protein (e.g. NET) in relation to the normalized
intensity of the other protein (e.g. VMAT2). The quantita-
tive index produced in the ICA analysis is termed the
Product of the Difference from the Mean, PDM [71]. In
graphical form, the normalized paired pixel intensity of
each protein (e.g. NET) is plotted against the PDM of the
two proteins of interest, producing a distribution of
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Wild type-
Cell bodies

Wild type-
Axons

NET KO
Cell bodies

NET KO
Axons

Wild type-
Axons

NET 48408

Figure 4

Visualization of NET expression in cultured SCGs. Cultured mouse SCGs were immunolabeled with monoclonal NET-
05 (permeabilized) or NET 43408 (nonpermeabilized) antibodies. Shown are single confocal sections and corresponding DIC
images from SCG cultures stained with NET-05 antibody and obtained from WT (A-I) or NET KO (J-L) animals. NET-05 rec-
ognizes NET in both cell bodies (B) and in axons (E), as noted by arrows. No signal was detected in either cell bodies or axons
in the NET KO neurons (H, K). Scale bar = [0 uM. M-O: Staining of SCG cultures under nonpermeabilized conditions with
ectodomain NET antibody 43408. Note selective localization of NET staining to the surface of SCG boutons (arrows). Scale
bar = 10 uM.
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Figure 5

NET labeling segregates from markers of large and small dense core vesicles. SCGs were double-labeled with NET-
05 and antibodies directed against VMAT2, NPY or synaptophysin. The first column (A, E, and I) represents the DIC images of
an exemplary field of cells, whereas the second column (B, F, ], green) is the distribution of NET in the same or fibers or bou-
tons. The fourth column (C, G, K, red) are images obtained with antibodies against NPY, VMAT2, or synaptophysin (Synapto).
The last column (D, H, and L) represents the overlap of the signals obtained with NET-05 and the particular granule protein
targeted. Scale bar = 10 micron. Insets in staining panels provide higher power views of single boutons. Scale bar = 5 micron.
M. Correlation of NET and VMAT?2 pixel densities (upper left), ICA analysis (lower panels), and spatial display of PDM values
(upper right). N. Correlation of NET and synaptophysin pixel densities (upper left), ICA analysis (lower panels), and spatial dis-
play of PDM values (upper right). PDM color transformation is shown above standard red/green visualizations of same field.
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points between the values of 0 and 1 on the y axis and
between -0.5 to +0.5 on the x axis (e.g. Figure 6M and 6N
bottom panels). Pixel intensities that indicate colocaliza-
tion are associated with positive values of the x axis. For
statistical analysis, the number of pixels with a positive x
value is divided by the total number pixels. This procedure
yields the intensity correlation quotient (ICQ) which can
be analyzed by a nonparametric sign test [71]. Analysis of
NET and VMAT?2 yielded a nonsignificant ICQ value (P >
.05) consistent with NET and VMAT?2 as localized to dif-
ferent membrane compartments. The ICQ value for NET
and synaptophysin in axons is low, though a significant
association was identified (P < 0.001) (see arrow in Figure
5L).

In Figure 5M and 5N, we present the spatial distribution
of PDM values (upper right panels) using a pseudo-
colored scale. Pixels with positive PDM values are in
orange (high colocalization) and negative PDM values in

http://www.biomedcentral.com/1471-2202/10/65

purple (segregation). Below this display, we present the
standard two-color merge of the same region of the axon.
Whereas NET and VMAT2 show no extensive regions of
colocalization, for NET and synaptophysin, limited
regions within the axon appear to demonstrate positive
colocalization (Figure 5, thick arrows). However, when
we performed these analyses in boutons, we detect no evi-
dence of NET colocalization with VMAT2, NPY, or synap-
tophysin (data not shown), further confirming
segregation of NET from LDCVs in axons as well as SDCVs
in boutons.

Immunoisolation studies support NET and VMAT2
localization to distinct SCG vesicles

To evaluate the distribution of NET and VMAT2 via an
alternative approach, we performed immunoisolation
experiments of SCG membranes. To establish the utility of
NET-05 for immunoprecipitations, we incubated anti-
body with detergent extracts of cortical synaptosomes and

A Protein Isolation B
Organelle Isolation
75 kDa -
75 kDa - NET . < mNET
g =l e
50 kDa - © d— 196 S0kba - |
WT IP NET KO IP Beads
alone
WTIP Beads
alone
C Organelle Isolation
NET beads VMAT2 beads Na/K ATPase beads] Control beads
NET - — oy |
VMAT2 - p— _- -
Input IP Input P Input IP Input IP
Figure 6

Segregation of NET and VMAT?2 detected via immunoisolation of SCG vesicles. Western blot analysis of immunoi-
solated membranes captured with NET, VMAT2 or Na/K ATPase antibodies. A. Western blot analysis of NET-05 immunopre-
cipitates from solubilized mouse cortical synaptosomes (solubilized P2 fraction probed with NET-05 to reveal NET). B. NET
immunoreactivity associated with vesicles obtained from lysed mouse cortical synaptosomes from wildtype or NET KO mice,
immunoprecipitated with paramagnetic anti IgG beads coated with NET-05 antibody, or beads alone. Panel C shows Western
blot analysis of immunoprecipitations of organelles from SCG neuron by beads coated with NET antibodies (organelle isola-
tion, NET beads) and Na/K ATPase antibodies (organelle isolation, Na/K ATPase beads) or VMAT?2 antibodies (organelle isola-
tion, control or VMAT?2 beads). Elutants of immunoprecpitations are probed with antibodies against either NET or VMAT2.
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probed NET with the same antibody (Figure 6A). Immu-
nopreciptated NET migrates at ~70 kDa in total extracts
(Figure 1), migrating on SDS-PAGE just above the heavy
chain of NET-05 IgG (52 kDA) (see Figure 6A; beads
alone). Additionally, we also immunoprecipitated intact
organelles from hypotonic lysates of mouse cortical syn-
aptosomes (prepared in the absence of detergent). The 70
kDa NET band observed in wildtype (WT) but not NET
KO lysates demonstrates specific NET recovery (Figure
6B). In Figure 6C, we present results of organelle isolation
from cultured SCGs using NET-05, VMAT2 or Na/K
ATPase antibodies for membrane isolation, followed by
blots of NET and VMAT2. NET-05 isolated membranes
contained only background levels of VMAT2 (comparable
to that obtained with Na/K ATPase coated beads). Con-
versely, VMAT2-coated beads recovered negligible, back-
ground levels of NET proteins. Antibody-free beads
yielded negligible background NET isolation. These find-
ings support the contention derived from staining experi-
ments in SCG cultures that NET and VMAT2 are
segregated to distinct membrane compartments.

Colocalization of NET with SCAMP2 and syntaxin IA in
SCG axons

Recently, SCAMP2 has been identified as an N-terminal
SERT and DAT interacting protein, with suggestions of a
role in transporter sorting or trafficking [72]. It seemed
likely that SCAMP2 might also associate with NET as well,
and thus we explored NET and SCAMP2 colocalization in
SCG cultures (Figure 7A-D). SCAMP2 immunoreactivity
was readily detected in both axons and boutons. In bou-
tons, we observed no statistically significant colocaliza-
tion with NET (Figure 7A-D). Likewise, neither the PDM
image of a representative axon nor the two color merge of
the same segment (Figure 71, top right) gives evidence of
strong colocalization between NET and SCAMP2. The ICA
plot (Figure 71 bottom) appears symmetric with a "cloud"
of points in the lower quadrant. Nonetheless, the ICQ
value (+0.027) reflects a significant association (P = 0.01)
that supports the possibility that a small fraction of NET
resides on SCAMP2-positive organelles or that a minor
fraction of SCAMP?2 resides on NET-transport vesicles.

We have previously demonstrated that NET colocalizes
with syntaxin 1A in sympathetic varicosities in situ
[43,49,53]. Indeed, we gained clear evidence in the SCG
cultures for extensive colocalization of syntaxin 1A and
NET (Figure 7E-H) at the surface of boutons. Since it is
unknown whether NET and syntaxin 1A are sorted to dis-
tinct axonal transport vesicles, we examined the correla-
tion of these two proteins in axons. Visually, we observed
apparent colocalization of NET and syntaxin 1A. Indeed,
the distribution of pixel intensities for axonal NET and
syntaxin 1A (Figure 7] top) demonstrates a positive spatial
correlation for this labeling. ICA/ICQ analysis confirms a
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significant association of axonal NET and syntaxin 1A (P
<0.001). When a similar analysis was performed in bou-
tons, again the two proteins exhibited a highly statistically
significant colocalization (data not shown), consistent
with previous biochemical studies [43]. These findings
indicate that NET is sorted to syntaxin 1A containing ves-
icles such that both SNARE protein and transporter can be
deposited at the plasma membrane upon membrane
fusion.

NET localizes to both lipid raft and non-lipid raft
membranes in SCGs

Plasma membranes are not homogenous lipid bilayers
but rather contain discrete subdomains rich in cholesterol
and sphingolipids termed lipid rafts [73,74]. Interest-
ingly, biochemical fractionation and pharmacological
studies of placental trophoblasts demonstrate that a por-
tion of NETs exists in lipid rafts [46]. Whether neuronal
NET localizes to these domains has not been established.
Cholera toxin-B (CTx-B) targets cell-surface localized
GM1 gangliosides that are enriched in lipid-rafts [75]. We
used fluorescent CTx-B to label either nonpermeabilized
or detergent-permeabilized SCGs to determine if NET
localizes to lipid raft compartments. As shown in Figure
8A-D, fluorescent CTx-B labeling of SCG processes and
boutons under nonpermeabilized conditions was nonu-
niform as expected of lipid raft membrane subdomains.
Remarkably, all sites labeled with CTx-B under nonperme-
abilized conditions displayed NET05 immunoreactivity
(Figure 8A-D). However, the converse was not true, dem-
onstrating that NET in the plasma membrane of boutons
localizes to both raft and non-raft membranes. In perme-
abilized conditions, CTx-B labeling of processes revealed
little colocalization with NET (Figure 8E-L, see thicker
arrows). Consistent with these observations, the spatial
distribution of pixel intensities for NET and CTx-B (Figure
8M top) demonstrated a positive correlation for nonper-
meabilized boutons whereas axonal labeling under per-
meabilized conditions exhibited a random pattern is
observed (Figure 8N top). ICA/ICQ analysis yielded a sig-
nificant association of NET and CTx-B in nonpermeabi-
lized (ICQ = 0.315; P < 0.001) as compared to
permeabilized axonal preparations (ICQ = -0.032; P >
0.05) (Figure 8M and 8N). These findings support the tar-
geting of NET proteins to lipid rafts once transporters have
been inserted into the presynaptic membrane.

Discussion

In this report, advance the understanding of NET subcel-
lular distribution in neuronal membranes. We desired to
combine immunohistochemical and biochemical strate-
gies, and thus needed first to develop and characterize a
high-affinity, rodent NET-directed antibody. Our two pre-
vious NET rabbit polyclonal antibodies, NET43411 [49]
and NET 43408 [53] detect rodent NET in intact tissue,
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Figure 7

NET colocalizes extensively with syntaxin 1A but less so with SCAMP2. SCGs were double-labeled with NET-05 and
with antibodies directed against syntaxin |A or SCAMP2. The first column (A, and E) represents the DIC images of an exem-
plary field of cells whereas the second column (B, F, green) is the distribution of the NET in the same or fibers or boutons.
Arrow in A highlights bouton shown in inset. The third column (C, G, red) shows images obtained with antibodies against syn-
taxin |A or SCAMP2. The last column (D, H) represents the merge of signals obtained with NET-05 and the appropriate syn-
aptic membrane proteins. Insets in staining panels provide a higher power view of single boutons and are highlighted in full
images with arrows. . Correlation of NET and SCAMP2 pixel densities (I, upper left), ICA analysis (lower panels), and spatial
display of PDM values (I, upper right). J. Correlation of NET and syntaxin | A pixel densities (upper left), ICA analysis (lower
panels) and spatial display of PDM values (], upper right). PDM color transformation is shown above standard red/green visual-

izations of same field.
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but do not reliably detect NET by Western blotting nor
allow for NET immunoprecipitation. Previously, we
developed an anti-human NET monoclonal antibody that
has the required sensitivity for blotting studies, but fails to
detect rodent NET due lack of epitope conservation across
species. Here, we demonstrate that the NET-05 mono-
clonal antibody provides for immunoblotting, immuno-
precipitation and immunocytochemical localization of
mouse NET with sufficient sensitivity to detect NET in
native preparations. Lack of signal in assays using tissues
obtained from NET KO mice amply demonstrates the spe-
cificity of the NET-05 reagent.

As expected, NET-05 stains well-known areas of noradren-
ergic cell bodies and projections, including the LC, BNST,
and hippocampus, where fiber staining for both VMAT2
and NET exhibits a characteristic varicose appearance.
Interestingly, some NET-positive fibers appeared to lack,
or contained little VMAT2, possibly an indication of low
capacities of these fibers for vesicular NE release. EM-
immunocytochemical studies [36,50] in the cortex have
shown that NET expression patterns exhibit one of two
patterns, being either largely surface localized or predom-
inantly intracellular. Surface localized NET is found in fib-
ers with high levels of TH whereas intracellular NET
predominates in fibers with little or no detectible TH
immunoreactivity. Possibly the VMAT2-poor, NET
labeled fibers we observe in the hippocampus also reflect
fibers with reduced NE release capacity. Further studies
utilizing EM approaches and dual labeling for NET/
VMAT?2 should be helpful in addressing this possibility as
well as advancing the possibility that such a pattern may
change with stress or other states of behavioral activation
[36].

Because CNS NE fibers and their varicosities are too small
for detailed compartmental analyses, we turned to SCG
cultures. In SCG cell bodies, NET labeling displays a pat-
tern consistent with ER/Golgi localization as well as a low
amount of surface expression at regions where cell bodies
appear to contact with each other. As previously
shown[53]., NET ectodomain antibodies reveal surface
expression at varicosities but not on axonal plasma mem-
branes. In contrast, when we labeled NET-05 under per-
meabilizing conditions, we observed uniformly intense
staining of NET throughout axons. These data suggest that
NET-05 labeling in SCG axons primarily reveals the pres-
ence of intracellular NET transport vesicles. Interestingly,
the intensity of intracellular staining was much lower in
single SCG boutons, whose diameter (~5 um) permitted
an unprecedented level of analysis of NET distribution in
relation to other presynaptic membrane proteins. An
additional benefit of studying NET distribution in these
large boutons is that they project laterally from the axons,
permitting visualization of both axonal and presynaptic
organelles in the same field.
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To study NET colocalization with synaptic membrane
proteins, we took advantage of a recently developed
method for determining colocalization of proteins in
intact cells (ICA/ICQ; [71]. This analysis allows for the
characterization of the subcellular domain in which two
proteins either physically interact or are colocalized to a
common organelle or membrane domain. As ICA/ICQ
analysis utilizes an optical approach with non-extracted
membranes, this approach provides an important com-
plement to biochemical analyses that utilize solubilized
membranes and denatured preparations.

One of the aims of our study was to determine if NET is
sorted to dense core vesicles. Dense core vesicles can be
placed into two classes based on site of biogenesis and
size. Secretory vesicles in NE neurons bud from Golgi
membranes in the cell soma and identified as LDCVs.
These vesicles contain VMAT?2 to provide for DA import
prior to NE synthesis by intragranular DBH. Many NE
neurons, including SCGs, also sort neuropeptides to
LDCVs [52,68]. At synaptic sites, LDCVs fuse with the
plasma membrane, where vesicular membrane constitu-
ents can recycle via smaller, endocytic compartments that
contain synaptophysin. These SDCVs lack neuropeptides
but retain VMAT2 and DBH [52]. We found no evidence
of colocalization of SCG NET with NPY, a neuropeptide
sorted to LDCVs, clearly demonstrating early segregation
of NET from secretory granule membrane components.
We also found that NET also does not colocalize with
axonal VMAT?2. Our findings agree with a prior study that
utilized density-based fractionation techniques to exam-
ine codistribution of NET and VMAT? in axons [48]. Our
studies utilized an intact preparation with both qualita-
tive and quantitative inspection of NET and VMAT2 in
axons and boutons. Additionally, using immunoisolation
of intact organelles, we found no evidence of extensive
colocalization of NET and VMAT?2. Our studies indicate
that in SCG neurons, NET sorts to trafficking vesicles dis-
tinct from either LDCVs or SDCVs. Despite this early seg-
regation, both organelles target to presynaptic boutons
and can fuse with the plasma membrane [53].

An attractive organelle to support NET trafficking is synap-
tic-like microvesicles (SLMVs). These synaptophysin-rich
vesicles can fuse in a calcium-dependent manner and in
some NE cells can also store and release acetylcholine
[56,76,77]. However, we did not detect any colocalization
of NET with synaptophysin at boutons and we have not
detected any colocalization of NET with the presynaptic
choline transporter that is present in these terminals and
presumably is sorted to SLMVs (data not shown). None-
theless, ICA/ICQ analysis of permeabilized SCG axons
showed that a small but significant fraction of synapto-
physin containing membrane colocalizes with NET. Inter-
estingly, these synaptophysin/NET containing organelles
do not appear to concentrate at boutons (Figure 7) and
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Figure 8

NET localizes to lipid rafts at the bouton surface but not to raft domains labeled within axonal membranes.
SCGs were double-labeled with NET-05 and with fluorescent cholera toxin B (CTx-B). SCG's were either labeled with CTx-B
prior to (A-D), or after detergent permeabilization (E-H), followed by NET-05 labeling. Small arrows indicate colocalization
whereas large arrows point to regions of segregation. Correlation of NET and CTx-B pixel intensities using nonpermeabilized
conditions (M, upper left), ICA analysis (lower panels) and spatial display of PDM values (M, upper right). N. Correlation of
NET and CTx-B pixel intensities using permeabilizing conditions (upper left), ICA analysis (lower panels) and spatial display of
PDM values (N, upper right). Scale bar = 5 uM. PDM color transformation is shown above standard red/green visualizations of
same field.
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thus could represent constitutive trafficking organelles
that deliver NET to boutons. Indeed, synaptophysin has
been suggested to traffic via constitutive transport
organelles [52,70,78,79]. Regardless, these synapto-
physin- and NET-containing vesicles do not appear to lead
to the sorting of NET to SDCVs or SLMVs following fusion
as we did not observe any colocalization of NET with syn-
aptophysin inside boutons. Possibly, NET-and synapto-
physin-positive membranes could also represent
retrograde compartments formed from the fusion of sep-
arate NET and synaptophysin-containing endosomes that
are destined for degradation. Further biochemical studies
of surface-labeled NET vesicles should help address this
issue.

An additional issue underlying our studies is whether pro-
teins that associate with NET do so early in their traffick-
ing itinerary or only after plasma membrane insertion. A
contribution to this question can be seen in our analysis
of the distribution of NET to syntaxin 1A with NET. Like
NET, syntaxin 1A has uniformly high levels in permeabi-
lized axons relative to the boutons. Indeed, in permeabi-
lized preparations, we observed significant and extensive
colocalization of NET with syntaxin 1A. From previous
work, it is known that syntaxin 1A is required for basal/
regulated NET cell surface expression and that NET and
syntaxin 1A physically associate [35,43,54]. Our findings
are consistent with the existence of trafficking vesicles that
contain both NET and syntaxin 1A, providing an opportu-
nity for physical interactions that ultimately serve to regu-
late NET activity and channel states at the plasma
membrane. Recent studies with a C. elegans NET
homolog, (DAT-1), reveals that a transporter N-terminal
GFP tag can disrupt syntaxin 1A interaction and lead to
altered channel states and membrane potential, providing
evidence for a physiological relevance of the syntaxin 1A/
transporter interaction in vivo [80].

Finally, we examined the distribution of NET in relation
to two markers of membrane subcompartments that
could support transporter NET trafficking and/or regula-
tion, SCAMP2 and CTx-B. A previous study reported that
SCAMP2 physically interacts with both SERT and DAT.
SERT and SCAMP2 colocalize in intracellular compart-
ments, as well as at the plasma membrane where it may
regulate SERT activity [72]. We found SCAMP2 to be
highly expressed in SCG processes where we detected a
very low, but significant, level of NET colocalization sug-
gesting that SCAMP2 may participate in sorting and
export of the transporter from the cell soma. Like DAT,
NET lacks a PY motif [81,82] and thus NET/SCAMP?2 asso-
ciations at the plasma membrane could facilitate NEDD4
ubiquitination, similar to the role suggested for SCAMP3
in NEDD4 ubiquitination of EGF receptors [83]. We
detected, membrane patches at the surface of boutons that
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were enriched for both NET and SCAMP2. Compared to
the total level of SCAMP2 in boutons, this distribution
was quite limited. Additional studies that explore condi-
tions leading to NET ubiquitination should be helpful in
further evaluating the extent and role of NET/SCAMP2
associations. Placental cells that express NET localize a
portion of NET to lipid rafts as detected through mem-
brane fractionation analyses [46,47]. In SCG neurites
examined under permeabilized conditions, NET does not
colocalize with CTx-B. In boutons, in contrast, the trans-
porter clearly localizes to surface-labeled, CTx-B positive
membrane domains. As a portion of NET in CTx-B unla-
beled membranes, we suggest that NET may transit
between these domains as part of a regulatory cycle.
Future studies that explore the dynamics of these associa-
tions and that take advantage of the reagents and para-
digms employed in our study should further extend our
understanding of the regulation of NET membrane traf-
ficking.

Conclusion

Our findings support the hypothesis that SCG NET is seg-
regated prior to transport from the cell body from proteins
comprising large dense core vesicles. Once localized to
presynaptic boutons, NET does not recycle via VMAT2-
positive, small dense core vesicles. Finally, once NET
reaches presynaptic plasma membranes, the transporter
localizes to syntaxin 1A-rich plasma membrane domains,
with a portion found in cholera toxin-demarcated lipid
rafts. Our findings indicate that activity-dependent inser-
tion of NET into the SCG plasma membrane derives from
vesicles distinct from those that deliver NE. Moreover,
NET is localized in presynaptic membranes in a manner
that can take advantage of regulatory processes targeting
lipid raft subdomains.

Methods

Antibody development

We and others have developed polyclonal antisera capa-
ble of detecting NET protein by immunocytochemical
techniques in situ [49,53,60,84,85]. Prior to this study, we
had also developed a high-affinity, mouse monoclonal
antibody that targets human NET (hNET) [86]. A mono-
clonal antibody suitable for colocalization studies with
other polyclonal reagents in rodent preparations and sen-
sitive enough for detection of native protein by immuno-
blots was not available, prompting our current efforts. We
thus generated the mouse NET amino terminal peptide
RMNPQVQPELGGA (amino acids 5-17) via solid-phase
techniques (Tufts University Core Facility), adding a C-
terminal cysteine to facilitate coupling to keyhole limpet
hemocyanin (KLH). Subsequent efforts using animals for
antibody development and characterization were per-
formed with attention to the NIH Guide for the Care and
Use of Laboratory Animals under protocols approved by
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Institutional Animal Care and Use Committees of the
Vanderbilt University School of Medicine. Mouse mono-
clonal antibodies to the NET peptide conjugate were pre-
pared following standard hybridoma techniques [87] in
collaboration with MAb Technologies (Mabtechnolo-
gies.com). Briefly, 3 BALB/c mice were given subcutane-
ous and intraperitoneal primary injections with the KLH
conjugate emulsified in Freund's complete adjuvant. Sub-
sequent booster shots were given subcutaneously at 3-4
week intervals until a strong immune response to the anti-
gen was produced, as assessed via ELISA assays on tail vein
blood. The best responder was sacrificed, the spleen was
isolated and spleen cells were extracted and fused to a
mouse myeloma cell line (P3X63.Ag8.653) using polyeth-
ylene glycol (PEG). Cells were plated in 8 x 96 well plates
under hypoxanthine-aminopterin-thymidine = (HAT)
selection, supplementing with peritoneal macrophage
feeder cells. We screened the culture medium from indi-
vidual wells for the presence of antigen secreting cells, as
assessed by ELISA assays as well as Western blots of mouse
and rat NET transfected cells. Cells from wells that tested
positive were cloned by limiting dilution in 96 well plates.
Hybridomas in positive wells from the cloning plates were
again re-cloned by limiting dilution to establish a final
sub-cloned antibody producing hybridoma cell line
(NET-05). Isotype analysis revealed the immunoglobulin
secreted to be of the IgG,, subtype.

Additional antibodies

To evaluate of the sensitivity and specificity of NET-05, we
compared results to our hNET-specific monoclonal anti-
body (NET17-1; MAb Technologies, 1:1000) [86,88] as
well as a rabbit anti-NET polyclonal antiserum, desig-
nated 43408 [53]. The antigen for NET 43408 is a KLH
conjugated peptide derived from the transporter's 2nd
extracellular loop. This anti-NET polyclonal antiserum
(43408) labels mouse noradrenergic neurons in the CNS
and periphery that is lost with preparations from NET KO
mice [53]. Additional commercially available reagents
used included anti-tyrosine hydroxylase (TH, Chemicon,
1:3000); anti-NPY (Santa Cruz 1:200), anti-vesicular
monoamine transporter 2 (VMAT2 Chemicon and Santa
Cruz 1:1000), anti-synaptophysin (synapto, Boehringer
Mannheim, 1:300) and anti-dopamine beta hydoxylase
(DBH, Chemicon 1:300). Anti-SCAMP2 was gift of Dr
David Castle (University of Virginia). Secondary antibody
reagents included donkey anti-rabbit IgG conjugated with
Cy3 or Cy2 (Jackson Labs, 1:1000), donkey anti-mouse
IgG conjugated with Cy2 (Jackson Labs, 1:500), goat anti-
rabbit conjugated with Alexa 568 (Molecular Probes,
1:1000), goat anti-mouse conjugated with Alexa 488 or
Alexa 568 (Molecular Probes, 1:1000), goat anti-rmouse
IgG2, conjugated with Alexa 488 (Molecular Probes,
1:1000) and goat anti-rmouse IgG1 conjugated with Alexa
568 (Molecular Probes, 1:1000). Alexa Flour 488 conju-
gated cholera toxin subunit B was from Molecular Probes.
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Western and immunoprecipitation analysis

Western analysis and immunopreciptations were per-
formed as previously described [35,43,54]. Briefly, corti-
cal synaptosomes were prepared [89,90] and either lysed
in 1% Triton X-100 for one hr or lysed in hypotonic buffer
[89,91]. Membranes from cultured superior cervical gan-
glion neurons (SCGs) were also prepared by hypotonic
lysis to release synaptic vesicles and other cytoplasmic
organelles as in Nagy et al and modified by Huttner and
coworkers [89,91]. This method involves a step in which
membranes are incubated with buffered water allowing
release of intact synaptic vesicles [89,91]; however, larger
organelles may be lysed. Detergent extracted membranes
(1 mL) were cleared of non-solubilized membranes by a
30 minute centrifugation at 100,000 x g and 10 uL NET-
05 was added. After a 2 hr incubation, extracts were incu-
bated with Protein A beads (Sigma) for 1 hr. Beads were
washed and eluted with Laemmli buffer [92]. Synapto-
somes (1 mL) or SCGs lysed with hypotonic media were
used after the addition of 150 mM NaCl and centrifuga-
tion at 1000 x g for 20 minutes [89]. Membranes were
incubated for 4 hrs with 10 uL NET-05 and then incubated
for 2 hr with anti-mouse paramagnetic beads (Dynal; Inv-
itrogen). Beads were washed in buffer 5x and then eluted
with Laemmli buffer prior to separation of proteins by
SDS-PAGE and transfer to Polyvinylidene Difluoride (Bio-
rad, PVDF 0.2 micron) for immunoblotting. NET was
detected using NET-05 and immunoreactivity was
observed using chemiluminescence (Western Lightning
Plus-ECL, PerkinElmer) insuring exposures were con-
ducted in the linear range of exposed X-ray film.

Detection of NET in situ by immunofluorescence

Adult (8-12 weeks) wild type male mice (C57Bl/6J) and
age-matched NET KO mice [28,59] were used to examine
CNS NET distribution whereas PO-P5 pups where used
for the culturing of neurons from the superior cervical
ganglion as outlined below. NET KO mice were gener-
ously provided by Dr. Marc Caron (HHMI, Duke Univer-
sity School of Medicine). Animals were housed in 14-h/
10-h light/dark cycles with food and water ad libitum. Mice
were deeply anesthetized with Nembutal (80 mg/kg), and
transcardially perfused with saline containing 4% parafor-
maldehyde. Brains were removed and immersed in fixa-
tive for two to forty eight hours at 4°C and then
cryoprotected in 30% sucrose overnight at 4°C. Thirty or
forty-micrometer-thick floating frozen sections were cut
into PBS using a sledge microtome (Leica) and then incu-
bated sequentially with primary antibodies (room tem-
perature, 4 hr or forty eight hours at 4°C) and secondary
antibodies (room temperature, 2 hr or twenty four hours
at 4°C). Sections were permeabilized with phosphate-
buffered saline (PBS) containing 0.15% or 0.2% TX-100.
Nonspecific labeling was blocked by incubation in PBS
containing 4% bovine serum albumin and 0.15% NP-40
or PBS containing 4% donkey serum for 1 hr prior to incu-
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bations with antibody solutions containing 4% bovine
serum albumin and 0.05% NP-40 or 0.1% TX-100 and
2% donkey serum. Controls included incubations in the
absence of primary and secondary antibody reagents and
as well as the use of sections prepared from the brains of
NET KO mice. Immunofluorescence was visualized using
a Zeiss LSM 510 Meta confocal imaging system equipped
with internal He/Ne and external Ar/Kr lasers (VUMC Cell
Imaging Core Resource, Sam Wells Director, supported by
NIH Grants CA68485 and DK20593) with output at 488
(Cy2, Alexa 488), 568 (Cy3, Alexa 568) and 633 (Cy5,
Alexa 633) nm. Z-series were collected by optical section-
ing at intervals ranging from 0.25 to 1 um depending on
the magnification used, followed in some cases by 3D
reconstruction. Image processing and montage assembly
were performed using either Zeiss or Metamorph software
and Adobe Photoshop. Designation of anatomical struc-
tures for dissection and immunostaining followed
regional and nuclear designations of [93].

Culture of mouse superior cervical ganglion neurons
(SCGs)

SCGs were cultured as previously described [43,53].
Briefly, ganglia from 0-5 day old wild type pups (C57Bl/
6J) and NET KO pups were dissected and incubated for 30
min at 37°C in collagenase (3 mg/ml; Sigma) and trypsin
(0.5 mg/mL/Gibco) followed by termination of digestion
using 10% fetal bovine serum (FBS, Atlanta Biologicals)
in UltraCulture medium (BioWhittaker). To purify SCGs
cells away from fibroblasts, cells were incubated in Ultra-
Culture medium supplemented with 3% FBS, nerve
growth factor (NGF, 20 ng/ml; Harlan) and 2 mM L-
glutamine for 2 h at 37°C, SCGs were removed, centri-
fuged for 5 min, resuspended in supplemented UltraCul-
ture medium and then transferred onto poly-D-lysine and
collagen-coated coverslips. After 24 h of incubation at
37°C, cultures were treated with 1 uM 5-fluoro-5-deoxyu-
ridine (FAU; Sigma) and grown for 14-28 days in supple-
mented Ultraculture medium prior to examination.

Quantitative colocalization analysis

Colocalization of NET with plasma membrane and vesic-
ular proteins was achieved on multiple, randomly
selected fields of each preparation as previously described
[49,53]. Fields from 10-30 per sample were used for each
antibody. For axonal distribution analysis, regions of SCG
processes were chosen that did not contain varicosities.
Intensity values were measured using NIH Image and nor-
malized to the peak intensity value. Paired pixel intensi-
ties were plotted as a scatter plot (Prism; GraphPad). The
data were used to create the intensity correlation analysis
plots and quantified by the intensity correlation quotient
[71]. The ICA/ICQ method is based on covariance of sig-
nal intensities from two fluorophores in space and is eval-
uated via the nonparametric sign-test analysis [71]. The
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normal approximation of the sign test was used to test if
these values were significantly different from 0 [71]. Alter-
natively, data were analyzed by one-sample t-test compar-
ing means versus a value of 0. Multiplying the difference
of staining intensity (A) at a particular pixel from the
mean intensity (a) for that fluorophore across the ana-
lyzed space by the corresponding quantity for the other
fluorophore (B-b) at the same pixel yields the Product of
the Differences from the Mean [PDM = (A-a)(B-B)] for
that pixel. Positive PDM values arise when the staining
intensity of both are above the mean or are both present
at high values below the mean. ICQ values were calcu-
lated first by determining the ratio between the number of
positive PDM values and the total number of pixel values.
From this ratio, 0.5 is subtracted to yield ICQ values dis-
tributed between -0.5 and +0.5 where random colocaliza-
tion gives an ICQ of ~0, segregated or asynchronous
colocalization gives 0 > ICQ ~-0.5, and dependent or syn-
chronous colocalization yields 0 < ICQ <+ 0.5 [71]. PDM
images were created using a plug-in for ImageJ found at

http://www.uhnresearch.ca/facilities/wcif/imagej/

colour_analysis.htm#coloc ica.
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