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Abstract

Background: Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with
Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the
hippocampus, a region involved in learning and memory. Running is a robust inducer of adult
hippocampal neurogenesis. This study aims to address the effect of running on hippocampal
neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively
eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of
mu-p75-saporin immunotoxin.

Results: Running increased the number of newborn cells in the dentate gyrus of the hippocampus
in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of
bromodeoxyuridine (BrdU). Although similar levels of surviving cells were present in cholinergic
depleted animals and their respective controls four weeks after injection of BrdU, the majority of
progenitors that proliferate in response to the initial period of running were not able to survive
beyond one month without cholinergic input. Despite this, the running-induced increase in the
number of surviving neurones was not affected by cholinergic depletion.

Conclusion: The lesion paradigm used here models aspects of the cholinergic deficits associated
with Alzheimer's Disease and aging. We showed that running still increased the number of
newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease.

Background

The principal cholinergic innervation to the hippocampus
arises from the basal forebrain, specifically from the
medial septum and diagonal band of Broca (MSDB). Pro-
gressive loss of basal forebrain cholinergic cells, marked
by reduced cholinergic acetyltransferase (ChAT) levels
[1,2], acetylcholinesterase activity [2-4] and p75NTR recep-
tor expression [5], occurs in aging, dementia and neurode-
generative diseases such as Alzheimer's disease (AD) [6,7].

According to the "cholinergic hypothesis of AD" posited
more than two decades ago, the symptoms of failing cog-
nitive function associated with AD and advanced age are
attributed to cholinergic neuronal dysfunction [8,9]. This
idea is backed by studies linking the mnemonic functions
of the cortex and hippocampus to the cholinergic system
[10,11] and the association of cognitive deficits with the
severity of the loss of basal forebrain cholinergic neurones
[12,13]. More recently, some authors have proposed that
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the decline in learning and memory is also related to
decreased hippocampal neurogenesis associated with the
degeneration of cholinergic neurones [14,15].

Neurogenesis in the dentate gyrus of the hippocampus is
governed by a multitude of molecular mitogenic signals,
transmitters and trophic factors, acting spatially and tem-
porally to modulate distinct steps in the birth and matu-
ration of the new neurones. Besides the pathological loss
of cholinergic function, other physiological factors such as
stress [16-19], aging [20-22], and drugs of abuse like nic-
otine [23], alcohol [24] and opiates [25] can reduce adult
neurogenesis. Conversely, factors like antidepressants
[26,27], exposure to enriched environments [28-30] and
hippocampal-dependent learning [31-34] upregulate
adult neurogenesis. One of the most striking inducers of
neural progenitor cell division in the dentate gyrus is the
simple behavioural act of running [35-38].

It is still unclear as to how or why physical activity specif-
ically elicits neurogenic mechanisms in the hippocampus
[30]. It is recognized, however, that wheel running evokes
a thythmic firing pattern, theta rhythm, in the hippocam-
pus [39,40]. The synchronous firing of pacemaker cells,
comprising cholinergic and GABAergic neurones originat-
ing from the MSDB, generate the theta oscillations [41-
49]. These septohippocampal projections heavily inner-
vate the dentate gyrus, forming axosomatic contacts with
granule cells and axodendritic contacts with hilar cells
within the neurogenic locality [50-52]. Increases in the
intensity of movement are correlated with increases in fre-
quency of theta [40,53]. Furthermore, running is also
associated with acetylcholine release in the hippocampus
[54]. Transgenic mice expressing an inactive form of ace-
tylcholinesterase, and hence expected to have elevated
acetylcholine levels, showed increased cell proliferation in
the subgranular layer of the dentate gyrus [55]. This evi-
dence suggests that the septohippocampal system may be
involved in running-mediated neurogenesis.

Our present study aims to investigate the effects of run-
ning on hippocampal neurogenesis in cholinergic
lesioned mice, which serves as a model for aspects of AD
and age-related dementia. To lesion cholinergic projec-
tions to the hippocampus, we employed an immunoto-
xin. Murine-p75-saporin (Mu-p75-SAP) is a conjugate of
saporin toxin and a mouse-specific monoclonal antibody
directed against the p75 neurotrophin receptor, which is
found predominantly on the cholinergic neurones of the
basal forebrain. This allows selective elimination, and
spares other cholinergic neurones located elsewhere in the
brain, even within the adjacent striatum and nucleus
accumbens [56-59]. Injection of the immunotoxin results
in a substantial reduction in ChAT activity in both the
basal forebrain and hippocampal regions, and a concom-
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itant impairment in learning and memory [60,61]. To
assess neurogenesis in the dentate gyrus, we performed
experiments with the DNA synthesis marker bromodeox-
yuridine (BrdU).

Results

Cholinergic lesioning in the MSDB is partial but selective
Adult mice were randomly assigned to running and non-
running groups to be sacrificed 24 hours or 4 weeks after
injection of BrdU following 12 days of free access to a run-
ning wheel or control exposure to an immobilised run-
ning wheel (Figure 1). Bilateral stereotaxic infusions of
mu-p75-SAP or vehicle were made. After 10 days recovery,
running wheels were placed in the cages for 12 days. At a
dose of 3.6 pg of immunotoxin, 18 out of 28 lesioned
mice survived, a 65% survival rate. This is comparable
with a 68% survival previously reported [60]. After 12
days of exposure to the running wheels, mice were
injected with BrdU and sacrificed 24 hrs or 4 weeks later
(23 days or 50 days after lesioning, respectively). Sections
through the MSDB were immunostained for ChAT (Figure
2A) and cholinergic cells were counted. There was no sig-
nificant difference in the numbers of ChAT-positive neu-
rones between runners and non-runners. We performed
one-way ANOVA analysis with Dunnett's post-hoc tests
on the number of ChAT labelled cells in the animals that
were sham lesioned (238 + 24) or lesioned and injected
with BrdU 24 hrs (114 + 34) or 4 weeks (153 + 19) after
lesioning. Mu-p75-SAP injections resulted in a significant
depletion of cholinergic neurones in the medial septum
(F 519 = 5.63, p < 0.05) for lesioned groups both 24 hrs
and 4 weeks after BrdU injection (p < 0.05 and p < 0.01,
respectively; Figure 2B). GABAergic neurones in the
MSDB, identified as parvalbumin-immunopositive cells
[62], were not affected by the lesions (Figure 2C). Cholin-
ergic deafferentation did not affect the distance run by the
mice. The distance accumulated by each runner daily
ranged from 4 km to 25 km. There was no difference in the
number of revolutions of the running wheel between the
lesioned (272346 + 3933 revolutions) and the non-
lesioned group (246852 + 2373 revolutions).

Running increases progenitor cell proliferation in both
non-lesioned and lesioned animals

Sections through the hippocampus were immunostained
for BrdU (Figure 3A). For each brain, we systemically sam-
pled dorsal hippocampal tissue sections from bregma -
1.50 mm to -2.50 mm. BrdU-immunopositive cells along
the length of the subgranular zone (SGZ) and granule cell
layer of the dentate gyrus were counted. Two-way ANOVA
showed that both running (F 5 ,5 = 15.68, p < 0.001) and
lesioning (F ; ,5 = 8.88, p < 0.01) had significant effects on
the number of BrdU-immunopositive cells in the dentate
gyrus. There was a significant interaction between running
and lesioning (F 3,5 = 5.69, p < 0.05). Post-hoc analysis
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Schematic representation of the experimental design. Mice underwent surgery during which they received stereotaxic
intracerebroventricular injections of either vehicle or murine-p75-saporin (mu-p75-SAP) immunotoxin. After 10 days for
recovery, mice were exposed to either immobilised running wheels or freely moving running wheels. Following 12 days of
exposure to the running wheels, the mice received intraperitoneal injections of 5-bromodeoxyuridine (BrdU). The mice were
sacrificed for perfusion fixation either 24 hours or 4 weeks after injection of BrdU.

using independent samples two-tailed t-tests revealed that
running increased the number of BrdU-labelled cells in
both non-lesioned (p < 0.05) and lesioned animals (p <
0.05; Figure 3B). Comparisons between the runners in the
lesioned group and the control group demonstrated that
cholinergic denervation significantly potentiated the run-
ning-induced increase in BrdU-immunopositive cells (p <
0.05; Figure 3B). There were no significant differences in
the length of the dentate gyrus across all treatment groups.

Running increases survival of progenitor cells despite
reduced survival in lesioned animals

Two-way ANOVA showed that running had a significant
effect on the number of BrdU-immunopositive cells sur-
viving at the 4 weeks time point (F 5, = 15.25, p < 0.01;
Figure 4A). Post-hoc t-tests of unequal variances revealed
that this was due to significant increases in BrdU-immu-
nopositive cells surviving in both the non-lesioned (two-
tailed: p < 0.05) and lesioned runners (one-tailed: p <
0.05) (Figure 4A). Two-way ANOVA showed that lesion-
ing had no significant effect on the number of BrdU-
immunopositive cells at 4 weeks (F; ;;,=2.152, p=0.161).

To analyse the effect of running and lesioning on the
numbers of BrdU-labelled cells over time, we performed a
three-way ANOVA. Lesioning (F , ;,=5.91, p <0.05), run-

ning (F , ,,=13.851, p <0.001) and time (F , 4, = 20.321,
p < 0.0001) significantly influenced the number of BrdU-
labelled cells. There were also significant interactions
between lesion and time (F 3,, = 5.929, p < 0.05) and
between running and time (F 5 4, = 7.536, p < 0.01). The
three-way interaction between running and lesion over
time was significant (F ; ,, = 4.22, p < 0.05), hence we car-
ried out further statistical tests to compare the effect of
time within the lesion and running groups. For follow-up
analysis, an index of cell survival was calculated by divid-
ing the number of BrdU-labelled cells surviving at the 4
weeks time point by the mean number of labelled cells 24
hours after BrdU administration. Two-way ANOVA
showed that lesioning significantly decreased the percent-
age survival of BrdU-immunopositive cells at the 4 weeks
time point (F; ;; = 12.84, p < 0.01; Figure 4B). There was
also a significant interaction between running and lesion-
ing (p < 0.05). Post-hoc two-tailed t-tests revealed that
cholinergic lesioning significantly decreased the percent-
age survival of newborn cells in the dentate gyrus of run-
ners compared to non-runners (p < 0.001). The
proportion of BrdU cells surviving after 4 weeks was mar-
ginally, but not significantly, reduced in lesioned runners
compared to non-lesioned runners (p = 0.053; Figure 4B).
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Figure 2

Murine-p75-saporin injections depleted cholinergic neurones in the MSDB. (A) Extent of the depletion of cholinergic
neurones. Photomicrographs of representative sections through the MSDB immunostained for ChAT visualized with DAB
from mice infused with (i) saline and (ii) 3.6 pg/ul of murine-p75-saporin (mu-p75-SAP). Scale bar = 100 pum. (B) Quantification
of the extent of the cholinergic depletion. Number of ChAT-immunopositive cells in the MSDB following intracerebroventricu-
lar infusion of saline (saline) or mu-p75-SAP (lesion) and sacrifice either 24 hours after the end of running wheel exposure (24
hrs lesion) or 4 weeks after the end of running wheel exposure (4 weeks lesion). Data are mean + sem; * p < 0.05, ** p < 0.01.
(C) Selectivity of the cholinergic lesions in the MSDB. Confocal micrographs of double immunofluorescence labelling for ChAT
(red) and parvalbumin (green), a marker for GABAergic cells, in representative sections from (i) saline control and (ii) mu-p75-
SAP infused mice. Parvalbumin-positive cells remained intact despite of loss of ChAT-positive cells. Scale bar = 100 um.
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Figure 3

Running enhances cell proliferation in both non-lesioned and lesioned mice. (A) Representative photomicrographs
of immunohistochemistry for BrdU in the dentate gyrus of (i) a non-runner and (ii) a runner. Scale bar = 200 um. (B) Running
increased the number of BrdU-labelled cells in both the non-lesioned groups and lesioned groups (* p < 0.05) 24 hours after
BrdU injection. Comparisons between the runners of in the lesioned group and the control group demonstrated that choliner-
gic denervation significantly potentiated the running-induced increase in BrdU-positive cells (#p < 0.05). Data are mean + sem.
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Figure 4

Both running and lesioning affected survival of newborn cells. (A) Running increased numbers of BrdU-labelled new-
born cells surviving at 4 weeks in both the non-lesioned (* p < 0.05) and lesioned groups (§p < 0.05). (B) The survival of BrdU-
labelled cells at 4 weeks was expressed as a percentage of the number of cells counted at 24 hrs after BrdU injection. The per-
centage of BrdU-labelled cells that survived for 4 weeks was significantly reduced in the cholinergic lesioned runners (** p <
0.001). Data are mean £ sem.
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Taken together, these data suggest that without choliner-
gic inputs, the bulk of progenitors that proliferate in
response to running are not able to survive beyond one
month.

Running increases neurogenesis in mice with partial
cholinergic denervation

To determine the phenotype of surviving differentiated
newborn cells at the 4 week time point, double immu-
nolabelling was carried out to assay for co-expression of
either neuronal specific nucleus protein (NeuN), a marker
for mature neurones, or glial acidic fibrillary protein
(GFAP), an astroglial marker, with BrdU labelling in cells
within the granule cell layer of the DG (Figure 5A). Run-
ning had a significant effect on neurogenesis (F ;,, =
12.12, p < 0.01). In the sham lesioned group, post-hoc t-
tests showed that the runners had enhanced neurogenesis
(p < 0.05). Comparisons between runners and non-run-
ners within the cholinergic deafferented mice showed
that, although running was discontinued 4 weeks earlier,
the effect of running on neurogenesis was still significant
(one-tailed t-test, p = 0.029) (Figure 5B). Within the run-
ners, lesioning had no effect on neurogenesis (F 5, =
1.126, p = 0.286). Neither lesioning (F 5, = 2.676, p =
0.120) nor running (F 5 ;,=2.379, p = 0.141) affected the
percentage of surviving BrdU-labelled cells that differenti-
ated into neurones.

Astrogenesis remained constant despite the various treat-
ments (lesioning: F 5 ;,=0.036, p = 0.852; running: F 5 ;,
=4.136, p = 0.189). Similarly, lesioning (F 5 ,,=1.433, p
= 0.248) and running (F 5,, = 0.271, p = 0.609) did not
affect the proportion of astrocytes (Table 1).

Discussion
Our findings indicate that running increases adult hippoc-
ampal neurogenesis, in spite of cholinergic denervation.

Lesioning

In contrast to the rat species selective 192-Ig-saporin,
which is reported to eliminate virtually all cholinergic
cells in the rat forebrain [12,45,63-66], the mouse mu-
p75-SAP toxin was not as potent and only resulted in a
partial cholinergic lesion. The reduction, nevertheless,
was significant and specific, depleting almost half the
cholinergic neuronal population but leaving the subpop-
ulation of GABAergic cells intact. The percentage loss in
our experiments was comparable to that reported by other
groups using mu-p75-SAP in mice [61]. Such partial
depletion of the cholinergic neurones in the basal fore-
brain may more accurately reflect the cholinergic cell loss
seen in progressive neurodegenerative diseases, such as
Alzheimer's disease, than total cholinergic lesioning.

http://www.biomedcentral.com/1471-2202/10/57

This selective, partial cholinergic lesioning had no effect
on progenitor cell proliferation in mice, as estimated by
the BrdU-immunopositive cells present 24 hours after
injection of BrdU. This finding is in agreement with a pre-
vious study in rats, in which partial lesioning of septohip-
pocampal afferents by intraseptal infusion of N-methyl-
D-aspartate (NMDA) did not affect cell proliferation in
the hippocampus [67], and is in line with other studies
involving pharmacological manipulation of the choliner-
gic system, which reported no effect on proliferation
despite effects on cell survival [68-70]. In contrast, com-
plete transection of the fimbria-fornix, which contains all
fibres projecting from the medial septum to the hippoc-
ampus in addition to other afferent fibres, was reported to
reduce progenitor cell proliferation in the dentate gyrus of
rats [71,72]. Moreover, near complete forebrain choliner-
gic lesioning in rats by injection of high doses of 192-Ig-
saporin into the ventricles or both the MSDB and nucleus
basalis magnocellularis was also reported to reduce cell
proliferation or short-term survival [15]. Together these
data suggest that progenitor cell proliferation in the
mouse dentate gyrus is relatively insensitive to specific,
partial depletion of cholinergic septohippocampal affer-
ents but that complete cholinergic deafferentation can
impair adult hippocampal progenitor cell proliferation in
rats.

It has been reported that on average, 50% of the newly
generated cells in the adult rodent brain die by apoptosis
[73,74]. A similar percentage of cell loss occurred in the
non-lesioned, non-running group in the present study.
However, selective, partial cholinergic lesions did not sig-
nificantly change the number of surviving cells in the non-
running group of mice. This is in contrast to the results of
near complete or complete forebrain cholinergic lesions
produced by injection of 192-IgG-saporin into the ventri-
cles or both the MSDB and nucleus basalis magnocellula-
ris in rats [14,15]. Likewise, studies conducted using
cholinergic agonists and antagonists yielded results which
indicated that the neurotransmitter acetylcholine is
involved in survival of newborn cells [68-70]. Our present
result indicates that survival of the newborn cells of the
mouse dentate gyrus is not sensitive to selective, partial
lesioning of cholinergic afferents. The greater effect
reported in the other studies may be attributable to more
complete cholinergic depletion throughout the entire
forebrain.

The surviving newborn cells differentiated into cell types
expressing either neuroneal or glial cell markers. In our
model, the cholinergic system has no effect on the pheno-
typic fate of progenitor cells in the dentate gyrus, consist-
ent with findings in various previous studies [14,15,67-
70].
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Figure 5

Running enhances neurogenesis in cholinergic lesioned mice. (A) Confocal micrographs showing z-series reconstruc-
tion of cells double-labelled with (i) BrdU (green) and NeuN (red) and (ii) BrdU (green) and GFAP (red). Scale bar = 20 um. (B)
Sham-lesioned mice allowed access to running wheels exhibit greater numbers of newly generated neurones (* p < 0.05, one-
tailed) despite discontinuation of running 4 weeks prior to sacrifice. Although not as prominent, the effect of running on neu-
rogenesis was also significant in cholinergic lesioned mice (§p < 0.05, one-tailed). Data are mean * sem.
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Table I: Proliferation, survival and phenotypes of BrdU-positive cells

Non-lesioned, Non-Runners Non-lesioned, Runners Lesioned Non-Runners Lesioned Runners

Proliferation, 24 hrs 228.5(74.9) 480.0(87.4) 323.5(87.1) 1336.8(293.8)
Survival, 4 wks 93.3(24.9) 323.5(81.4) 113.9(12.3) 188.4(33.9)
Survival (%) 40.8(10.9) 67.4(16.9) 35.2(3.8) 14.1(2.5)
Phenotypes:
Neurones (%) 57.4(87) 67.4(9.3) 68.1(6.8) 80.3(3.9)
Astrocytes (%) 5.6(2.4) 11.0(5.3) 22.6(8.6) 10.2(3.4)
Neurones 50.1(17.9) 220.6(64.5) 68.6(27.5) 157.0(32.0)
Astrocytes 7.6(4.5) 25.1(6.5) 17.1(5.3) 13.6(3.1)
Running esis [77]. Neurotrophins such as NGF, BDNF and NT-3 are

In corroboration with findings from previous studies, run-
ning increased the number of BrdU-labelled progenitor
cells approximately two-fold [30,35,36]. In lesioned ani-
mals, running elevated the number of BrdU-positive cells
by four-fold. These data suggest that exercise may still
increase hippocampal cell proliferation in the face of
gradual cholinergic degeneration such as occurs in age-
related dementia and progressive neurodegenerative dis-
ease such as Alzheimer's disease.

The runners in the sham lesion group also had a signifi-
cantly greater proportion of surviving BrdU-labelled cells
4 weeks after BrdU injection. About two-thirds of the
number of progenitors labelled by BrdU at 24 hours were
able to survive for at least one month in the non-lesioned,
running group. These data show that running enhanced
the survival of newborn cells, similar to findings reported
by van Praag and co-workers [36].

Although the running wheel was only present for the first
twelve days of the experiment, this initial bout of activity
led to an increase in the number of neurones generated in
the granule cell layer 4 weeks after removal of the running
wheel. This is in agreement with reports that the fate of the
newborn cells is decided early [75].

Interactions between lesioning and running

Interestingly, we observed that cholinergic deafferenta-
tion markedly potentiated the running-induced effect on
proliferation, leading to an approximately three-fold
increase over the non-lesioned runners. Brain-derived
neurotrophic factor (BDNF) is reported to be important
for regulation of cell proliferation in the adult dentate
gyrus [76] and is suggested to be one of the factors
involved in mediating the effects of exercise on neurogen-

synthesized in the hippocampus and undergo retrograde
transport to the MSDB where they maintain survival and
function of septal neuronal populations [78]. Ablation of
basal forebrain cholinergic neurones impairs retrograde
transport and may lead to accumulation of neurotrophins
in the hippocampus, which could result in an enhanced
proliferative response to running.

In contrast to the lesioned non-runners, the lesioned run-
ners group showed a very pronounced reduction in the
proportion of newborn cells surviving at 4 weeks. This
indicates that selective, partial lesioning of cholinergic
afferents, while not sufficient to affect baseline survival of
newborn cells in the adult mouse dentate gyrus, can mark-
edly reduce the percentage survival of running-induced
newborn cells. In many models of pathology, the robust
induction of adult neurogenesis appears to be transient
and non-specific. Cell proliferation was increased in ani-
mal models of brain insult such as epileptic seizures and
stroke but only a small fraction of the newborn cells sur-
vived longer than one month [79,80]. Moreover, neuroin-
flammatory responses, such as occur in response to
immunotoxic cholinergic lesions [61], are suggested to be
detrimental to the survival of newborn cells [81]. For
these reasons, the interaction between running and
inflammation caused by the lesions could have potenti-
ated a brief spurt in proliferation, but the viability of the
progeny of these precursor cells could not be sustained
with the lack of cholinergic input.

Others have reported that physical activity stimulates neu-
rogenic potential by targeting precursor cell division
[82,83]. Furthermore, prolonged running can boost the
survival of the progeny of these progenitors [82]. Our
study was designed to investigate the effects of running on

Page 9 of 14

(page number not for citation purposes)



BMC Neuroscience 2009, 10:57

cell proliferation and so running was not continued
throughout the four weeks following BrdU injection in
our experiments. It would be interesting to observe the
effects on survival of BrdU labelled cells in cholinergic
ablated mice had running been continued.

Despite the cholinergic depletions, the effect of running-
induced elevation in newly generated neurones remained
unaltered. In other words, the initial short period of run-
ning sufficed to expand the pool of progenitor cells and
increase the number of neurones in partial cholinergic
denervated mice.

In summary, our results demonstrate that an intact
cholinergic system is not an absolute requirement for the
maintenance of progenitor cell generation and determina-
tion of their lineage. Depleting septohippocampal cholin-
ergic projections may not thwart the pro-proliferative
actions of running but acetycholine-regulated signalling
may be important in prolonging the viability of the new-
born neurones. Given that cholinergic lesions in adult
mice lead to impaired learning and memory [60], we used
this experimental paradigm to model neurodegenerative
diseases that involve loss of cognition such as AD and
dementia. Our findings bode well in that physical activity
may encourage neurogenesis despite central nervous sys-
tem cholinergic cellular deficits. That the majority of run-
ning-induced progenitors do not survive the onslaught of
death-engendering signals such as the absence of cholin-
ergic inputs, shows that additional survival-promoting
signals are required to maintain the pool of running-
induced newborn cells. Translated loosely, this may be in
the form of cognitive challenges, as exemplified in animal
models where learning and environmental enrichment
promote survival of cells [28,84].

Conclusion

This study demonstrates that the proliferative effects of
running are not affected by reduction in cholinergic input.
In the presence of cholinergic depletion, running still
resulted in the formation of more neurones despite a
reduction in survival of newborn cells.

Methods

Animal treatments

Adult female Swiss Albino mice (8-10 weeks) were
obtained from the Centre for Animal Resources (CARE),
Singapore. The mice were housed in the Animal Holding
Unit, National University of Singapore, under a 12 hr
light: 12 hr dark cycle, with ad libitum access to food and
water. The mice were group housed and allowed to accli-
matize to their environment for one week prior to com-
mencement of the experiments. All animal procedures
were conducted with approval from the Institutional Ani-
mal Care and Use Committee (IACUC), National Univer-
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sity of Singapore, and were conducted in accordance with
the "Guide for the Care and Use of Laboratory Animals"
and the "Guidelines for the Care and Use of Mammals in
Neuroscience and Behavioral Research", National
Research Council, USA.

The mice were anaesthetized with a cocktail of hypnorm
and midazolam before undergoing bilateral intracere-
broventricular microinjections of murine p75-saporin
(mu p75-SAP) (Advanced Targeting Systems, San Diego,
CA). Holes were drilled at the following stereotaxic coor-
dinates: AP -1.6 mm, ML # 1.0 mm, and DV -2.4 mm.

The dose of the toxin was titrated to determine the dose
producing the most effective depletion of the cholinergic
cells in the MSDB without compromising the well-being
of the mice. A dose of 3.6 ng/ul was selected and injected
into each ventricle over the course of 5 min using a 1 pl
Hamilton syringe with a 26-gauge stainless steel needle
(SGE Analytical Science, Austin, TX). The syringe was
retracted for 0.1 mm before leaving for an additional 5
min in the ventricle. The mice were allowed 10 days to
recover, during which they were weighed daily and given
glucose saline infusions. Mice exhibiting severe weight
loss (< 80% of their original weight) were euthanized by
anaesthetic overdose.

The surviving mice were then randomly assigned to the
various treatment groups. They were individually housed
in cages equipped with a running wheel each. The control
group was exposed to immobilized running wheels to
control for the possibility of the running wheels serving as
sources of environmental enrichment. The mice were left
with their running wheels for 12 days. A photo-sensor was
used to monitor the distance run by each mouse.

At the end of 12 days of exercise, BrdU (Sigma, St Louis,
MO) at a dose of 20 mg/ml dissolved in saline with 0.06
N NaOH and titrated to a pH of 7.4, was injected intra-
peritoneally at a concentration of 300 mg/kg, a single high
but non-toxic dose [85].

Immunohistochemistry

The animals were anaesthetized with an overdose of
pentobarbital (Nembutal, Ovation Pharmaceuticals,
Deerfield, IL) either at (i) 24 hours after BrdU administra-
tion to assess for neural cell proliferation or (ii) 4 weeks
later for cell survival and differentiation. The mice were
then transcardially perfused with 4% paraformaldehyde
in 0.1 M of phosphate buffer (pH 7.4), after which the
brains were extracted and postfixed overnight in the fixa-
tive. The basal forebrains of the mice were then sectioned
using a vibratome (Vibroslice, World Precision Instru-
ments, Sarasota, FL) at a thickness of 40 um prior to
immunohistochemical assays. For detailed investigation
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of cell proliferation, the hippocampi of the mice were
processed (LeicaTP1020, Leica Microsystems, Wetzlar,
Germany), embedded in paraffin, and cut in 6 um coronal
sections on a rotary microtome (Leitz 1512, Leica Micro-
systems) before mounting onto slides. For investigation of
neural differentiation, the hippocampi of the 4 weeks
group were sectioned at a thickness of 40 um using the
vibratome and stored in phosphate buffered saline (PBS)
at 4°C until use.

For the paraffin sections, the sections were first de-paraffi-
nized with xylene and subsequently rehydrated with
descending concentrations of ethanol prior to incubation
in 0.3% hydrogen peroxidase to quench endogenous per-
oxidase activity. PBS was used for all washing. Sections
were then pretreated with 4 N HCL (30 min) and trypsin
(1 mg/ml in PBS, 10 min, 37°C) for antigen retrieval.
Blocking was carried out using 5% horse serum for 20
min, followed by 30 min of incubation with a mouse
monoclonal anti-BrdU antibody (1:200, Neomarkers, Fre-
mont, CA). Sections were then incubated with bioti-
nylated secondary horse anti-mouse antibody for 30 min,
and avidin-biotin complex for another 30 min according
to the manufacturer's instructions (ABC system, Vector
Laboratories, Burlingame, CA), with nickel intensified
diaminobenzadine as a chromogen (Vector Laboratories).
The slides were rinsed in tap water, dehydrated with 95%
and 100% ethanol before washing with xylene, and
mounted.

For the vibratome sections, immunofluoroscence double-
labelling was carried out on the free- floating sections. The
sections were pretreated with 2 N HCI before blocking in
5% goat serum. The primary antibodies used were rat
monoclonal anti-BrdU (1:200, Accurate Chemical, West-
bury, NY), mouse monoclonal anti-NeuN (1:200, Chemi-
con, Temucula, CA) and rabbit polyclonal anti-GFAP
(1:400, DakoCytomation, Glostrup, Denmark). The sec-
ondary antibodies used were Cy2 goat anti-rat (1: 200,
Jackson Immunoresearch West Grove, PA), Alexa-Fluor
594 goat anti-mouse and goat anti-rabbit (1:200, Molecu-
lar Probes, Eugene, OR). The sections were mounted with
Pro-Long anti-fade reagent (Molecular Probes) before
being coverslipped.

To label cholinergic neurones in the basal forebrain sec-
tions, goat polyclonal anti-ChAT antibody (Chemicon)
was used with biotinylated donkey-anti-goat secondary
antibody (1:200, goat ABC staining system, Santa Cruz
Biotechnology, Santa Cruz, CA) and nickel-enhanced
DAB as chromogen. Random but corresponding samples
were taken from the medial septum sections of each of the
non-lesioned and lesioned groups to carry out double-
immunofluorescence labelling of ChAT and Parvalbumin
(Parv) (1:200, Chemicon). The double-labelling protocol
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used was similar to that described above, except that the
HCI step was omitted.

Microscopy

Basal forebrain sections of each mouse were taken at 3 dif-
ferent intervals, at bregma 1.18 mm, 0.98 mm and 0.74
mm, according to the mouse atlas [86] as representative
samples for counting the number of MSDB cholinergic
neurones. The images of ChAT-positive cells in the MSDB
were captured with a digital camera (Magnafire SP,
Optronics, Goleta, CA) under a 20 x objective using a
BX50 microscope (Olympus, Tokyo, Japan) and counted
semi-automatically (Image Pro Plus, Media Cybernetics
Inc., Silver Spring, MD, USA).

For the paraffin sections, BrdU-labelled cells from one-in-
five serial sections (at least 30 pm apart) throughout the
rostro-caudal extent of the dentate gyrus were viewed
through a 40 x objective using the BX50 microscope. Dig-
ital images were captured for the purpose of counting
(Magnafire SP, Optronics). For the 4 weeks group, one-in-
five sections double-labelled with either BrdU-NeuN or
BrdU-GFAP were analyzed using a laser scanning confocal
microscope (LSM 510, Carl Zeiss, Gottingen, Germany)
under 400 x magnification using sequential illumination
with 488 nm and 546 nm wavelength lasers. Colocaliza-
tion was established by analyzing the overlap between the
antigen expressions by orthogonal reconstruction
throughout the entire z-stack and in the xy-yz direction
(LSM 510, Zeiss).

Quantification of labelled cells

The BrdU-positive cells in the granule cell layer, and their
co-expression with GFAP- and NeuN- positive cells, were
counted by an investigator blind to the coding. For both
the 24 hr and 4 weeks group, the number of BrdU-positive
cells in one side of the dentate gyrus in a section was
pooled and divided by the length of the granule cell layer
within that particular dentate gyrus to determine the
mean number of BrdU cells per length of dentate gyrus.
Sections were taken by sampling at equal intervals from
the hippocampus region nearer to the septal end for more
consistent BrdU labelling. This reference sample volume
was 1000 um thick. The mean number of BrdU cells per
length of dentate gyrus was further divided by the thick-
ness of the section to obtain the average number of
labelled cells per traced area. The estimated number of
BrdU cells in the dorsal hippocampus sample volume per
brain is obtained by multiplying the average number of
labelled cells per area by the mean length of the dentate
gyri of the sections sampled and the reference sample vol-
ume.
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Statistical Analyses

All statistical analyses were performed using SPSS soft-
ware version 14.0. Analysis of variance (ANOVA) was per-
formed for all groups, followed by appropriate post-hoc
analysis if comparisons were found to be significant. The
Levene's test for Equality of Error Variances was applied to
all groups to check for homogeneity of variances. Differ-
ences were considered to be statistically significant when
p < 0.05. Data are expressed as mean + sem.
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