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Abstract
Background: The matrix-like organization of the hippocampus, with its several inputs and
outputs, has given rise to several theories related to hippocampal information processing. Single-
cell electrophysiological studies and studies of lesions or genetically altered animals using
recognition memory tasks such as delayed non-matching-to-sample (DNMS) tasks support the
theories. However, a complete understanding of hippocampal function necessitates knowledge of
the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles
in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-
neuronal recordings and an artificial neural network classifier as a decoder.

Results: The activity of small neuronal ensembles (6-18 cells) over brief time intervals (2-50 ms)
contains accurate information specifically related to the matching/non-matching of continuously
presented stimuli (stimulus comparison). The accuracy of the combination of neurons pooled over
all the ensembles was markedly lower than those of the ensembles over all examined time intervals.

Conclusion: The results show that the spatiotemporal patterns of spiking activity among cells in
the small neuronal ensemble contain much information that is specifically useful for the stimulus
comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator
during recognition memory tasks.

Background
Hippocampal formation has been identified as an impor-
tant substrate for declarative memory for a broad range of
materials in humans [1,2]. In contrast, in rodent studies,
two views respectively hold that the hippocampus is ded-
icated to spatial memory processing [3] and that it associ-
ates general memory items [4]. Regarding the spatial view,
results of several analyses of the stability of place cells
have shown that pattern separation and pattern comple-

tion are apparent in neuronal ensembles of the hippoc-
ampus [5,6]. In support of the general view, several
experiments directly showed activity related to match/
non-match conditions using recognition memory tasks,
such as a delayed non-matching-to-sample (DNMS) task
[7-10]. Spatial information can be regarded as multiple
items that are mutually associated according to temporal
relations [11]. Therefore, place cells might code multiple
events constructing a place experienced in the past [4].
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From this viewpoint, the lines of evidence for the general
and spatial views are not contradictory and are consistent
with the view of the hippocampus as being capable of
auto-associative functions to retrieve entire episodes [12].
On the other hand, the matrix-like organization of the
hippocampus with several inputs and outputs has
inspired some researchers to propose the hippocampal
comparator theory [13-15], which suggests that the hip-
pocampus supports comparison, which might be one ele-
ment in the match/non-match judgements. In this
context, several lines of evidence obtained from analyses
of single neurons in spatial and non-spatial behavioral
tasks suggest that the hippocampus is critical for episodic-
like representations. Nevertheless, our knowledge related
to neuronal computations in the working brain of behav-
ing animals is limited; most of it has been inferred exclu-
sively from changes in the firing rates of individual cells
accumulated through many trials [16,17]. Therefore, to
understand the hippocampal function completely, the
actual encoding of information by the hippocampal neu-
ronal networks of multiple neurons in a single trial during
memory tasks must be elucidated. Recently, some
researchers have attempted to elucidate the functioning of
neuronal networks of the cerebral cortex using an artificial
neuronal network classifier as a decoder that enables us to
analyze spatiotemporal firing patterns among all
observed cells in a single trial [18-20]. Consequently,
using multi-neuronal recording and an artificial neural
network classifier as a decoder, we analyzed spatiotempo-
ral firing patterns among cells in the hippocampal CA1 of
rats. We report its neuronal ensemble code in a single trial
of a DNMS task.

Results
We specifically examined the activities of the neuronal
ensembles to provide quantitative constraints for hippoc-
ampal function. We used a decoding technique based on
a linear classifier for neuronal ensembles (Figure 1). The
decoding approach consists of training and regularizing a
classifier to learn the map from neuronal ensemble activ-
ity to each behavioral label (Figures 2D-2I) (see Methods),
as has been done similarly in recent studies of the inferior
temporal and motor cortices [18-20]. The classifier learns
the map directly from the training sets and generalizes it
to a novel ensemble activity instead of using prior knowl-
edge of the probability distribution of the training sets.
The input comprises neuronal ensemble activities from
simultaneously monitored cells such as those shown in
Figures 1 and 4. After training a binary classifier using a
leave-one-out cross-validation method, the classifier is
useful to decode the ensemble activity in a novel trial of
tasks. Using such classifiers that can be implemented eas-
ily in neuronal networks of the hippocampal CA1, we can
assess the lower bound on the information available in
the ensemble activity in a single trial [19].

Classification performance in neuronal ensembles and 
combination
We used the classifier approach to determine the func-
tional roles of the ensembles of hippocampal CA1 during
the DNMS task. Figure 3 presents the cross-validated per-
formance of the classifier for each neuronal ensemble. The
spiking activity of the ensembles was sufficient to classify
a match tone and non-match tone (stimulus comparison)
with maximum accuracy of 96% over a 25 ms time inter-
val (Ensemble #1: 84.8%, P < 10-6; Ensemble #2: 95.7%,
P < 10-12; Ensemble #3: 87.0%, P < 10-7; chance = 50%;
binomial test; see Methods; Figures 3D and 4). Similarly,
we determined the functional roles of the hippocampal
ensembles in classifying go and non-go responses (motor
selection) and high and low tones during sample and
delay periods (stimulus perception and stimulus reten-
tion). The hippocampal ensembles were not capable of
classifying these roles with sufficient accuracy (For sensory
perception: Ensemble #1: 52.0%, P > 0.3; Ensemble #2:
55.2%, P > 0.1; Ensemble #3: 46.6%, P > 0.6; For stimulus
retention: Ensemble #1: 50.0%, P > 0.4; Ensemble #2:
44.8%, P > 0.7; Ensemble #3: 53.4%, P > 0.2; For motor
selection: Ensemble #1: 51.3%, P > 0.3; Ensemble #2:
58.1%, P > 0.05; Ensemble #3: 52.7%, P > 0.2; chance =
50%; binomial test; see Methods; Figures 3A-C). Moreover,
we compared correct and erroneous responses during the
test periods (correct-error comparison), and low-test tone
periods preceded by high sample tones (low-after-high)
and high test tone periods preceded by low sample tones
(high-after-low) (particular-stimulus comparison). The
results show that the hippocampal ensembles were also
not capable of classifying these with significant accuracy
(For correct-error comparison: Ensemble #1: 54.5%, P >
0.2; Ensemble #2: 56.0%, P > 0.2; Ensemble #3: 68.0%, P
> 0.02; For particular-stimulus comparison: Ensemble #1:
53.3%, P > 0.2; Ensemble #2: 54.1%, P > 0.2; Ensemble
#3: 48.9%, P > 0.5; chance = 50%; binomial test; see Meth-
ods; Figures 3E and 3F). The performance values depicted
in Figure 3 portray how accurately downstream neurons
were able to classify the functional roles in a single trial, as
determined using the computation of a weighted sum of
spikes over a 25 ms time interval. On the other hand, the
classifier performance of the neuronal ensembles, as well
as that of the combination (neurons pooled over all three
ensembles), was enhanced approximately linearly with
the logarithm of the number of participating cells (Figure
3D), indicating that the codes for the stimulus compari-
son are distributed across cells, unlike that described by
the grandmother cell doctrine. Moreover, irrespective of
the large number of cells in the combination, the accuracy
of the combination was markedly lower than those of the
ensembles over all the other examined time intervals (e.g.,
combination of 36 cells, 73.9%; Ensemble #2 of 12 cells,
95.7% over a 25 ms time interval; Figures 3D and 5).
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Decoding stimulus perception, stimulus retention, motor selection, and stimulus comparison from hippocampal ensemble activityFigure 1
Decoding stimulus perception, stimulus retention, motor selection, and stimulus comparison from hippocam-
pal ensemble activity. A: The decoder classifies binary labels--low and high tones during sample and delay periods, no-go and 
go responses, and match and non-match tones during test periods--based on neuronal ensemble activity patterns. The dots 
show the raw spiking activity pattern of the hippocampal ensemble obtained while the rat performs the DNMS task. The circles 
are linear classifiers, each of which linearly combines the spiking activities as inputs (weighted sum plus bias; bias component 
not shown). The weights are determined using a statistical learning algorithm (linear support vector machine (SVM)) applied to 
each training dataset such as those shown in B-G. Finally, each SVM specialized for stimulus perception (SVM H/L P), stimulus 
retention (SVM H/L R), motor selection (SVM G/NG), and stimulus comparison (SVM M/NM), classifies the behavioral events. 
B-G: Typical raster plots of raw spiking activity of hippocampal ensemble #1 used for SVM classification in low tone, high tone, 
no-go response, go response, non-match, and match trials, respectively. The middle traces show sequences of events within a 
trial. The lower lines show intervals in which SVM used ensemble activity to classify low and high tones during the sample (solid 
lines in B and C) and delay (dotted lines in B and C) periods, or no-go and go responses or non-match and match tones during 
test (solid lines in D-G) periods.
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Time resolution of code for stimulus comparison
By investigating the degree to which classification per-
formance depended on the bin size of the spike count, we
examined the temporal resolution of the ensemble code.
Bin sizes of 2-50 ms yielded better performance than
larger bin sizes (Figure 3G). A 2-ms bin typically con-

tained zero or one spike. Consequently a few spikes from
a small number of neurons are sufficient to encode the
stimulus comparison in the hippocampal ensembles.

Discussion
In this study, the activity of small neuronal ensembles (6-
18 cells) in the hippocampal CA1 was used to classify the
stimulus comparison with good accuracy over brief time
intervals (2-50 ms). They were not useful to classify the
stimulus perception, stimulus retention, or motor selec-
tion. The accuracy of the ensembles for the stimulus com-
parison was markedly higher than that of the
combination (36 cells).

Small neuronal ensembles in the hippocampal CA1 
specifically code stimulus comparison
During test periods in which the rats prepare for go/no-go
responses, we examined the stimulus comparison as well
as the motor selection. The motor selection of go/no-go
responses contains the stimulus comparison of match/
non-match tones because, in correct trials, go and no-go
responses respectively correspond to non-match and
match tones. It is possible that the low accuracy of the
ensembles for the motor selection suggest that the activi-
ties of the neuronal ensembles are not useful to classify
the stimulus comparison. To verify the stimulus compari-
son without the influence of the motor functions, we
examined ensemble activities during match and non-
match tones to which identical behavioral responses (go
responses) were conducted. Moreover, to exclude the
influences of correct and erroneous responses and the par-
ticular stimuli being presented, we examined the classifi-
cation performance of the ensemble activity in relation to
the correct-error difference and the particular-stimulus
presentation. The results show that, using a linear classi-
fier that can be realized easily in downstream neurons by
summating appropriately weighted inputs, we can clearly
characterize that at the ensemble level, the most available
information in the hippocampal CA1 in each single trial
is specifically the stimulus comparison: it is neither the
correct-error difference nor the particular-stimulus pres-
entation.

Based on the results of ensemble analyses on a trial-to-
trial basis, Deadwyler and colleagues inferred multiple
representation and conjunctive encoding in activities of
small hippocampal ensembles consisting of 10 neurons
[7]. In contrast with the present results, they showed that
the stimulus comparison in the hippocampal ensembles
was highly correlated with correct and erroneous
responses. The reason for the inconsistent results might be
differences in the tasks (spatial vs non-spatial versions of
DNMS task) and differences in the ensemble analysis
tools (canonical discriminant analysis vs. SVM). Further-
more, because we examined neuronal ensemble activities
only in the hippocampal CA1, the activity of the hippoc-

Auditory-guided continuous delayed non-matching-to-sample taskFigure 2
Auditory-guided continuous delayed non-matching-to-
sample task. A: Sequence of events within a single continuous 
trial and delay. Each trial consisted of a 15 s tone presentation 
and a 3 s response-opportunity period following a 5 s delay 
period. The response-opportunity period started 1 s after the 
onset of the tone presentation of each trial. The upper bold 
lines represent sample and test periods. B: Typical sequence of 
trials, delays and responses within a session. C: In a trial in which 
a non-match tone is presented, the tone differs from that pre-
sented in the previous trial; rats poke their nose into a hole to 
obtain a reward. In a trial in which a match tone is presented, 
the same tone is repeated; rats do not poke their nose into the 
hole. Even when rats poke their nose on match trials, they 
receive no reward. Consequently, rats learn not to poke their 
nose in match trials. D-I: Examples of a sequence with sample, 
delay, and test periods for stimulus perception (D), stimulus 
retention (E), motor selection (F), stimulus comparison (G), 
correct-error comparison (H), and particular-stimulus compari-
son (I). Each shaded box shows the interval for the decoder. 
Each arrow on the right side presents an example vector to one 
of the labels being classified.
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ampal CA3 analyzed in the Deadwyler's study might
explain the inconsistency of the results. The results of the
present study illustrate that small neuronal ensembles in
the hippocampal CA1 are specifically dedicated to stimu-
lus comparison. The results support the notion that the
hippocampus contributes to memory by identifying con-
sistencies across experiences that constitute new associa-
tions, as reported from some previous studies [4,7,10,15].

The classification performance for the stimulus 
comparison of neuronal ensembles is better than that of 
their combination
Several lines of evidence [21-24] suggested that firing rate
modulations of individual neurons and spike timing
among neurons contain information in the neuronal
ensembles. Given that the small neuronal ensembles in
the hippocampal CA1 contains information related only
to the firing rate modulations of individual neurons, the

Classification performances and time resolution of code for stimulus comparisonFigure 3
Classification performances and time resolution of code for stimulus comparison. A-F: Classification performance 
for linear classifier on test data (not used for training) as a function of the number of neurons on a logarithmic scale in ensem-
bles #1 (green), #2 (blue), and #3 (red) and combination (neurons pooled over all ensembles; dotted black) for decoding stim-
ulus perception (A), stimulus retention (B), motor selection (C), stimulus comparison (D), correct-error comparison (E) and 
particular-stimulus comparison (F). The input from each neuron was the spike count in consecutive 25 ms bins. The intervals 
are set at -10 - -5 s (A), -5 - 0 s (B) and 0 - 1 s (C-F) after the test tone onset. G: Time resolution of code for stimulus compar-
ison. Average classification performance over three ensembles as a function of bin size (2-200 ms, temporal resolution) to 
count spikes within a 0-1 s window after the test tone onset for stimulus comparison. Error bars show the SEM. Dashed lines 
show chance levels (= 50%).
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classification performance of the combination of all neu-
rons in all the ensembles recorded from different sessions
is expected to be the sum of the performance of the
ensembles. However, in the present study, almost all clas-
sification performances of small neuronal ensembles in
the hippocampal CA1 for the stimulus comparison were
higher than that of the combination. Moreover, the
ensembles yielded better performance in a 2-50 ms win-
dow. From this perspective, we presume that the timing of
spikes of 2-50 ms resolution in the ensembles recorded in
the identical session, such as second or higher order syn-
chronies, contain much information for the stimulus
comparison in the hippocampal CA1 at the ensemble
level.

Information of the stimulus comparison may be distributed 
throughout the hippocampal CA1
To elucidate the decoding ability of small neuronal
ensembles in the hippocampal CA1, we examined the
spatiotemporal firing patterns of small neuronal ensem-
bles consisting of a maximum of 18 cells. Results of a pre-
vious study suggested that each of the discreetly located
clusters of neurons is dedicated to a different aspect of the

spatial version of the DNMS task [25]. Therefore, not all
represented information in the hippocampus might be
induced from activity of the small neuronal ensembles
detected in the present study. That viewpoint, together
with the results of analyses of firing rates of individual sin-
gle cells [7-10], suggests that larger neuronal ensembles in
the hippocampus are associated with all examined events
in addition to the stimulus comparison in the present
study. Nevertheless, our results demonstrate that, in spite
of using randomly selected neurons, all small neuronal
ensembles in all the events we examined specifically clas-
sified the stimulus comparison. For that reason, we infer
that the information of stimulus comparison is not
restricted, but is instead distributed throughout the hip-
pocampal CA1. It can be retrieved robustly by the ensem-
ble activity of any subcombination in it.

On the other hand, in this study, the SVM classifiers
behave as the target of the hippocampal CA1, such as the
entorhinal cortex and subiculum. Those targets receive
spikes not from the entire hippocampal CA1 but from a
subset of it [26]. Consequently, the activity of a small neu-
ronal ensemble in the hippocampal CA1 over brief time

Raster plots of hippocampal activityFigure 4
Raster plots of hippocampal activity. Typical raster plots of raw spiking activity of hippocampal ensembles #1 (A), #2 (B), 
and #3 (C) on match (red) and non-match (black) trials during the test period (0-1,000 ms) in a single session. Red and black 
bars respectively show spikes on match and non-match trials.
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Classification performance over various time intervalsFigure 5
Classification performance over various time intervals. Classification performance for a linear classifier on test data as 
a function of the number of neurons in ensembles #1 (green), #2 (blue), and #3 (red) and combination (neurons pooled over 
all ensembles; dotted black). Each column shows roles of stimulus perception, stimulus retention, motor selection, and stimu-
lus comparison. Each row shows performances over 2 ms, 4 ms, 8 ms, 10 ms, 50 ms, 100 ms, and 200 ms time intervals on a 
logarithmic scale. Error bars show the SEM. Dashed lines show chance levels (= 50%).
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intervals during a single trial demonstrates the possibility
that the targets of hippocampal CA1 work to perform,
accurately, tasks that requires a stimulus comparison, as
described in a recent study [27].

Conclusion
The results show that a neuronal ensemble in the hippoc-
ampal CA1 acts as a comparator during a recognition
memory task. Our approaches and findings revealed the
cognitive functioning of the hippocampal CA1 from the
neuronal ensemble activity in a single trial, supporting the
development of new solutions for reading cognitive func-
tions from the brain such as brain-machine interfaces
[18,28]. Further assessment of the application of neuronal
ensemble activity in the cognitive version of brain-
machine interfaces can be achieved through experiments
incorporating the sensory feedback of brain-controlled
actuators in real-time.

Methods
Task procedure
Three male Wistar rats were extensively handled; then
food was deprived to approximately 80-90% of their ad
libitum body weight. Lights were left on in the colony
room between 8 A.M. and 9 P.M Experiments were con-
ducted between 9 A.M. and 6 P.M. The rats were trained to
perform an auditory-guided continuous DNMS task [8,9].
A training session consisted of approximately 200 trials
performed for approximately 1 h. The criterion for per-
formance was 80% correct trials per session. In each trial
(Figure 2A), one of two tones (high tone: 10 kHz, 85 dB
SPL; low tone: 2 kHz, 85 dB SPL) was randomly presented
for 15 s following a 5 s delay period. One second after the
tone onset, a guillotine door was opened for 3 s to show
an illuminated response panel immediately behind the
door. Trials were continuously performed with interven-
ing delays (Figure 2B). A food reward was delivered imme-
diately after the go response in a non-match trial, in which
the presented tone (high/low) differed from that in the
preceding trial. During each trial, a rat was required to
make a go response in non-match trials and a no-go
response in match trials (Figure 2C). During the delay
period, the rat had to remember which stimulus (high/
low tones) had been presented most recently. This task
design enabled us to dissociate hippocampal neuronal
activities associated with a) stimulus perception (differ-
ence in activity during sample periods (Figure 2A)
between high and low tones) (Figure 2D), b) stimulus
retention (difference in activity during delay periods (Fig-
ure 2A) between preceding high and low tones) (Figure
2E), c) motor selection (difference in activity during test
periods (Figure 2A) between go and no-go responses)
(Figure 2F), d) stimulus comparison (difference in activity
during test periods between match tone (erroneous go
response) and non-match tone (correct go response))

(Figure 2G), e) correct-error comparison (difference in
activity during test periods between correct and erroneous
responses when match tones was presented) (Figure 2H),
and f) particular-stimulus comparison (difference in activ-
ity between low test tone periods preceded by high sample
tones (low-after-high) and high test tone periods pre-
ceded by low sample tones (high-after-low)) (Figure 2I).
All behavioral events were controlled using custom-writ-
ten software running with another software program
(Labview; National Instruments Corp., Austin, TX).

Animal preparation and recordings
The respective activities of three neuronal ensembles
(Ensemble #1, 18 cells from rat #1; Ensemble #2, 12 cells
from rat #2; Ensemble #3, 6 cells from rat #3) were
recorded from the hippocampal CA1 (3-4 mm posterior
to the bregma, 1.5-3.5 mm from the midline) of three rats
performing the DNMS task using multi-neuronal record-
ing with 12-channel electrodes (dodecatrodes) [29-33].
All experimental procedures were performed in accord-
ance with NIH and Kyoto University guidelines and were
conducted with the approval of the Animal Research
Committee, Kyoto University. We recorded neuronal data
only when we had confirmed that the distributions of
spike amplitude across channels were constant. Multi-
neuronal activities were amplified, filtered (band-pass fre-
quency range, 500 Hz-10 kHz) and recorded at 20 kHz on
a custom-made PC with three 24-channel A/D converters
(16-bit resolution; Contec Co. Ltd., Osaka, Japan) (Figure
6A). After our unique spike sorting (ICSort) [29-33] (Fig-
ures 6B and 6C), we identified pyramidal cells based on
their wide spike shape (mean width (peak-to-peak time):
> 0.2 ms), low average firing rate (< 5 Hz). and a sign of
bursts in the auto-correlogram [34,35]. We used spike
trains only from putative pyramidal neurons that showed
clear refractory periods (1-2 ms) (Figure 6C), high signal-
to-noise ratios (> five times the noise level) (Figure 6A),
and sufficiently high firing rates (> 0.1 Hz) [29-33]. Addi-
tionally, we considered only units with a high isolation
quality index (isolation distance > 20) [36] because units
having a poor isolation quality engender false conclusions
[37].

Neuronal ensemble analysis
We explored codes by counting spikes in successive bins
of size w within the interval starting is s after the test-tone
onset and ending ie s after the test-tone onset. We describe
the results for different values of these parameters. The
default condition was w = 25 ms. Parameter w controls the
time resolution of the code: we used w = 2 ms, 4 ms, 8 ms,
10 ms, 25 ms, 50 ms, 100 ms, and 200 ms. The interval
parameters were set as is = -10 and ie = -5 for the stimulus
perception because, during this period, a sensory stimulus
(high/low tone) is obtained and a rat does not make a go/
no-go response. The parameters were is = -5 and ie = 0 for
Page 8 of 11
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the stimulus retention because, during this period, a sen-
sory stimulus (high/low tone) is not obtained and must
be retained in memory. The parameters were is = 0 and ie =
1 for the motor selection because, during this period, a rat
prepares a motor response (go/no-go response). The

parameters were is = 0 and ie = 1 for the stimulus compar-
ison, correct-error comparison, and particular-stimulus
comparison because, during this period, a rat compares a
sample tone with a test tone before it makes a go/no-go
response.

Example of single units sorted by ICSort with dodecatrodeFigure 6
Example of single units sorted by ICSort with dodecatrode. (A) Raw signals from one dodecatrode. (B) Scatter plots 
on two different feature spaces for the sample dataset. The sorted four units (clusters) are shown in different colors. (PC, prin-
cipal component). (C) Corresponding autocorrelation functions with window of ± 50 ms. The bin size is 0.1 ms.
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Let s(is, w, n) denote the number of spikes in the interval
between is + nw ms and is + (n+1)w ms, where n denotes
the number of bins in the vector and i is an integer such
that the entire interval extends from is ms to ie ms. The sin-
gle-cell activity t is defined as

This vector was used as the input to the decoding classi-
fier. When considering the activity of multiple neurons,
we concatenated the corresponding activity vectors and
used the concatenated vector as the input to the classifier.
The dimensionality of the input is therefore (n+1)N,
where N represents the number of neurons in an ensem-
ble or a combination. For a neuronal combination (neu-
rons pooled over all three ensembles), this concatenation
step assumes independence among different neurons. For
a neuronal ensemble, correlations between simultane-
ously monitored neurons in an ensemble must contain
additional information and must reveal additional
aspects of the neural codes.

We used a leave-one-out cross-validation method for
training and testing the data. Data were always divided in
all cases into a training set and a test set. The training set
comprised T-1 trials of each event, whereas the test set
included the remaining one trial; T represents the number
of trials in one session. Therefore, we used T pairs of train-
ing and test sets.

We specifically investigated six functional roles: stimulus
perception, stimulus retention, motor selection, stimulus
comparison, correct-error comparison and particular-
stimulus comparison. For stimulus perception, the labels
represent which tones were presented during the sample
periods (high or low tone) (Figure 2D). For stimulus
retention, the labels denote which tones were presented
during the delay periods (high or low tone) (Figure 2E).
In correct trials, the motor selection of go/no-go responses
can be examined. For motor selection, the labels denote
which behavioral responses a rat made during the test
periods in correct trials (go or no-go response) (Figure
2F). The go responses can be divided into correct and erro-
neous go responses. Comparing activities between correct
go responses during non-match tones and erroneous go
responses during match tones, the stimulus comparison:
match tone vs. non-match tone on the identical behavior
(go response) can be examined. For stimulus comparison,
the labels denote whether the sample tone and test tone
differed in trials in which a rat made go responses during
the test periods (match tone (erroneous go response) or
non-match tone (correct go response)) (Figure 2G). For
correct-error comparison, the labels denote whether a rat
made correct or erroneous responses during the test peri-
ods (correct no-go response or erroneous go response dur-

ing match tones) (Figure 2H). For particular-stimulus
comparison, the labels show which pair of non-match
tones was presented during the test periods (high-after-
low or low-after-high tone) (Figure 2I). For all three rats
examined, the number of trials in which the rats made
erroneous no-go responses during non-match tones (< 3)
was insufficient for statistical tests and analyses; we did
not examine binary labels that include an erroneous no-
go response during non-match tones for the stimulus
comparison and correct-error comparison.

We trained one binary classifier for each role. The classifi-
cation performance, as portrayed in all plots, represents
the share of correct decoding for test data (i.e., data not
used by the classifier during training).

We compared the performance of different statistical clas-
sifiers including Perceptron, Fisher's linear discriminant
classifier, and Support Vector Machine (SVM) [38] with a
linear kernel using sample ensemble activity. The SVM
classifiers yielded the best performance. In addition, the
SVM architecture can be easily realized in the hippocam-
pal as a threshold sum of weighted synaptic inputs. There-
fore, we used SVM implemented in the software package
'libsvm' http://www.csie.ntu.edu.tw/~cjlin/libsvm.

The linear classifier is expressed as y = sign [g(t)]. The cal-
culation of g(t) is a linear function of the form of

, where ti is single-cell activity, wi is the

weight of i-th cell, and b is the bias. In fact, SVM finds the
optimal weights and bias. We initially tested the perform-
ance of the classifier on a small subsample of the data,
exploring a large set of parameters. Then we used the opti-
mized parameters for analysis of the complete dataset.
The parameters for libsvm were C = 10, S = 0, and T = 0.

The graphs presented in the text show that the N neurons
used as the input to the classifier were all possible combi-
nations of N neurons if the number of all possible combi-
nations was < 1,000 or were 1,000 combinations chosen
randomly from among all possible combinations of N
neurons. We report the average obtained from all random
neuronal subensembles and subcombinations.

Test of significance for decoding performance
We used the binomial test to determine the statistical sig-
nificance of decoding performance. The probability of
predicting X times the correct labels in N trials by chance
is given as a binomial distribution:
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Using this binomial distribution, we were able to estab-
lish the statistical significance of the observed values for
the decoding performance.

All analyses were performed using custom-written soft-
ware (C++) and another software program (MATLAB; The
MathWorks Inc., Natick, MA).
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