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Abstract

Background: Parkinson's disease (PD) is caused by degeneration of dopamine (DA) neurons in
the ventral midbrain (vMB) and results in severely disturbed regulation of movement. The disease
inflicts considerable suffering for the affected and their families. Today, the opportunities for
pharmacological treatment are meager and new technologies are needed. Previous studies have
indicated that activation of the nuclear receptor Retinoid X Receptor (RXR) provides trophic
support for DA neurons. Detailed investigations of these neurotrophic effects have been hampered
by the lack of readily available DA neurons in vitro. The aim of this study was to further describe
the potential neurotrophic actions of RXR ligands and, for this and future purposes, develop a
suitable in vitro-platform using mouse embryonic stem cells (mESCs).

Results: We studied the potential neurotrophic effects of the RXR ligand LG100268 (LG268) and
the RXR-Nurrl ligand XCT0139508 (XCT) in neuronal cultures derived from rat primary vMB and
mESCs. RXR ligands protect DA neurons from stress, such as that induced by the PD-modeling
toxin 6-hydroxy dopamine (6-OHDA) and hypoxia, but not from stress induced by oxidative
hydrogen peroxide (H,O,) or the excitotoxic agent kainic acid (KA). The neurotrophic effect is
selective for DA neurons. DA neurons from rat primary vMB and mESCs behaved similarly, but the
mESC-derived cultures contained a much higher fraction of DA cells and thus provided more
accessible experimental conditions.

Conclusions: RXR ligands rescue DA neurons from degeneration caused by the PD simulating 6-
OHDA as well as hypoxia. Thus, RXR is a novel promising target for PD research. mESC-derived
DA cells provide a valid and accessible in vitro-platform for studying PD inducing toxins and
potential trophic agents.

Background

PD is caused by progressive degeneration of dopaminergic
neurons in the substantia nigra of the vMB [1-3]. The
resulting lack of the neurotransmitter DA leads to
decreased signaling within the nigro-striatal pathway and
produces disturbed regulation of movement with tremor,

bradykinesia and rigidity [4]. As of today, there is no cure
for PD.

Nuclear hormone receptors (NRs) are emerging as inter-
esting factors in PD research. Most NRs are regulated by
small, lipophilic ligands that easily enter the cell nucleus
to control transcription. RXR (NR2B1-3) is activated by
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the synthetic ligand LG268 [5]. Interestingly, this activa-
tion has been shown to rescue DA neurons from degener-
ation in survival assays based on primary cultures [6].
Increased survival was dependent on activation of the het-
erodimer between RXR and the orphan NR, Nuirl
(NR4A2), as substantiated by several findings. Survival
was selective for Nurrl-expressing neurons in vMB as well
as cortex and the effects were abolished in cortical cultures
from Nurrl knock-out mice. Furthermore, the ligand XCT,
which is selective for the Nurrl-RXR heterodimer, also
increased vMB DA neuron survival. Nurrl is essential for
vMB DA neuron development [7], regulates genes essen-
tial for DA synthesis and storage [8-10], and has been
indicated to have a role in neuroprotection of mature DA
cells in several studies [11,12]. Indeed, human Nurrl-
mutations have been associated with familial PD [13],
providing clinically relevant evidence for such a role.

The origin of DA cell degeneration in PD is largely
unknown, but it is suggested to be caused by agents caus-
ing oxidative damage and energy depletion in the brain
[14-16]. The hydroxylated DA analogue 6-OHDA is com-
monly used to model nigral degeneration in experimental
animals as well as in vitro, where it causes DA cell death
and neurotransmitter depletion [17]. In vivo, its uptake is
selective for DA cells through the DA transporter, and
when inside the neuron, 6-OHDA produces oxidative
stress [18,19] as well as mitochondrial inhibition [20].
Several other stressors can also be used to induce neuro-
degeneration and stress, for example hypoxic environ-
ments [21], the oxidative agent H,0, [22,23], and the
excitotoxic glutamate analogue KA [24-26].

Primary neuronal cultures provide data of high biological
relevance. However, their use is diminished by low yields
and high technical demands. Recently, we developed a
platform for in vitro studies using DA cells derived from
mESCs. Overexpression of the homeobox domain con-
taining transcription factor Lmxla under the control of
the neuroprogenitor specific Nestin enhancer (NesE)
induces formation of high numbers of bona fide vYMB DA
neurons in culture [27]. These neurons express all relevant
neurotransmitters, show proper electrophysiological char-
acteristics as well as physiological levels of DA and metab-
olites. Moreover, they survive and regenerate when grafted
into 6-OHDA lesioned rat brains [28].

Here we have used DA neurons derived from primary vMB
cultures as well as mESCs to further establish the neuro-
trophic role of RXR activity. We can show that RXR ligands
selectively protect DA neurons from stress caused by 6-
OHDA and hypoxia, but not from KA and H,0,. The pro-
tective effects are only seen in Nurrl-expressing DA cells.
To conclude, RXR ligands and mESC-derived DA cells rep-
resent promising platforms in the search for novel PD
therapies.

http://www.biomedcentral.com/1471-2202/10/146

Results and discussion

Since primary neurons are retrieved directly from develop-
ing brain tissue, artifacts are small, assuring data of high
biological relevance. Primary neuronal cultures were pre-
pared from rat E14.5 vMB. The initial extensive neurode-
generation declined significantly within approximately 24
hours of plating and after three days in vitro (DIV) the cell
death was negligible, whereby the cultures could be main-
tained for weeks (also see [29]). After three DIV, neurons
have clearly visible neurites and a mature neuronal mor-
phology. Approximately 2-3% of the neurons in the vMB
cultures was dopaminergic and could be identified by
immunostaining against the rate-limiting enzyme in DA
synthesis, tyrosine hydroxylase (TH). To investigate the
specificity of the RXR effects on neuronal survival, several
stressors were used.

RXR ligands rescue primary vMB DA neurons from
6-OHDA-induced degeneration

To simulate PD-like neurodegeneration, primary vMB cul-
tures of three to five DIV were exposed to the neurotoxic
DA analogue 6-OHDA. RXR ligands were added three
hours prior to the toxin, and after 20 minutes of 6-OHDA
exposure the medium and ligands were replaced to avoid
unspecific stress from oxidized 6-OHDA. After additional
24 hours, cells were fixed, stained and scored. 6-OHDA
produced clear signs of neurodegeneration in the TH-pos-
itive population, with evident neuronal loss, leaving cell
debris and damaged neurites (Figure 1A). The degenera-
tion was dose dependent (ANOVA, p < 0.01, F 12.6) (Fig-
ure 1B). 15 pM 6-OHDA reduced the number of DA cells
by 60% compared to control (p < 0.01). Simultaneous
exposure of the RXR ligand LG268, rescued the DA neu-
rons from degeneration to 95% of control (p < 0.001, 6-
OHDA vs. LG268 + 6-OHDA) (Figure 1C). RXR is ubiqui-
tously expressed and it heterodimerizes with several NR
subtypes. However, RXR-ligand dependent neurotrophic
effects have been shown to be mediated through Nurrl
[6]. Here, the positive ligand effects after 6-OHDA expo-
sure were only seen for the Nurrl expressing DA neurons,
whereas no neuronal rescue could be detected for the gen-
eral neuronal population in the culture, as determined by
scoring TuJ1-positive cells (Figure 1D). To further relate
the trophic effects to Nurr1, we used the RXR ligand XCT,
which is selective for the Nurrl-RXR heterodimer in the
dose applied (1 uM, see [6]). Indeed, XCT rescued vMB
DA neurons to 103% of control (p < 0.001, 6-OHDA vs.
XCT + 6-OHDA) (Figure 1C). Without exposure to toxic
stress, none of the ligands alone had any effect on cell
number at three to five DIV (data not shown).

RXR ligand rescues primary vmMB DA neurons from
degeneration caused by hypoxia, but not from KA and
H,0,

To study whether the neurotrophic activities of the RXR
ligands were general or rather selective for specific cellular
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Figure |

RXR ligands selectively rescue primary DA neurons from 6-OHDA-induced toxicity. A) Primary vMB cultures
stained for TH-positive DA neurons (red arrow). 6-OHDA-exposure caused neurodegeneration, leaving cell debris (green
arrow) and damaged neurites (green arrowhead). B) 6-OHDA produced a dose dependent toxicity of primary DA cells. 20
minutes exposure of 5, 10 and 15 uM 6-OHDA reduced the number of DA cells by 21%, 40% and 60%, respectively. C) In cul-
tures stressed by 15 pM 6-OHDA, LG268 and the selective Nurr|-RXR ligand XCT rescued the DA neurons from degenera-
tion. D) LG268 had no effects on the total amount of TuJ | -positive cells after 6-OHDA treatment. Stars (*) refer to differences
between control-group (N2) and experimental-group, whereas values above brackets refer to differences between different
experimental-groups. ns denotes non-significant, * denotes p < 0.05, ** denotes p < 0.0 and *** denotes p < 0.001 according

to Tukey's multiple comparison test.

challenges, we studied their effects on several types of
stressors and toxins. Primary vMB DA neurons of three to
five DIV were stressed by hypoxic culture conditions (0-
1% O,, 5% CO,). Ligands were added three hours prior to
the hypoxic insult and kept throughout the experiment.
Cells were fixed, stained and scored after different time
intervals. In control culture conditions there is no
decrease in the number of DA cells over time. However,
hypoxia induced a time dependent decrease in DA cells
(ANOVA, p < 0.001, F 55.2) (Figure 2A). Simultaneous
exposure of LG268 during 24 and 36 hours in hypoxic
conditions partly rescued the DA cells, giving a 30% (p =
ns) and 40% (p < 0.05) increase, respectively, compared
to the untreated cells (Figure 2B). Further, the excitotoxic
glutamate analogue KA and the oxidative agent H,O, were

applied to primary vMB neurons of three to five DIV. KA
as well as H,O, exposure resulted in dose dependent
degeneration of the DA neurons (KA, ANOVA, p < 0.001,
F 277.9) (H,0, ANOVA, p < 0.001, F 79.4) (Figures 2C
and 2D). However, addition of the RXR ligands LG268 or
XCT provided no neuronal rescue at any of the doses
tested. This implies that the ligands are acting on specific
cell death mechanisms, induced by 6-OHDA and hypoxia,
but not on the calcium dependent excitotoxicity caused by
KA or the pure oxidative stressor H,O,.

RXR ligands rescue mESC-derived DA neurons from
6-OHDA-induced degeneration

We further used mESC-derived DA cells as platforms for
our evaluation of RXR ligands. These cells represent great
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Figure 2

RXR ligand rescues primary DA neurons from hypoxia, but not from KA or H,0,-induced toxicity. A) Hypoxia
induced a time dependent decrease in the number of primary DA cells, giving 18%, 42% and 49% reduction after 7, 24 and 36
hours in 0-1% O,, respectively. B) LG268 treatment (grey bars) during hypoxic conditions partly rescued the DA cells, giving a
30% and 40% increase in TH* cells compared to the cultures without added ligand after 24 and 36 hours, respectively. C) KA
exposure at 100 and 500 uM reduced the number of primary DA cells by 52% and 98% compared to untreated cultures,
respectively (black bars). LG268 provided no rescue (grey bars). D) H,O, exposure at 80 and |10 uM gave 70 and 83% neuro-
degeneration, respectively (black bars). This could not be restored by addition of LG268 (grey bars). Stars (*) refer to differ-
ences between control-group (N2) and experimental-group, whereas values above brackets refer to differences between
different experimental-groups. ns denotes non-significant, * denotes p < 0.05, ** denotes p < 0.0l and *** denotes p < 0.001

according to Tukey's multiple comparison test.

progress for in vitro studies, since they provide a very high
number of the correct cell type and homogeneous cul-
tures. Stable NesE-Lmxla mESCs (Lmxla cells) were
induced for neuronal differentiation as monolayer cul-
tures in medium supplemented with the DA instructive
cues Sonic Hedgehog (Shh) and Fibroblast growth factor
(FGF) 8 [28]. After 18 days of differentiation, cells have a
mature phenotype with long extended neuritis and
expression of relevant DA cell proteins including TH (Fig-
ure 3, see also [28]). Cells were given RXR ligands for three
hours and were then exposed to 6-OHDA for another
three hours. Subsequently, media was changed and fresh

ligands were added. Cultures were kept for additional 48
hours before fixation, staining and scoring. 6-OHDA pro-
duced a dose dependent toxicity, with reduced number of
TH-positive cells and degenerate morphology (ANOVA, p
< 0.001, F 83.9) (Figures 3A and 3C). As for the primary
vMB neurons, simultaneous exposure of 6-OHDA stressed
cultures to LG268 completely rescued the DA neurons
from 55% (p < 0.01) reduction to 100% of control (p <
0.01, 6-OHDA vs. LG268 + 6-OHDA) (Figures 3B and
3C). No ligand-effect could be detected in the TuJ1+/TH-
neuronal population (data not shown). Also the selective
Nurr1-RXR ligand XCT fully rescued the vMB DA neurons

Page 4 of 8

(page number not for citation purposes)



BMC Neuroscience 2009, 10:146

http://www.biomedcentral.com/1471-2202/10/146

100

* k%

* k%

% Change in TH+ cells

N2B27 150uM  250uM  500uM

B p<0.01 p<0.001

% Change in TH+ cells

N2B27 6-OHDA 6-OHDA 6-OHDA
LG268

XCT

Figure 3

RXR ligands selectively rescue mESC-derived DA neurons from 6-OHDA toxicity. A) 6-OHDA produced a dose
dependent toxicity in Lmx|a overexpressing mESC-derived DA cells. Three hours exposure of 150, 250 and 500 uM 6-OHDA
reduced the number of DA cells by 33%, 55% and 82%, respectively. B) At 250 uM 6-OHDA, addition of LG268 and XCT com-
pletely rescued the DA neurons, from 55% reduction to 100% and |16% of control, respectively. C) Colony of mESC-derived
DA cells stained red with Cy3-conjugated anti-TH antibody. 6-OHDA reduced the number of TH-positive cell bodies and
remaining cells have degenerate morphology. Simultaneous treatment with LG268 rescued the TH-positive cells from degener-
ation. Stars (*) refer to differences between control-group (N2B27) and experimental-group, whereas values above brackets
refer to differences between different experimental-groups. * denotes p < 0.05, ** denotes p < 0.0 and *** denotes p < 0.001

according to Tukey's multiple comparison test.

from 6-OHDA-induced degeneration (p < 0.001, 6-
OHDA vs. XCT + 6-OHDA) (Figure 3B), suggesting an
important role for Nurrl. Treatment of the cultures with
RXR ligands without prior stressful insult did not affect
the cell number (data not shown). Thus, the mESC-
derived DA neurons reacted similar as primary neurons to
the 6-OHDA stress and the RXR ligands. However, the
much higher number of DA cells in culture substantially
increased the power of the study. Furthermore, once the
proper mESC line was established and the differentiation
protocols were refined, the mESCs offered more accessible
cultures than those of primary neurons, allowing faster
and more experiments.

PD inflicts considerable suffering for the affected and their
families, and it constitutes a great cost for the society.
Today, the opportunities for pharmacological treatment
are meager and mainly consist of substitution with the DA
precursor Levodopa. However its medical potential
decreases severely over time [30]. The development of
neuroprotective or neuroregenerative therapies would
provide great benefits. As such, glial cell line-derived neu-
rotrophic factor (GDNF) has been tested in several clinical
trials against PD [31-35]. Unfortunately, lack of efficacy
and potential hazardous side effects has lessened the ini-
tial enthusiasm, and future development of GDNF-based
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drug therapies seems uncertain. Thus, there is a high need
for alternative strategies to treat PD.

NR ligands are small and lipophilic, and they easily pass
the blood-brain-barrier, providing excellent targets for the
pharmaceutical industry. Indeed, the characterization of
novel NR-mediated signaling pathways during the last
decade has resulted in development of novel drugs used in
the treatment of metabolic disease and cancer. Specifi-
cally, RXR ligands have limited toxicity in humans [36]
and selective RXR ligands would minimize the risk of
adverse effects. Our findings that RXR activity leads to
neuroprotection [6] provide novel possible approaches to
PD research. The neuroprotective effect is mediated, at
least partly, by the Nurrl-RXR dimer. Here, we further
show that RXR ligands provide neurotrophic support after
stress induced by the PD modeling toxin 6-OHDA. The
effects are selective for the Nurrl-expressing DA cells and
do not affect total neuronal number in the cultures. Inter-
estingly, neuroprotective effects are also seen after
hypoxia-induced neurodegeneration. No protective
effects are seen after excitotoxic or pure oxidative stress
induced by KA and H,0,, respectively. Thus, the effects of
ligand activation is not generally neuroprotective, but
rather likely to affect individual cell death pathways.

Conclusions

Ligands activating RXR and the RXR-Nurrl heterodimer
selectively protect DA neurons from stress induced by the
PD-modeling toxin 6-OHDA and hypoxia. Thus, the reg-
ulation of RXR activity holds promises to contribute to a
novel, alternative strategy in PD treatment. Furthermore,
mESC-derived cultures offer accessible platforms of DA
neurons and may provide novel means to conduct valid in
vitro-based PD research.

Methods

Primary vMB Cultures

All experiments were performed in accordance with guide-
lines from the Swedish National Board for Laboratory
Animals. Primary vMB cultures were obtained as previ-
ously described [6]. Briefly, vMB from rat embryos at stage
E14.5 were dissected, mechanically dissociated and plated
on poly-D-lysine coated 12 or 24 well plates in serum free
medium (N2) consisting of a 1:1 mixture of MEM (Gibco,
UK) with 15 mM Hepes buffer (Gibco, UK) and Ham's
F12 medium (Gibco, UK). The mixture was supplemented
with 6 mg/ml glucose, 1 mg/ml bovine serum albumine,
5 pg/ml insulin, 100 pg/ml transferrin, 60 uM putrescine,
20 nM progesterone, 30 nM selenium and 1 mM
glutamine (Sigma). Cultures were incubated for three to
five DIV before treatment. Cultures were keptin 37°C, 5%
CO, and 99% humidity unless otherwise stated.

http://www.biomedcentral.com/1471-2202/10/146

DA cells derived from Lmx| a-expressing mESCs

DA cells were derived from E14.1 mESCs as previously
described [27,28]. Briefly, mESCs were propagated in
feeder free conditions in DMEM (Invitrogen) supple-
mented with 2000 U/ml LIF (Chemicon), 9% KSR, 3%
FBS, 0.1 mM non-essential amino acids, 1 mM pyruvate
(Invitrogen) and 0.1 uM B,-mercaptoethanol (Sigma). For
generation of stable ESC lines, 2 x 1076 cells were nucle-
ofected with 7 ug linearized NesE-mLmx1a-PGK-neo vec-
tor according to protocol (mouse ESC nucleofector kit,
Amaxa biosystems Gmbh, Koeln, Germany), selected with
G418, replated on gelatinized dishes and induced to dif-
ferentiate in N2B27 differentiation medium [37] supple-
mented with 20 ng/ml bFGF, 100 ng/ml FGF8 and 70 nM
Shh. Cells were incubated for 18 days before treatment.
Cultures were kept in 37°C, 5% CO, and 99% humidity
throughout all experiments.

Ligands and stressors

Experiments were performed in triplicates. The ligands
(stock solutions in DMSO; LG268 and XCT, kindly pro-
vided by Dr. Mark Leibowitz at Ligand Pharmaceuticals
and Dr. Peter Ordentlich at X-ceptor pharmaceuticals,
respectively), were diluted to working dilutions in culture
medium and added to the cultures for two to three hours
prior to neurodegenerative stressors. Final concentrations
were 0.1 and 1 pM for LG268 and XCT, respectively. The
DA analogue 6-OHDA was given to the vMB primary neu-
ron cultures at 5-15 uM for 20 minutes before medium
and ligand replacement. Hypoxic stress was induced by
placing cultures in a modular incubator chamber (Billups-
Rothenberg Inc., Del Mar, CA) at 37°C filled with 5% CO,
and 0-1% O, (balanced with N,) from one to 36 hours.
The excitotoxic glutamate analogue KA and the oxidative
agent H,0, were added over night, in the range of 100 to
500 uM and 80 to 110 uM, respectively. To stress mESC-
derived DA cells, 150 to 500 uM 6-OHDA in 0.1% ascor-
bic acid were added three hours before medium and lig-
and exchange. The cultures were left for another 36 hours
in the incubator.

Immunocytochemistry

Paraformaldehyde fixed cultures were incubated over-
night with TH (1:1000, Pel-Freez, Arkansas), TuJl
(1:1000, Babco) antiserum in PBS containing 5% fetal calf
serum and 0.3% triton X-100. Following rinses, cultures
were incubated with FiTC- and Cy3 conjugated secondary
antibodies (Jackson, ImmunoResearch, West Grove, PA)
for direct detection or with biotinylated secondary anti-
bodies followed by detection of immuno-staining using
the ABC immunoperoxidase kit from Vector (Buringame,
CA).
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Microscopical analysis and image collection

Analysis, imaging and cell counting were performed on
Eclipse E1000M and Eclipse TE300 microscopes (both
Nikon) coupled to the Spot2 camera (Diagnostic Instru-
ments, Sterling Heights, MI). Scoring was performed by
cell counting, and counts were made blind to avoid obser-
vation bias. Statistical analyses were performed by one-
way analysis of variance (ANOVA) followed by Tukey's
multiple comparison test when appropriate.

Abbreviations

6-OHDA: 6-hydroxy dopamine; ANOVA: one-way analy-
sis of variance; DA: dopamine; DIV: days in vitro; FGF:
Fibroblast growth factor; GDNF: glial cell line-derived
neurotrophic factor; H,0,: hydrogen peroxide; KA: Kainic
acid; LG268: LG100268; mESCs: mouse embryonic stem
cells; NesE: Nestin Enhancer; ns: non-significant NRs:
Nuclear hormone receptors; PD: Parkinson Disease; RXR:
Rexinoid x receptor; Shh: Sonic Hedgehog; TH: tyrosine
hydroxylase; vMB: ventral midbrain; XCT: XCT'139508.
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