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Abstract
Background Exposure to chemical toxins, including insecticides, harms bodily organs like the brain. This study 
examined the neuroprotective of thymoquinone on the cypermethrin’s harmful effects on the histoarchitecture of the 
dentate gyrus and motor deficit in the dentate gyrus.

Methods Forty adult male rats (180–200 g) were randomly divided into 5 groups (n = 8 per group). Groups I, II, III, IV, 
and V received oral administration of 0.5 ml of phosphate-buffered saline, cypermethrin (20 mg/kg), thymoquinone 
(10 mg/kg), cypermethrin (20 mg/kg) + thymoquinone (5 mg/kg), and cypermethrin (20 mg/kg) + thymoquinone 
(10 mg/kg) for 14 days respectively. The novel object recognition test that assesses intermediate-term memory was 
done on days 14 and 21 of the experiment. At the end of these treatments, the animals were euthanized and taken for 
cytoarchitectural (hematoxylin and eosin; Cresyl violet) and immunohistochemical studies (Nuclear factor erythroid 
2-related factor 2 (Nrf2), Parvalbumin, and B-cell lymphoma 2 (Bcl2).

Result The study shows that thymoquinone at 5 and 10 mg/kg improved Novelty preference and discrimination 
index. Thymoquinone enhanced Nissl body integrity, increased GABBAergic interneuron expression, nuclear factor 
erythroid 2-derived factor 2, and enhanced Bcl-2 expression in the dentate gyrus. It also improved the concentration 
of nuclear factor erythroid 2-derived factor 2, increased the activities of superoxide dismutase and glutathione, and 
decreased the concentration of malondialdehyde level against cypermethrin-induced neurotoxicity.

Conclusion thymoquinone could be a therapeutic agent against cypermethrin poisoning.

Keywords Cypermethrin, Thymoquinone, Cresyl fast violet, GABBAergic interneuron, Dentate gyrus

Thymoquinone ameliorate oxidative stress, 
GABAergic neuronal depletion and memory 
impairment through Nrf2/ARE signaling 
pathway in the dentate gyrus following 
cypermethrin administration
Abubakar Lekan Imam1, Akeem Ayodeji Okesina2* , Fatimo Ajoke Sulaimon1, Aminu Imam1, Ruqayyah 
Yetunde Ibiyeye3, Lukuman Aboyeji Oyewole4, Sikiru Abayomi Biliaminu5, Monsur Shehu1, Abdulhameed 
Oluwatomi Alli6, Oluwatosin Olasheu Omoola7 and Salihu Moyosore Ajao1

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0003-3238-6676
http://crossmark.crossref.org/dialog/?doi=10.1186/s12868-024-00896-7&domain=pdf&date_stamp=2024-9-23


Page 2 of 10Imam et al. BMC Neuroscience           (2024) 25:45 

Background
Oxidative stress arises from an imbalance between reac-
tive oxygen species (ROS) and the antioxidant defense 
system. ROS can lead to covalent oxidative modifications, 
such as ribonucleic acid (RNA) oxidation, and induce 
mutations in mitochondrial DNA (mtDNA), thereby 
destabilizing nucleic acids [1, 2]. These modifications 
may result in cellular dysfunction and apoptosis. The 
mitochondrial-dependent caspase pathway is crucial in 
apoptosis [3]. Stimulation of this cascade releases pro-
apoptotic factors, including cytochrome c (Cyc), activat-
ing caspase-9 and caspase-3, ultimately triggering cellular 
apoptosis [4, 5]. Hence, antioxidant pathways that miti-
gate oxidative damage may exhibit neuroprotective 
effects [6].

Persistent pesticide exposure, such as pyrethroids, 
adversely affects various physiological functions [7]. For 
example; long-term exposure can disrupt the function-
ing of different organs, posing serious health risks [8, 9]. 
Nigeria has witnessed numerous cases of food poisoning 
due to pesticides, resulting in significant fatalities and 
economic losses [10]. Pyrethroids, widely used in agri-
culture and household insect control, were detected in a 
large portion of the population [11]. Despite their broad 
application, pyrethroids exhibit adverse effects, including 
neurobehavioral and molecular target disruption in the 
nervous system [12, 13]. Cypermethrin, a common pyre-
throid, crosses the blood-brain barrier, inducing oxida-
tive stress and apoptotic cell death [14, 15].

Medicinal plants offer a sustainable therapeutic 
approach against chemical toxins; for example, thymo-
quinone (TQ), derived from Nigella sativa L., possesses 
antioxidant and anti-inflammatory properties [16, 17]. 
TQ has shown neuroprotective effects in various mod-
els of brain injury and neurodegenerative diseases by 
inhibiting lipid peroxidation and apoptosis [18, 19]. Its 
antioxidant effects are mediated through the nuclear fac-
tor erythroid 2-related factor 2 (NRF2) pathway, which 
regulates cellular defense mechanisms against oxidative 
stress [20, 21]. Activation of NRF2 induces the expression 
of antioxidative and detoxifying enzymes, crucial for cel-
lular function [22]. Whereas, the Dysregulation of NRF2/
ARE signaling has been implicated in neurodegenerative 
disorders [23].

Given the increasing incidence of pesticide-induced 
food poisoning, there is a need for effective anti-
dotes with shared mechanisms of action. This study 
aims to evaluate the efficacy of thymoquinone against 
cypermethrin-induced neurotoxicity, focusing on 
GABAergic interneuron disruption, dentate gyrus cyto-
architectural disorganization, and oxidative stress-
induced cell damage.

Methods
Experimental design
The experimental design involved 40 adult male Wis-
tar rats (180–200 g). Thymoquinone was obtained from 
MedChemEpress (MCE) USA (Cat No: HY-d0803) 
Cypermethrin 10% EC product was sourced from Yubaili 
Agrotec (ACEC20L068) and NAFDAC No: A5-0108 was 
obtained from Ibukun Oluwa Agrochemical Distop. Ilo-
rin, Nigeria. The rats were housed in the a Faculty of Basic 
Medical Sciences, College of Health Sciences, University 
of Ilorin’s animal holding facility under natural day-night 
cycles, with a standard chow diet and water ad libitum. 
Informed consent was obtained from the owner(s) of the 
animals involved in this study. All procedures were con-
ducted with the owners’ approval and were reviewed and 
approved by the University of Ilorin Ethical Review Com-
mittee (Approval No. UERC\ASN\2021\2137).

The rats were randomly divided into 5 groups (n = 8 per 
group). Groups I, II, III, and IV received oral adminis-
tration of 0.5 ml of phosphate buffered saline, 20 mg/kg 
of cypermethrin, 10  mg/kg of thymoquinone, 20  mg/kg 
cypermethrin plus 5 mg/kg of thymoquinone, and 20 mg/
kg of cypermethrin plus 10 mg/kg of thymoquinone for 
14 days respectively. Memory behavior was assessed on 
the 14th day of the experiment.

Behavioral evaluation
Intermediate memory recognition of the experimental 
rats following exposure to cypermethrin and thymoqui-
none was assessed using the novel object recognition 
(NOR) paradigm. The test apparatus is made from ply-
wood measuring 100  cm by 100  cm with walls that are 
50 cm high. Novelty preference and Discriminatory index 
were evaluated [24]. Twenty-four hours after the behav-
ioral study, the animals were euthanized using 20  mg/
kg bw ketamine intramuscularly, and brain tissue was 
excised and processed for histological, immunohisto-
chemistry, and biochemical analysis.

Tissue collection
After the completion of perfusion (brain tissues for his-
tology and immunohistochemistry), the whole brain 
tissues were excised and were post-fixed in 4% para-
formaldehyde overnight. The whole hippocampal CA 
regions were excised and equilibrated in 30% sucrose 
solution, before histological and immunohistochemi-
cal analyses. The sections were taken at 2 μm on paraf-
fin wax-embedded tissue blocks and mounted on a glass 
slide [25].

Histological analysis and immunohistochemistry
The hematoxylin and eosin (H and E) staining technique 
was used to demonstrate the general histo-architecture 
of the cells; and to show the location of the normal or 
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abnormal nucleus of the hippocampal cells [26]. Cre-
syl violet: This technique was used to demonstrate Nissl 
bodies (endoplasmic reticulum and ribosomes) in the 
cells; and to show normal or abnormal protein synthesis 
in the cytoplasm of the hippocampus [27].

For immunochemistry: Nuclear factor erythroid 
2-related factor 2 (Nrf2), Parvalbumin, and B-cell lym-
phoma 2 (Bcl2) (human monoclonal; Elisa and micro-
array) were used to understand their roles in oxidative 
stress response, neuronal survival, and apoptosis regu-
lation within dentate gyrus. The avidin-biotin complex 
method was used. The antibody dilution factor used was 
1:100 for all the antibody markers. The processed tissues 
were sectioned at two microns on the rotary microtome 
and placed on a hotplate at 90  °C for at least 40  min. 
Image J software cell counter was used for counting the 
immunopositive cells for Nrf2, Parvalbumin, and Bcl2 in 
the dentate gyrus [28].

Biochemical investigation
Following the end of the various treatments, some hip-
pocampal tissues were homogenized. The homogenates 
were collected in a 5  ml plain bottle and centrifuged 
for 10  min at 5000  rpm using a centrifuge. The super-
natant was carefully decanted and stored at -4  °C for 
enzymatic assays of superoxide dismutase (SOD) activ-
ity [29], glutathione (GSH) concentration [30], malondi-
aldehyde (MDA) [29] concentration and nuclear factor 
erythroid 2-derived factor 2 (NrF2) a product of Elab-
science Biotechnology Inc.USA (E-EL-R0673) method 
and absorbance was read using microplate reader. A four-
parameter logistic curve (4PL-curve) was plotted and val-
ues obtained from the samples were extrapolated using 
GraphPad Prism 8.0.

Statistical analysis
Data from the behavioral investigation, biochemical 
assays, and immunopositive cell count were analyzed 
using one-way analysis of variance (ANOVA) and sub-
jected to post hoc Bonferroni’s multiple comparison test. 
The results were expressed as mean ± SEM. Statistical 
analyses were performed using GraphPad Prism software 
(version 8.0.2). Values of p ≤ 0.05 were considered statisti-
cally significant.

Results
Thymoquinone restore inter-mediate related behaviors 
following cypermethrin exposure
The novelty preference of Wistar rats in the CYM group 
for new objects in the novel object recognition test was 
significantly low (32.70 ± 3.93) compared to the PBS con-
trol group at p < 0.05, compared to the CYM group, the 
TQ group, and the CYM-LHQ group showed higher 
preference for new object which was significant at 

p < 0.05. However, the CYM-10mgTHQ group showed a 
higher preference than the CYM group with no signifi-
cance at p < 0.05 Fig.  1B. The discrimination index was 
significantly reduced in the CYM group (-0.34 ± 0.08) 
compared to the PBS group (0.47 ± 0.10) and THQ group 
(0.81 ± 0.11) at p < 0.05. Groups CYM-LTHQ and CYM-
HHQ showed a higher discrimination index when com-
pared to the CYM group but were not significant at 
p < 0.05 (Table 1).

Oxidative stress biomarker
The concentration of Nrf2 in the CYM group was sig-
nificantly reduced p < 0.05 when compared to both the 
PBS control and the other experimental groups (Fig. 1A). 
Moreover, a significant reduction p < 0.05 in the SOD 
activity was observed in the CYM-exposed group, rela-
tive to the PBS control group, while all the other experi-
mental groups showed a significant increase in the SOD 
activities p < 0.05 when compared to the CYM group 
(Fig. 1B). However, SOD activities in the TQ, CYM-LTQ 
and CYM-HTQ groups were not significantly lower com-
pared to the PBS control (Fig. 1B). In addition, the GSH 
concentration was significantly reduced (p < 0.05) in the 
CYM group relative to the PBS group (Fig.  1C). Subse-
quent treatment with LTQ and HTQ led to a significant 
increase in the GSH levels (p < 0.05) when compared to 
the CYM-only group (Fig.  1C). Regarding the lipid per-
oxidation marker MDA, its level was notably higher 
(p < 0.05) in the CYM group compared to the PBS group 
(Fig. 1D). While MDA levels were lower in other experi-
mental groups, significance (p < 0.05) was only observed 
in the CYM-LTQ group compared to the CYM group 
(Fig. 1D).

PBS = phosphate-buffered saline, CYM = cypermethrin, 
TQ = thymoquinone, CYM-LTQ = cypermethrin followed 
by low dose thymoquinone and CYM-HTQ = cyperme-
thrin followed by High dose thymoquinone.

Histochemical examination of the dentate gyrus 
revealed chromatolytic-like alterations in rats exposed to 
CYM. This was characterized by the disrupted integrity 
of Nissl granules and distortions in the shape and organi-
zation of granule cells. Additionally, numerous pyknotic 
and vacuolated cells were observed due to CYM expo-
sure. Thymoquinone demonstrated a mitigating effect 
against CYM-induced toxicity, this was observed as a 
result of a reduction in the extent of neurodegenerative-
like changes. Specifically, there was an improvement 
in Nissl body integrity and better enhancements were 
observed in the cellular shape and arrangement in the 
rats exposed to thymoquinone following CYM neurotox-
icity (Fig. 2).

The immunohistochemical assessment of the dentate 
gyrus utilizing anti-Nrf2, anti-Parvalbumin (Parv), and 
anti-Bcl2 antibodies revealed diminished expression of 
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Nrf2, Parv, and Bcl2 positive cells in the dentate gyrus of 
rats exposed to CYM. Conversely, post-treatment with 
thymoquinone exhibited a notable enhancement in the 
expression of Nrf2, Parv, and Bcl2 immunopositive cells 
in the dentate gyrus (Figs. 3, 4 and 5).

Quantification of immuno-positive cell counts using 
ImageJ software demonstrated a significantly higher 
(p < 0.05) Nrf2 cell count in the dentate gyrus of PBS con-
trol rats compared to those exposed to CYM (Fig. 3A & 
B). Thymoquinone administration led to a significant 

increase (p < 0.05) in Nrf2 immunopositive cells in the 
CYM-LTQ and CYM-HTQ groups compared to CYM-
exposed rats (Fig. 3A & B). Similarly, there was a signifi-
cantly higher (p < 0.05) count of Parvalbumin-positive 
cells in the dentate gyrus of PBS control rats compared 
to CYM-exposed rats (Fig. 4A & B). Thymoquinone sig-
nificantly (p < 0.05) increased the number of Parvalbumin 
cells in the CYM-LTQ and CYM-HTQ groups compared 
to CYM-exposed rats (Fig. 4A & B).

Moreover, the cell count of the anti-apoptotic protein 
Bcl2 was higher in the PBS control group than in CYM-
exposed rats (Fig. 5A & B). Administration of thymoqui-
none resulted in a higher Bcl2 count in the CYM-LTQ 
and CYM-HTQ groups compared to CYM-exposed rats 
(Fig. 5A & B).

Discussion
Continuous application of pesticides and other agro-
chemicals, driven by the need to increase food produc-
tion and prevent pest and insect-induced crop damages, 
has led to increased exposure to the harmful effects 
of these chemicals, including pyrethroid insecticides, 
due to their residual accumulation in crops, fruits, and 

Table 1 Novelty preference and discrimination index of rats 
following cypermethrin and thymoquinone exposure
Groups
N = 5

Novelty preference (%) Discrimination index

PBS 77.60 ± 3.82 0.28 ± 0.24
CYM 39.30 ± 7.00* -0.20 ± 0.15
TQ 90.30 ± 5.41# 0.81 ± 0.11#
CYM-LTQ 65.00 ± 11.20 0.44 ± 0.09
CYM-HTQ 46.00 ± 12.00 0.23 ± 0.06
PBS = phosphate-buffered saline, CYM = cypermethrin, TQ = thymoquinone, 
CYM-LTQ = cypermethrin followed by low dose thymoquinone and CYM-
HTQ = cypermethrin followed by High dose thymoquinone. Single asterisk (*) 
indicates significant (p < 0.05) compared to PBS, Hash (#) indicates significant 
(p < 0.05) compared to CYM

Fig. 1 Effects of thymoquinone post treatments on the cpermethrin-induced dentate gyrus oxidative stress. (A) Nrf2 (B) SOD (C) GSH (D) MDA. One-way 
ANOVA followed by Bonferroni’s post hoc test multiple comparisons was used for analysis. Data is presented as mean ± SEM (n = 5). *p < 0.05 compared to 
PBS group; #p < 0.05 compared to CYM group
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vegetables. When humans and other animals are exposed 
to these chemicals, they can induce toxicity through 
mechanisms involving mitochondrial dysfunction, oxida-
tive stress, and inflammation. This toxicity can manifest 
as movement disorders, loss of cognition, or a combina-
tion of both.

This study demonstrates that thymoquinone increases 
the activities of antioxidant enzymes, akin to its parent 
molecule Nigella sativa oil [31, 32], thereby preventing 
lipid peroxidation and preserving dentate gyrus archi-
tecture, ultimately enhancing memory function against 
CYM toxicity.

Fig. 3 (A) Immunostaining for Nrf2 in the dentate gyrus (scale bar = 100 μm), PBS group showed numerous Nrf2 expression (black arrows). CYM group 
displayed low Nrf2 expression indicating high Nrf2 inactivation (red arrows): TQ group showed high Nrf2 positive cells (black arrows): CYM-LTQ presented 
high Nrf2 positive cells (black arrows) compared to CYM group: CYM-HTQ group also displayed numerous Nrf2 positive cells (black arrow) compared 
to CYM group. (B). Nrf2 positive cell count. PBS group had significantly high Nrf2 positive cells (*p < 0.05) compared to CYM group. CYM group showed 
significant difference (#p < 0.05) compared to CYM-LTQ and CYM-HTQ groups N = 6. PBS = phosphate-buffered saline, CYM = cypermethrin, TQ = thymo-
quinone, CYM-LTQ = cypermethrin followed by low dose (5 mg/kg) thymoquinone and CYM-HTQ = cypermethrin followed by High dose (10 mg/kg) 
thymoquinone

 

Fig. 2 Nissl substance of Dentate gyrus stained with cresl fast violet (CFV). PBS group showed neurons with intact Nissl bodies (black arrows). the CYM 
group presented chromatolytic-like cytoplasm, indicating Nissl body loss with vacoulations (red arrow): TQ group displayed neurons with intact Nissl 
bodies (black arrows); CYM-LTQ group showed numerous neurons with well-stained cytoplasm indicating intact Nissl bodies (black arrows) and few pale 
neurons (red arrows): Also, CYM-HTQ group showed more neurons with well-stained cytoplasm indicating intact Nissl bodies (black arrows) and few pale 
neurons (red arrows). TQ = thymoquinone, CYM-LTQ = cypermethrin followed by low dose thymoquinone and CYM-HTQ = cypermethrin followed by 
High dose thymoquinone
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In this study, cypermethrin caused a reduction in the 
expression of the Nuclear factor erythroid 2-related fac-
tor 2 (Nrf2), a regulatory protein responsible for initiating 
and expressing the antioxidant system. The reduced con-
centration and low expression of Nrf2 cells in the dentate 
gyrus of CYM-exposed rats are undoubtedly respon-
sible for the reduction in the activities of the antioxi-
dant enzymes SOD and GSH, leading to oxidative stress 
as indicated by the high level of MDA in CYM-exposed 
rats. Due to high unsaturated fatty acids, the brain is 
especially susceptible to oxidative stress, which causes 
membrane lipid peroxidation and disrupts the normal 
organizational structure of brain cells, as observed in 

the dentate gyrus of CYM-exposed rats. Cypermethrin 
exposure caused neuronal damage, impaired Nissl body 
integrity, and induced chromatolytic-like changes in the 
dentate gyrus due to oxidative stress. It was observed that 
continuous CYM exposure not only disrupted neuronal 
shapes in the dentate gyrus but also induced Nrf2 expres-
sion. Since appropriate activation of Nrf2 and its nuclear 
translocation establishes the Nrf2/ARE complex and 
subsequently boosts the expression and synthesis of anti-
oxidant enzymes, the decreased level of Nrf2 observed 
contributes to the lower activity of antioxidant enzymes 
SOD and GSH, which encourages further oxidative stress 
damage and raises the level of MDA. Cypermethrin 

Fig. 5 Bcl2 expression in the dentate gyrus. (A) immunostaining for Bcl2 in the dentate gyrus (scale bar = 100 μm), PBS group showed high Bcl2 expres-
sion (black arrows). CYM group displayed low Bcl2 expression (red arrows): TQ group showed high Bcl2 expression (black arrows): CYM-LTQ presented high 
Bcl2 (black arrows) compared to CYM group: CYM-HTQ group also displayed numerous Bcl2 expression (black arrow) compared to CYM group. (B).Bcl2 
positive cell count. PBS group had significantly high Bcl2 positive cells (*p < 0.05) compared to CYM group. CYM group showed no significant difference 
(#p < 0.05) compared to TQ, CYM-LTQ and CYM-HTQ groups (N = 6). PBS = phosphate-buffered saline, CYM = cypermethrin, TQ = thymoquinone, CYM-
LTQ = cypermethrin followed by low dose (5 mg/kg) thymoquinone and CYM-HTQ = cypermethrin followed by High dose (10 mg/kg) thymoquinone

 

Fig. 4 GABAergic interneuron of the dentate gyrus. (A) immunostaining for Parvalbumin in the dentate gyrus (scale bar = 100 μm), PBS group showed 
numeruos Parvalbumin positive cells (black arrows). CYM group displayed low parvalbumin positive cells indicating high inactivation of GABAergic 
interneuron (red arrows): TQ group showed high pavalbumin positive cells (black arrows): CYM-LTQ presented high parvalbumin positive cells (black 
arrows) compared to CYM group: CYM-HTQ group also displayed numerous parvalbumin positive cells (black arrow) compared to CYM group. (B). 
Parvalbumin positive cell count. PBS group had significantly high parvalbumin positive cells (*p < 0.05) compared to CYM group. CYM group showed 
significant difference (#p < 0.05) compared to TQ, CYM-LTQ and CYM-HTQ groups (N = 6). PBS = phosphate-buffered saline, CYM = cypermethrin, TQ = thy-
moquinone, CYM-LTQ = cypermethrin followed by low dose (5 mg/kg) thymoquinone and CYM-HTQ = cypermethrin followed by High dose (10 mg/kg) 
thymoquinone
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decreased the level and activity of antioxidant enzymes 
like SOD, GSH, and catalase (CAT) in cypermethrin-
induced toxicity in the Wistar rat model of Parkinson’s 
disease and peripheral blood. The findings of this study 
are indeed strengthened by earlier studies by [33–35], 
which reported an excessive increase in the level of MDA 
and reduced antioxidant capacity of SOD, CAT, GSH, 
and GPx, leading to increased lipid peroxidation in the 
peripheral blood and in the nigrostriatum of cyperme-
thrin-exposed rats.

Intervention with thymoquinone was observed to 
reactivate Nrf2, as shown by the high expression of Nrf2 
immunopositive cells. This increased nuclear availability 
of Nrf2 leads to the Nrf2/ARE complex, thereby stimu-
lating the production and expression of antioxidant 
enzymes and resulting in high SOD and GSH activity, as 
reported in this study, and reduced MDA levels, indicat-
ing a low level of lipid peroxidation. This finding is con-
sistent with an earlier study by [31], who found that the 
parent plant of thymoquinone, black seed oil, increased 
total antioxidant capacity and GSH while decreasing total 
ROS levels in rats exposed to Dichlorvos. The findings of 
this study are also strengthened by the study of Kanter, 
who reported enhancements in hepatic and pancreatic 
antioxidant capacities of catalase and GSH following 
Nigella sativa against STZ-induced diabetes in rats [36].

Apoptosis is characterized by morphological changes 
in cells such as nuclear pyknosis, DNA fragmentation, 
chromatin condensation, cytoskeleton destruction, mem-
brane blebbing, formation of membrane apoptotic bod-
ies phagocytosed by macrophages and and so on [37]. 
Continuous exposure to environmental toxins frequently 
causes apoptosis in cells [38] Anti-Bcl-2-stained dentate 
gyrus had a low expression of Bcl-2-positive cells due to 
cypermethrin exposure. Cypermethrin caused apoptosis 
in the rat brain by producing ROS and cytotoxins. Cyper-
methrin also induced apoptosis via mitochondrial dam-
age, cytochrome c release, and activation of caspases 3 
and 9, which are involved in both extrinsic and intrinsic 
apoptosis pathways [39–41]. When Bcl-2 and other anti-
apoptotic proteins are cleaved by caspases following the 
initiation of apoptosis, their anti-apoptotic action is fre-
quently converted to pro-apoptotic action [37]. The find-
ings of this study are similar to the report of the previous 
study where a type 2 pyrethroid, deltamethrin, following 
its exposure in rats, induced apoptosis by increasing the 
level of Bax, caspase-3, cytochrome c, and decreasing the 
expression of Bcl-2 pro-survival proteins [42, 43]. Thy-
moquinone exhibits anti-apoptotic effects, as administra-
tion of thymoquinone brings about a marked increase in 
the expression of Bcl-2 immunopositive cells in the hip-
pocampal dentate gyrus of the experimental rats. Bcl-2, 
as a pro-survival protein, has a hydrophilic carboxyl-ter-
minal domain linked to mitochondria outer membrane 

and helps preserve mitochondrial integrity, preventing 
unnecessary cytochrome c release and caspase activa-
tion [37]. Bcl-2 prevents Bax and other pro-apoptotic 
genes from oligomerizing, which stimulates the release 
of apoptogenic molecules from the mitochondria. Apart 
from inhibiting Bax oligomerization, Bcl-2 directly binds 
and inactivates B blocks cytochrome c release, and thus 
inhibits adaptor molecule APAF-1 and caspase-9 activa-
tion, thereby preventing caspase cascade activation [37, 
44]. In accordance with the findings of this study [45], 
showed that thymoquinone, in concentrations of 10  M 
and 20  M, prevented arsenic-induced neurotoxicity, 
apoptosis, and cytotoxicity by either decreasing the levels 
of Bax or increasing the level of Bcl-2. Also, in agreement 
with the data of this study, a previous study revealed that 
thymoquinone administration decreased p53 and Bcl-2 
gene expression but increased BAD gene expression in 
MCF-7 cells; however, it increased the expression of 
Bcl-2 gene and p53 gene but decreased Bax/BAD gene 
expression in non-cancer HEK293 cells [46].

In the dentate gyrus, basket cells constitute the GAB-
Aergic neurons in the granule layer with the recep-
tors localized in the molecular layer. Reduced levels 
of parvalbumin-positive cells in the dentate gyrus of 
cypermethrin-exposed rats indicate that CYM inhibits 
GABAergic interneurons. GABAergic interneurons con-
stitute the inhibitory neurons in the CNS that are vital for 
modulating various physiological activities [47]. Reduced 
GABAergic interneuron expression due to CYM expo-
sure interferes with the activity of GABAergic interneu-
rons and disrupts excitatory and inhibitory balance in the 
brain. Previous studies have shown that CYM hinders 
the opening of the voltage-gated chloride channels and 
inhibits the GABA-dependent uptake of chloride ions, 
resulting in hyper-excitation of neuronal cells and lead-
ing to changes in the delayed rectifier voltage-dependent 
potassium channel, which regulates neuronal excitability 
[15, 48, 49].

Thymoquinone enhances parvalbumin-positive cell 
expression against cypermethrin toxicity. The improve-
ment in motor functions observed in this study, which 
is one of the crucial functions controlled by GABAer-
gic interneurons, complements the increased expres-
sion of the Parvalbumin-positive cells [15] As a result 
of thymoquinone’s activation of GABA receptors, which 
results in hyperpolarization and inhibits neuronal 
activity, the N-methyl-D-aspartate NMDA receptor’s 
enhanced glutamate functions produce prolonged neu-
ronal stimulation [50]. According to earlier research by 
[51, 52], TQ increased GABA receptor activation after 
prilocaine-induced cardiotoxicity, epileptiform activ-
ity, and seizures in rats as well as seizures brought on by 
pentylenetetrazole.
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Conclusion
Thymoquinone improves motor function by activating 
Nrf2, reducing the level of NF-қB, increasing the activi-
ties of SOD and GSH, and decreasing the concentra-
tion of MDA against cypermethrin neurotoxicity. It also 
enhances the expression of parvalbumin-positive cells as 
well as Bcl-2-positive cells. Therefore, thymoquinone can 
be employed to manage pyrethroid and other insecticide 
poisoning.
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