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Abstract
Background: In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be
multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types
related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal
stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage
restriction boundaries. Such reports have been based on the detection of neural-related proteins by the
differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a
neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and
immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in
populations of non-differentiated MSCs obtained from 4 donors.

Results: The expression analysis revealed that several of the commonly used marker genes from other studies
like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated
human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and
Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL
and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could
only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample
revealed a unique expression pattern, demonstrating a significant variation of marker expression.

Conclusion: The present study highlights the existence of an inter-donor variability of expression of neural-
related markers in human MSC samples that has not previously been described. This donor-related heterogeneity
might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing
controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences
between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be
inappropriate for transplantation strategies.
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Background
Mesenchymal stromal cells (MSCs), often termed mesen-
chymal stem cells, may be isolated from bone marrow,
adipose and other tissues. They adhere strongly to tissue
culture plastic and are capable of multipotent differentia-
tion that can be demonstrated in vitro. MSCs can differen-
tiate into osteoblasts, chondroblasts, adipocytes and
myoblasts (reviewed in [1]). Since the survival and migra-
tion of human MSCs (hMSCs) grafted into rat brains was
demonstrated [2], the possibility that such cells might act
as suitable tools for promoting central nervous system
(CNS) repair has been raised. This notion was further
strengthened by the report that murine MSCs may differ-
entiate into mature astrocytes after implantation into neo-
natal mouse brains [3]. Donor MSCs have also been
reported to give rise to neuronal phenotypes in adult mice
brains after transplantation [4,5]. During the last six years,
there have been many reports describing in vitro neural
transdifferentiation of MSCs derived from a range of dif-
ferent species (e.g. human, mouse, rat). All protocols that
have been used for such investigations can be divided into
three broad categories: i.e. those using (i) chemical com-
pounds [6-10], (ii) growth factors [11-14], or (iii) neuro-
sphere-like cultivation [15-20]. Furthermore,
combinations of these different protocols have also been
reported to induce neural differentiation [21,22]. Such
reports of in vitro neural transdifferentiation by MSCs
derived from experimental animal- or human sources
have been based on the detection of neural-related mRNA
as well as proteins by the treated cells. In the present inves-
tigation, RT-PCR and immunocytochemistry were used to
demonstrate the basal expression of several of the com-
monly used marker genes or proteins by undifferentiated
human MSCs. The data obtained by this study revealed a
substantial degree of heterogeneity of the basal expression
of neural-related genes that had not previously been
described.

Results
Characterization of human MSCs
Isolated hMSCs were characterized by three criteria: (i)
adherence to tissue culture plastic, (ii) specific surface
antigen expression, and (iii) multipotent differentiation
as defined by the Mesenchymal and Tissue Stem Cell Com-
mittee of the International Society for Cellular Therapy [23].

Fluorescent activated cell sorting (FACS) analysis demon-
strated that the expanded, plastic adherent cells used in
the present investigation were positive for the surface
markers CD73, CD90 and CD105, but negative for
CD11b, CD19, CD34, CD45 and HLA-DR (Figure 1). To
demonstrate their multipotent potential, MSCs were dif-
ferentiated to adipocytes, chondrocytes and osteocytes
according to published protocols [24]. Lipid vacuoles in
differentiated adipocytes were visualized with Oil Red O

(Figure 2A). However, not all cells demonstrated the same
degree of staining. Induction of chondrogenic differentia-
tion was performed in cell pellets which developed a pro-
teoglycan-rich extracellular matrix. Thin sections of these
pellets were stained with Toluidine Blue (Figure 2B), dem-
onstrating a metachromatic staining that was characteris-
tic of cartilage matrix [25]. Osteogenic differentiation
resulted in an immense production of mineral deposits
that were stained with Alizarin-Red-S (Figure 2C). Thus,
the cells used in this study fulfilled all criteria to be
defined as MSCs.

Neural marker expression by undifferentiated human 
MSCs
The neural specific RNA transcripts, obtained from hMSCs
of four different donors, were categorized into four sub-
groups: (i) neuronal markers, (ii) glial markers, (iii) neu-
ral related transcription factors and (iv) others (Figure 3,
table 1). For every marker, both adult and fetal human
brain extracts were used as positive controls.

Neuronal markers
One of the neuronal markers investigated was dopamine
receptor D2 (DRD2), a marker for dopaminergic neurons
[26], which was moderately expressed by three donors
(donors 1, 2 and 4). Transcripts for enolase2 (or neuron-
specific enolase, NSE), normally found in mature neurons
and in cells of neuronal origin [27], were also found in
human MSCs (donor 2 moderate, donors 3 and 4 weak).
Microtubule-associated protein 1b (MAP1b), that is sug-
gested to play an important cytoskeletal role in develop-
ment and function of the nervous system [28], was
strongly detected in donors 2 to 4 as well as moderately in
donor 1. Other widely used markers for neurons are the
neurofilaments (NF). The expression of NFH (heavy),
NFM (medium) and NFL (light) in human MSCs was ana-
lyzed in the present study. Low levels of transcripts for
NFL could only be detected in donors 1 and 4, but mod-
erate levels were found in donor 2. The syntaxin (STX1A)
functions in the fusion of synaptic vesicles with the synap-
tic membrane of neurons [29]. However, a moderate
amount of STX1A was also detected in the undifferenti-
ated MSCs of donor 3 and 4. Another synaptic vesicle-
related protein, synaptophysin (SYP) [30], was only
slightly detectable in donors 2 to 4. The expression of tyro-
sine hydroxylase (TH), a neurotransmitter-related enzyme
in catecholaminergic neurons, was also only weakly
detectable in donor 2. No expression of mRNA for the
axonal microtubule-associated protein tau (MAPT, [31])
could be observed (for an overview of the case-by-case
expression of the markers genes, see Table 1),

Glial markers
Analyzed in this study were glial fibrillary acidic protein
(GFAP) [32], myelin basic protein (MBP) [33] and the cal-
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Surface marker expression of human MSCsFigure 1
Surface marker expression of human MSCs. FACS analysis of the immunophenotypic surface profile for CD11b, CD19, 
CD34, CD45, CD73, CD90, CD105 and HLA-DR of isolated hMSCs. Red histograms represent the fluorescence from nega-
tive-control cells incubated with only secondary antibody; black histograms represent the counts of cells incubated with the 
relevant primary antibody. The logarithm on the X-axis (FL1-H channel) represents the intensity of the fluorescent signal and 
the number of cells is given on the Y-axis. HMSCs isolated in this study were positive for the markers CD73, CD90 and 
CD105, but negative for CD11b, CD19, CD34, CD45 and HLA-DR according to the criteria for MSCs.
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cium binding protein, S100β [34]. None of the hMSCs
were found to express S100β or GFAP, an intermediate fil-
ament protein that is normally expressed by astrocytes
and Schwann cells. However, 3 of the hMSC population
(donors 2–4) were found to express low levels of mRNA
for MBP, a major myelin associated protein.

Neural-related transcription factors
Transcripts for achaete-scute complex homolog 1 (ASCL1,
also known as Mash1), a transcription factor that plays a
role in neuronal commitment and differentiation and in
the generation of olfactory and autonomic neurons [35],
could not be detected in any of the donor cells. Further-
more, none of the donor cells expressed mRNA for neuro-
genic differentiation 6 (NEUROD6), a factor suggested to
be involved in the development and maintenance of the
mammalian nervous system [36]. However, the expres-
sion of the homeobox protein Engrailed-1 (important in
the formation of interneurons [37] as well as in the
regionalization of the developing brain [38]) and Nurr1
(involved in the function of dopaminergic neurons [39]),
were detected at moderate (donor 3) and strong levels
(donors 1, 2 and 4).

Others
The transcripts investigated in this category were Bag1,
nestin and also GAPDH (which served as an internal con-
trol). Bag1, which has anti-apoptotic functions in a variety
of cell types and plays an essential role in the survival of
differentiated neurons [40], was highly expressed in all
donor samples. The intermediate filament protein nestin,
was initially identified as a marker for neural stem cells
[41], but has since been found to have a much broader
expression in a range of cell types and tissues [42-47].
Transcripts for nestin were also detected in all human
donor MSCs samples, however, there were clear differ-
ences in the intensity of the signal; MSCs derived from
donor 2 being much stronger than that from donors 1, 3
and 4.

Differentiation capacity of hMSCsFigure 2
Differentiation capacity of hMSCs. The hMSCs were cultivated for 21 days in differentiation media to show multi-potenti-
ality. (A) Adipogenic differentiation resulted in the formation of lipid vacuoles which were stained with Oil Red O; (B) Thin sec-
tions of chondrogenic differentiated hMSC-derived cell pellets were stained with Toluidine Blue, demonstrating a highly 
enriched extracellular matrix; (C) Alician Red staining of hMSCs induced to osteocytes revealed an immense mineral deposi-
tion.

Table 1: Summary of neural-related marker expression

Marker Donor 1 Donor 2 Donor 3 Donor 4

DRD2 ++ ++ - ++
Enolase 2 - ++ + +

MAPT - - - -
MAP1b ++ +++ +++ +++
NFH - - - -
NFM - - - -
NFL + ++ - +

STX1A - - ++ ++
SYP - + + +
TH - + - -

GFAP - - - -
MBP - + + +

S100β - - - -

ASCL1 - - - -
Engrailed-1 +++ +++ ++ +++
NEUROD6 - - - -

Nurr1 +++ +++ ++ +++

Bag1 +++ +++ +++ +++
Nestin ++ +++ ++ ++

GAPDH +++ +++ +++ +++

PCR transcript expression was defined as strong (+++), moderate 
(++), weak (+) or not detectable (-).
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The commercially available samples of total RNA that had
been generated from adult and fetal human brain samples
showed developmentally related changes in the intensity
of expression for certain mRNAs, e.g. stronger bands for
the neuronal markers Enolase2, NFH, SYP, the glial mark-
ers MBP and S100β, and the transcription factor
Engrailed-1 were fall elevated in control adult samples.
However, weaker bands for MAP1b, nestin and the tran-
scription factors ASCL1 and NEUROD6 were found in
adult control samples. No major differences in the inten-
sity of bands between control adult and fetal brain sam-
ples could be found for the other transcripts (i.e. DRD2,
NFM, NFL, STX1A, TH, GFAP, Nurr1 and Bag1). The dif-
ferences in mRNA transcripts resemble the expected shifts
in the intensity of expression during the development of
the nervous system. The transcription factors of the basic
helix-loop-helix family ASCL1 and NEUROD6 are
expressed in neuronal progenitors [48,49] and the
cytoskeletal constituents nestin and MAP1b were
expressed at higher levels in the control fetal samples. On
the contrary, Enolase2 [27], NFH [50], SYP [30], MBP [33]
and S100β [51] are expressed by more mature cells,
reflecting their higher level of expression in the control
adult samples. Although the transcription factor
Engrailed-1 plays a role in the formation of interneurons
as well as in the regionalization of the developing brain
[38], it is possible that the developmental stage from
which the control fetal sample was obtained had already
passed the time point for expression. Alternatively, expres-
sion of the transcript is only found in a fraction of cells
and is diminished in total brain mRNA extraction. The

faint Engrailed-1 band detected in the adult samples may
have reflected its anti-apoptotic role in mature neurons
[52].

Immunocytochemical detection of neural marker proteins 
by undifferentiated human MSCs
In addition to RT-PCR, a number of non-differentiated
donor hMSC samples were chosen for immunocytochem-
ical analysis. Staining of Enolase2 revealed a cytoplasmic
distribution (Figure 4A). A cytoskeletal staining was
observed with antibodies against MAP1b (Figure 4B) and
nestin (Figure 4D). However, staining for Nurr1 was
detected at different intensities and revealed a cytoplasmic
distribution (Figure 4C). Quantification of immunocyto-
chemical staining from three donors (Figure 4E) revealed
that Enolase2 expression was found in 59 ± 27.1% of all
cells, Map1b expression was found in 66.7 ± 12.2% of all
cells, and Nurr1 expression was found in 46.3 ± 10.8% of
the cells expressed. Nestin expression was found to be
present in all cells of the three donors analyzed. Thus, this
data demonstrates that both protein and mRNAs of a
range of neurally-related markers is already expressed by
non-differentiated hMSC.

Discussion
The potential of adult MSCs to transdifferentiate into neu-
ral cell types has aroused great interest in research. Such a
capacity opens extensive possibilities for autologous ther-
apeutic treatments in a variety of neurological disorders.
However, clear and unequivocal data regarding differenti-
ation needs to be generated to provide a solid foundation

Neural marker expression of human MSCsFigure 3
Neural marker expression of human MSCs. Neural marker transcripts of four different donors were amplified by RT-
PCR. Water served as negative control and commercially obtained adult (a) or fetal (f) brain cDNA was used as positive con-
trol. GAPDH was used as standard.
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Expression of neural related proteinsFigure 4
Expression of neural related proteins. Immunofluorescence for neural related proteins in undifferentiated hMSCs. (A) 
Enolase2, (B) MAP1b, (C) Nurr1 and (D) nestin. Staining revealed cytoplasmic distribution of Enolase2 and Nurr1, whereas the 
staining of MAP1b and nestin was cytoskeletal. Scale bar 100 μm. (E) Quantification of the percentage of stained cells from 
three different donors revealed following data: Enolase2 expression was found in 59% ± 27.1% of all cells, 66.7% ± 12.2% 
Map1b positive cells, and 46.3% ± 10.8% of the cells expressed Nurr1. Nestin expression was found to be present in all cells 
analyzed.
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for further studies. In the present investigation, undiffer-
entiated hMSCs were found to express a number of neu-
ral-related genes (albeit at rather low levels for some
mRNAs). Significantly, it became clear that there was con-
siderable donor-related heterogeneity in the expression
pattern of the hMSC populations, even though the criteria
for isolation and identification (as set out by the Mesen-
chymal and Tissue Stem Cell Committee of the International
Society for Cellular Therapy [23]) were followed. It is possi-
ble that such donor heterogeneity might be responsible
for the variable degree of success reported by a number of
research groups in their ability to transdifferentiate
hMSCs to a neural phenotype.

One of the first descriptions of neural differentiation by
hMSCs reported the detection of nestin and GFAP after
differentiation, but importantly failed to report the pre-
differentiated phenotype of the cells [11]. This same over-
sight has also occurred in a most recent publication dem-
onstrating the generation of neural cell types from human
bone marrow-derived MSCs [53]. Neurospheres derived
from human MSCs were shown immunocytochemically
to express nestin and Musashi-1, however, the basal
expression profile of the MSCs was not reported. Rapid
morphological changes of rat MSCs have also been
reported to be associated with the detection of enolase2
and NFM (amongst other markers [6]). However, the non-
treated, control cells were not analyzed and the rapid mor-
phological changes aroused great scepticism because they
did not reflect normal developmental processes [54]. Such
changes were later demonstrated to be due to the break-
down of the actin cytoskeleton [55].

Previous attempts to identify the basal expression pattern
of undifferentiated human MSCs using serial analysis of
gene expression (SAGE) has revealed the presence of
mRNA not only characteristic for mesenchymal cells but
also endothelial, epithelial and neuronal lineages [56].
Neural related mRNAs found to be amongst the 50 most
abundant gene products expressed included high molecu-
lar weight neurofilament (NFH), the high affinity nerve
growth factor receptor (TrkA) and glial derived nexin 1
alpha. However, in stark contrast, NFH was undetectable
in all donor hMSC samples of the present investigation.
This observation likely reflects the high degree of donor
sample heterogeneity mentioned earlier.

Heterogeneity of gene expression by rat and human MSCs
has also reported following RT-PCR of cell populations
and clonal cell lines, revealing mesodermal, germinal,
endodermal and ectodermal expression patterns [57,58].
Neurally related transcripts expressed by rat MSC included
NMDA receptor sub-units, syntaxin, amyloid precursor
protein, and both rat and human MSCs were reported to
express GFAP and NeuroD mRNA [57,58]. Both of these

transcript were absent in all of the samples used in the
present investigation. However, Syntaxin 1A was weakly
expressed in 2 of the human samples but was negative in
the remaining 2 donor samples, once again highlighting
the substantial inter-donor variability.

In the present investigation, the expression of nestin
mRNA could be found in all donor samples of undifferen-
tiated hMSCs. Nestin was originally identified as an inter-
mediate filament protein expressed by neural stem cells
[59]. Recent reports using rat MSCs have described undif-
ferentiated MSCs as being nestin-negative, but that expres-
sion increased progressively with increasingly higher
passage numbers [15]. The acquisition of nestin expres-
sion by the higher passage number MSCs has been sug-
gested to be an important stage in the ability of the cells
to form spheres and subsequently undergo neural differ-
entiation [15]. It is possible that such progressive increase
of nestin expression may reflect the culture conditions
selecting for – and enhancing the proliferation of a sub-
population of nestin-positive cells. The presence of such
sub-populations of stem cells or progenitors within MSCs
may contribute to the high degree of heterogeneity
reported by others [56-58,60,61]. Indeed both intrinsic
plasticity of MSCs and contamination by stem cells from
other sources (neural crest-derived stem cells) have been
suggested to be contributory mechanism to the apparent
switch to a neural phenotype by MSCs [58,62]. Although
recent publications have demonstrated the expression of a
number of neural-related genes in non-differentiated pop-
ulation or clones of MSCs, the degree of donor variability
has, until now, remained unclear.

Transplantation of undifferentiated MSCs into experi-
mental models of CNS injury has clearly demonstrated
improved motor and sensory function [63-65], and in a
phase I clinical study, transplantation was proven to be
safe [66,67]. Following engraftment, donor MSCs were
reported to be associated with a range of neuronal and
glial markers suggesting the spontaneous differentiation
of the grafted cells in vivo [5,68-70]. Since it was shown,
that the spontaneous differentiation of grafted cells occurs
only in few cells [68], other reasons for inducing a benefi-
cial outcome should be considered. An on-going discus-
sion revolves around the possible improvement in
function being an outcome of cell fusion events between
donor MSCs with host cells [71,72]. However, cell fusion
also occurs at only a very low frequency [72] and it has
been described that neural differentiation can occur with-
out this phenomenon [15,19]. An alternative, and possi-
bly more likely, mechanism for improved function after
implantation of MSCs may be due to the local release of
growth factors [73,74]. It has been shown that undifferen-
tiated MSCs express a range of growth factors including
neurotrophin-3 (NT-3), brain-derived neurotrophic factor
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(BDNF), glial-derived neurotrophic factor (GDNF), nerve
growth factor (NGF), vascular endothelial growth factor
(VEGF), hepatocyte growth factor (HGF) [75], ciliary neu-
rotrophic factor (CNTF) and basic fibroblast growth fac-
tors (bFGF) [74,76,77]. These factors could certainly play
a role in several processes, including neurogenesis, neuro-
protection, vascularisation and scar inhibition as it was
already demonstrated for VEGF [78]. Such a donor heter-
ogeneity was also reported by others for growth factor
secretion by hMSCs. Transplantation of cells was found to
promote a variable, donor-dependent degree of axon
growth and functional recovery [74]. Furthermore, it is
possible that donor MSCs may also influence axonal or
tissue regeneration in- and around the host lesion site by
providing an array of growth-supporting extracellular
matrix molecules, including fibronectin, collagens, lam-
inin, hyaluronan and proteoglycans. These molecules are
involved in migration, cell survival, cell proliferation and
cell differentiation (reviewed in [79]) and a change in
their local concentrations may influence endogenous neu-
ral stem cells [77].

Conclusion
The ability of MSCs, in particular human MSCs, to gener-
ate neural-related cell types for future transplantation-
based intervention strategies has become a topic of con-
siderable controversy. A number of possible mechanisms
have been suggested to explain such cellular behaviour,
including true transdifferentiation, the presence of multi-
ply-primed stem cells capable of differentiating into a
number of lineages, contamination by neural crest-
derived stem cells and tissue culture artefacts. The present
investigation supports the contention that MSCs selected
on the basis of plastic adherence, multipotency and FACS
analysis are highly heterogeneous populations of cells. All
donor samples investigated in the present demonstrated
expression patterns that were different from each other.
Such inter-donor variability regarding the expression of
neural-related genes has not been previously described,
but supports the heterogeneity of hMSCs reported by oth-
ers. It is possible that such inter-individual variability may
affect the ability of donated cells to respond to particular
tissue culture conditions. It should therefore be consid-
ered that not all donated MSCs may be appropriate for
future autograft cell transplantation strategies.

Methods
Sampling of human MSCs
Bone marrow was aspirated from patients during hip joint
replacement following informed consent, according to
local ethical board approval of the University Hospital,
Aachen.

Isolation and cultivation of human MSCs
Bone marrow aspirates were diluted 1:5 in mesenchymal
stem cell growth medium (MSCGM, Lonza, Vervieres, Bel-
gium) and immediately seeded into polystyrene plastic 75
cm2 tissue culture flasks at 37°C in 5% humidified CO2.
After seven days, non-adherent cells were removed by
media replacement and adherent cells were expanded in
MSCGM. Media exchange was performed every 3–4 days
until cells reached 80% confluence. For passaging, the
cells were detached with trypsin/EDTA solution (Lonza,
Vervieres, Belgium) and re-seeded with a density of 4000
cells/cm2.

Characterization of isolated human MSCs
For characterization of human MSCs, three criteria were
used: i) adherence to tissue culture plastic, ii) specific sur-
face antigen expression, and iii) multipotent differentia-
tion potential [23]. The morphology of plastic adherent
cells was monitored using an inverse microscope (DM IL
Invers, Leica, Wetzlar, Germany). To detect specific surface
antigens, cells were detached and fixed with 4% parafor-
maldehyde for 20 min. After washing with 0.1 M phos-
phate-buffered saline (PBS), cells were incubated in
blocking solution (20% FBS in PBS, Biowest, Nuaille,
France) for 20 min. After washing with PBS, the cell pellets
(250,000 per antibody) were resuspended in 100 μl PBS,
2 μl primary antibody was added and incubated for 30
min. Monoclonal primary antibodies recognizing surface
markers CD11b (Invitrogen, Carlsbad, USA), CD19,
CD34, CD45, CD73, CD90 (Becton Dickinson, San Jose,
USA), CD105 (Invitrogen) and HLA-DR (Abcam, Cam-
bridge, UK) were used. After three washing steps with PBS,
2 μl of the secondary antibody (Alexa-488 conjugated
goat anti-mouse, Invitrogen) was incubated in 100 μl PBS
for 30 min in the dark. After two final washing steps, the
cells were re-suspended in 400 μl PBS and analyzed using
a FACSCalibur and FACSCalibur software (Becton Dickin-
son).

Multipotency was monitored by in vitro differentiation of
MSCs to adipogenic, chondrogenic and osteogenic line-
ages according to Pittenger et al. [24]. To induce adipo-
genesis, cells were cultivated in adipogenic induction
medium (DMEM (Lonza, Vervieres, Belgium) with 10%
FCS, 0.5 μM dexamethasone, 0.5 μM indomethacin, and
0.5 mM isobutyl-methyl-xanthine (all Sigma, Steinheim,
Germany)). Medium was changed every 3 days for 3
weeks. To visualise lipid droplets, Oil Red O staining
(Sigma) was used as a histologic stain.

Osteogenic differentiation was induced by cultivation of
MSCs in osteogenic induction medium (DMEM with 10%
FCS, 20 nM sodium β-glycerophosphate, 1 nM dexameth-
asone, and 50 μg/ml 1-ascorbic acid 2-phosphate, all pur-
chased form Sigma). Medium was changed every 3 days
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for 3 weeks. Osteogenic differentiation was visualised by
Alizarin-Red-S staining (Sigma) of matrix mineralization
associated with osteoblasts (according to the method of
[80]).

For chondrogenic differentiation, 2.5 × 105 cells were cen-
trifuged to obtain cell pellets. These pellets were induced
with serum free induction media (DMEM) containing
100 nM dexamethasone, 0.17 mM 1-ascorbic acid 2-phos-
phate, 100 μg/ml sodium pyruvate, 40 μg/ml proline (all
Sigma), and 1% ITS-Plus (Becton Dickinson). TGF-β3
(CellSystems, Sankt Katharinen, Germany) was added in
a concentration of 10 ng/ml at each medium exchange.
After 21 days, pellets were fixed with PFA and paraffin
embedded. Thin sections were stained with Toluidine
blue (Sigma) to show metachromatic staining which is
characteristic of cartilage [25,80].

Gene expression analysis
RNA was isolated using the RNeasy Mini Kit (Qiagen,
Hilden, Germany) according the manufacturers protocol.
The integrity of isolated RNA was evaluated using the
2100 bioanalyzer (Agilent Technologies, Palo Alto, USA).
For PCR analysis 2 μg RNA was reverse transcribed using
Omniscript Reverse Transcriptase (Qiagen, Hilden, Ger-
many) according the manufacturers protocol using oligo-
d(T) primers and random hexamers. Commercially avail-
able samples of human adult and fetal brain total RNA
were used as positive controls (Ambion, Austin, USA and
Clontech-Takara Bio Europe, Saint-Germain-en-Laye,
France). For amplification of target genes, 0.2 units Taq
polymerase (Amersham Biosciences, New York, USA)

were used with a standard PCR program (denaturation: 10
sec at 96°C; primer hybridisation: 2 min at various target
specifc temperatures, see table 2; elongation: 2 min at
72°C). PCR products were analyzed by electrophoresis on
a 1.7% agarose gel and visualized with 0.5 μg/ml ethid-
ium bromide. PCR conditions were established using
adult and fetal brain cDNA and best results from at least
two independent experiments were chosen for expression
analysis of hMSCs. Expression of each marker was moni-
tored by testing cDNA of all four donors using the same
master mix, PCR condition and gel electrophoresis.

Immunocytochemistry
The hMSCs were seeded at a relatively low density to allow
the clear identification of individual cells for quantifica-
tion. After removal of the media and washing in 0.1 M
phosphate buffered saline (PBS), cells were fixed with 4%
paraformaldehyde in PBS for 30 min. Afterwards, the
samples were washed three times with PBS and non-spe-
cific binding sites blocked by a 1 hour incubation in PBS
containing 3% normal goat serum (Sigma), 1% bovine
serum albumin (BSA, fraction 5, Serva, Heidelberg, Ger-
many) and 1% Triton X-100 (Sigma). The primary anti-
bodies anti-enolase2 (monoclonal, Dako M0873; 1:500),
anti-MAP1b (monoclonal, Sigma M4528; 1:500), anti-
Nurr1 (monoclonal, Abnova H00004929-M07; 1:200)
and anti-nestin (polyclonal, Chemicon AB5922; 1:200)
were diluted in PBS containing 1% BSA and incubated at
room temperature overnight. The secondary antibodies,
goat-anti-mouse Alexa 594 (1:500, Invitrogen) and goat-
anti-rabbit Alexa 488 (1:500, Invitrogen) were also
diluted PBS containing 1% BSA and incubated for 2.5

Table 2: Primer sequences and PCR conditions

Primer Forward (5'- 3') Reverse (5'- 3') Hybridization 
temperature (°C)

Cycles Amplicon size (bp)

ASCL1 aag caa gtc aag cga cag cg agtcgt tgg agt agt tgg gg 62 35 352
Bag1 tca ccc aca gca at gaga ag cag aaa acc ctg ctg gat tc 66 30 344
DRD2 tca tcg ctg tca tcg tct tcg gat gga gat cat gac ggt gac 65 40 344

Engrailed-1 agc cac agg cat caa gaa cg cac ctg tcc gag tct ttc tc 65 40 303
Enolase2 ggc aaa ggt gtc ctg aa gg c gtg ccg gcc ttc aac gtg at 67 30 284
GAPDH tga agg tcg gag tca acg gat ttg gt cat gtg ggc cat gag gtc cac cac 62 30 983
GFAP gtg gta ccg ctc caa gtt tgc ag aat ggt gat ccg gtt ctc ctc 59 40 373

MAP1B act gca gga cca gga act ac cag tgt cac ctg cat gtt gc 67 25 255
MAPT agc tct ggt gaa cct cca aaa tc cat cca tca taa acc agg agg tg 58 40 361, 454
MBP cct ggc cac agc aag tac ggg agc cgt agt gag cag t 61 35 251

Nestin gcg ttg gaa cag agg ttg gag gca cag gtg tct caa ggg tag 65 30 385
NEUROD6 ctg aga atc ggc aag aga cc ctg cac agt aat gca tgc cg 62 35 433

NFH tga aca cag acg cta tgc gct cag cac ctt tat gtg agt gga cac aga g 58 35 398
NFL acc aac gag aag caa gcg ctc cat cag cgc tat gca gga cac 59 35 590
NFM aaa gac atc gag gag gcg tc cgc tgc gta cag aaa act cc 61 35 592
Nurr1 aag gct tct tta agc gca cag cga tta gca tac agg tcc aac 55 25 518
S100β gga gac aag cac aag ctg aag agc tac aac acg gct gga aag 63 30 322

STX1A atc gca gag aac gtg gag gag agc gtg gag tgc tgt gtc ttc 67 30 230
SYP ggt gct gca atg ggt ctt cgc aag ccg aac acc acc gag gtg 59 35 537
TH atc cac cat cta gag acc cg tcc ccg ttc tgc tta cac ag 63 40 824
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hours at room temperature. Finally, nuclei were stained
with diamidinophenylindole (DAPI, 1:1000, Roche),
cover-slipped with Fluoroprep (bioMerieux, Marcy
l'Etoile, France) and observed using a Leica DM RX micro-
scope (Leica, Wetzlar, Germany) with 20× objective.
Omission of primary antibodies served as negative con-
trol and resulted in no detectable staining. Immunocyto-
chemistry of cells obtained from three different donors
was performed on 2 separate occasions. The proportion of
cells immunoreactive for a particular antigen was quanti-
fied by counting 100 cells per donor sample. To achieve
this, 10 randomly chosen, non-overlapping microscopic
fields (each 577 μm × 465 μm) distributed evenly across
the whole sample were photographed to provide repre-
sentative images of the stained and non-stained cells. The
10 fields were believed to be representative of whole
donor samples because the immunocytochemistry
revealed that there was no heterogeneity of the distribu-
tions of the stained and non-stained cells – i.e. there were
no clusters of stained cells or non-stained cells.
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