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Introduction
The sleep–wake states is mainly regulated by homeosta-
sis and circadian rhythms [1]. In mammals, these two 
aspects are functionally interconnected with each other 
[2]. The circadian system consists of a series of central 
and peripheral oscillators, which allows the body to adapt 
to different functional demands and environments, such 
as sleep–wake states [3, 4]. The suprachiasmatic nucleus 
(SCN), which is an important circadian pacemaker in 
mammals, is located in the hypothalamus posterior the 
optic chiasm [5, 6].

Previous studies have shown that light information 
from intrinsically photosensitive retinal ganglion cells 
(ipRGCs) projects to the the SCN [7, 8]. The SCN then 
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Abstract
The regulation of circadian rhythms and the sleep–wake states involves in multiple neural circuits. The 
suprachiasmatic nucleus (SCN) is a circadian pacemaker that controls the rhythmic oscillation of mammalian 
behaviors. The basal forebrain (BF) is a critical brain region of sleep–wake regulation, which is the downstream of 
the SCN. Retrograde tracing of cholera toxin subunit B showed a direct projection from the SCN to the horizontal 
limbs of diagonal band (HDB), a subregion of the BF. However, the underlying function of the SCN–HDB pathway 
remains poorly understood. Herein, activation of this pathway significantly increased non–rapid eye movement 
(NREM) sleep during the dark phase by using optogenetic recordings. Moreover, activation of this pathway 
significantly induced NREM sleep during the dark phase for first 4 h by using chemogenetic methods. Taken 
together, these findings reveal that the SCN–HDB pathway participates in NREM sleep regulation and provides 
direct evidence of a novel SCN-related pathway involved in sleep–wake states regulation.
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relays the information downstream to other nuclei for 
various functions, one of which is sleep–wake regula-
tion [9, 10]. Current research shows that the SCN can 
regulate arousal by manipulating downstream arousal-
related nuclei. For example, transsynaptic retrograde 
tracing and neurophysiological experimental methods 
have confirmed that the circuit of SCN–dorsomedial 
hypothalamus (DMH)–locus coeruleus (LC) regulates 
the light-dark difference of impulse activity [11]. Simi-
larly, microinjection of retrograde tracers and single-unit 
extracellular recording showed that an indirect pathway 
from the SCN to the ventral tegmental area (VTA) takes 
part in the regulation of arousal [12]. On the aspects of 
sleep regulation, studies have shown that SCN neurons 
populations are necessary and sufficient for darktime 
sleep, but have no effect on lighttime sleep [13]. However, 
the relevant evidence associated with downstream nuclei 
in sleep regulation is still insufficient [14].

Studies have shown that the primary projection targets 
of the SCN are mainly in the hypothalamus, the thalamic 
nuclei and the basal forebrain (BF) [15, 16]. The BF is a 
large heterogeneous structure regulating sleep–wake 
states that contains many subregion, including the mag-
nocellular preoptic nucleus (MCPO), substantia innomi-
nata (SI), nucleus of the horizontal limb of the diagonal 
band (HDB), nucleus of the vertical limb of the diagonal 
band (vDB), and medial septal nucleus (MS) [17, 18]. The 
BF is involved in modulating sleep–wake transitions, 
increasing arousal levels and regulating NREM sleep [19]. 
However, direct evidence that the SCN–BF pathway reg-
ulates sleep–wake cycles remains unknown. Therefore, 
we hypothesized that the pathway of SCN–BF may play a 
critical role in sleep–wake states regulation.

Materials and methods
Animals
C57BL/6J mice (7–9 w, purchased from Henan Skobes 
Biotechnology Co., LTD)/ Vgat-cre mice (7–9 w, pur-
chased from Jackson Lab, 028862) were housed under 
a 12 h:12 h light/dark cycle (lights on at 8:00 am (ZT0), 
lights off at 20:00 pm (ZT 12)). Food and water were 
available ad libitum. All experiments were approved by 
the Experimental Animal Ethics Committee of Anhui 
Medicine University, and adhered to the guidelines of 
the Institutional Animal Care Unit Committee of Anhui 
Medicine University (project number: LLSC20190763). 
All methods were carried out in accordance with relevant 
guidelines and regulations. In our study, the injection site 
of each experimental animal needed to be verified after 
the experiment. The experimental animals used were all 
infused with 4% paraformaldehyde for cardiac perfusion 
and histological examination. Specific procedures are 
described in the Histology section below. The carcasses 
of experimental animals are sent to the animal center for 

unified incineration. All the experimental operation was 
carried out under the condition of 25–30℃. The mice 
were placed on an electric blanket to maintain body tem-
perature during the procedure. Breathing is monitored by 
observing the fluctuating movements of the thorax.

Anterograde and retrograde tracing
2  µg/µl cholera toxin subunit B-488 (Cat #: C34775, 
Thermo  Fisher Scientific) or AAV2/9-hEF1a-DIO-eGFP 
was injected to HDB (Anteroposterior (AP): 0.22  mm; 
Mediodorsal (ML): 0.9 mm; Dorsoventral (DV): 5.62 mm; 
10 nl, 50 nl/min) or SCN (AP: 0.46 mm; ML: 1.20 mm; 
DV: 5.70 mm; 10°; 50 nl, 50 nl/min). The Anterograde or 
retrograde signal from the tracer became detectable after 
3 w or 3–7 d. Data from animals where the tracer was not 
restricted to the HDB were excluded. All adeno-associ-
ated virus (AAV) used in the experiment had a titer of 
1.61E + 13 v.g /mL.

Optogenetic experiments
AAV2/9-hEF1a-hChR2 (H134R)-eGFP (Cat #: S0283-9, 
Taitool, Shanghai) or AAV-hEF1a-eYFP (Cat #: PT0098, 
BrainVTA, Wuhan) was injected into the SCN. An opti-
cal fiber (0.2  mm diameter, Anilab) was inserted with 
the tip 0.1 mm above the HDB. Electrode for EEG/EMG 
recording implanted into the skull surface. After 2–3 
w, the mice were familiarized with the environment for 
1 w. The experiments were performed during ZT0-2 or 
ZT12-14 by using1 Hz, 5 Hz, 10 Hz and 20 Hz blue laser 
(473 nm) pulse trains (10 ms per pulse). Each trial pulse 
train lasted for 300  s (6–8 mW at the fiber tip, SLOC, 
Shanghai). Data from animals where the tracer was not 
restricted to the SCN and where the tip of the optical 
fiber was not restricted to the HDB were excluded.

Chemogenetic experiments
AAV2/2-hSyn-Retro-tdTomato-iCre (Cat #: S0509-2R, 
Taitool, Shanghai) was injected into the HDB. AAV2/9-
hSyn-DIO-HM3D(Gq)-eGFP (Cat #: S0260-9, Taitool, 
Shanghai) was injected into the SCN. Electrode of EEG/
EMG was secured to the skull using dental cement. After 
2–3 w, the AAV2/2-hSyn-Retro-tdTomato-iCre in the 
HDB caused expression of Cre recombinase in HDB-
projecting neurons. Therefore, Cre recombinase allowed 
the expression of hM3Dq in SCN neurons projecting to 
the HDB following injection of DIO-hM3D(Gq)-eGFP 
in the SCN. The SCN–HDB pathway was activated when 
clozapine N-oxide (CNO) (0.1  ml/kg, Biochemicals for 
Life Science Research, IP) was given. Data from animals 
where virus expression was not restricted to the HDB 
and SCN were excluded. A total of 72 h were recorded. 
Record first 24  h as the baseline, followed by an injec-
tion of saline (0.9%, IP) at ZT 0 (high sleep drive) or 
ZT12 (high activity) and recording for another 24 h; then 
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injected with CNO at ZT0 or ZT12 and recording for last 
24 h.

EEG/EMG recordings and analysis
Mice were anesthetized with pentobarbital sodium (2%). 
EEG/EMG recording were collected from two screws 
(No. 1: 1  mm anterior to bregma, ML: 1.5  mm; No. 2: 
1  mm anterior to lambda, ML: 1.5  mm). Two stainless 
EMG wires (Cooner Wire, USA) were inserted into the 
left and right neck muscles respectively. EEG/EMG sig-
nals were amplified and filtered (EEG, 0.5 to 25 Hz; EMG, 
20 to 200 Hz) digitalized with a sampling rate of 125 Hz 
(BIOPAC). The EEG and EMG data were recording by 
Acqknowledge 4.3. Recordings data were automatically 
scored offline by SleepSign as wakefulness, NREM sleep, 
or REM sleep in 4 s epochs using SleepSign according to 
standard criteria. Manually check the defined sleep-wake 
state and manually correct it if necessary. Different sleep-
wake states were defined according to EEG and EMG 
waveform characteristics: Wake was defined as asynchro-
nous, low-amplitude EEG rhythm and increased myo-
electric activity accompanied by periodic bursts, which 
were dominated by theta waves (4–8  Hz); NREM sleep 
refers to synchronous, high-amplitude, low-frequency 
(0.5–4 Hz) delta wave dominated brain electrical activity, 
and EMG activity was lower than that of the awake state 
accompanied by bursts of phases. REM sleep was defined 
as having a distinct θ (4–10 Hz) rhythm, almost no myo-
electric activity.

Histology
Mice were deeply anesthetized with isoflurane and trans-
cardially perfused with saline (0.9%) followed by 4% para-
formaldehyde (PFA). The brains were incubated in 4% 
PFA overnight. For cryoprotection, brains were stored 
in 20% and then 30% sucrose (w/v) in PBS solution for at 
least 1 night. Brains were sliced into 40 μm sections using 
a frozen slicing machine (CM3050S, Leica). Fluorescence 
images were taken using a confocal microscope (LSM 
880 + airyscan, Zeiss).

Statistical analysis
The data are presented as the mean ± standard error of 
the mean (SEM). Statistical analysis was performed using 
Prism 7.0 (GraphPad Software). The software that was 
used to analyze EEG and EMG was SleepSign. One-way 
ANOVA were used to analyze NREM sleep, rapid eye 
movement (REM) sleep, wakefulness time and percent-
age in optogenetic experiments. One-way ANOVA and 
paired T test were used to analyze latency number of epi-
sodes and duration of episodes in chemogenetic experi-
ments. Data from animals with incorrect injection sites 
was excluded.

Results
The HDB is a downstream target nucleus of the SCN
The BF is a large, heterogeneous structure with differ-
ent subregions. Previous studies have shown that BF was 
the downstream of the SCN, but the specific subregion 
was not clear enough [15, 16]. In our study, a antero-
grade Cre-dependent virus AAV-DIO-chR2-eGFP was 
injected into the SCN nucleus in Vgat-cre mice. We 
observed nerve fiber terminals in the HDB subregion 
of BF (Fig.S1). Then the retrograde tracer cholera toxin 
subunit B was micro-injection into the HDB subregion 
(Fig. 1A-C), the sparse cell bodies was appeared in SCN 
(Fig. 1D). The results indicated that the HDB was one of 
the downstream target nuclei of the SCN.

Optogenetic activation of the SCN–HDB pathway promotes 
NREM sleep during the dark phase
Although anatomical experiments confirmed the exis-
tence of the pathway, the function of this pathway in 
sleep-wake regulating remained unknown. Here, we 
activated the SCN–HDB pathway to clearly defined its 
function by using optogenetic manipulation. AAV2/9-
hChR2(H134R)-EGFP was injected into the SCN. An 
optical fiber was implanted above the HDB. EEG/EMG 
electrodes were implanted in the skull at the same time 
(Fig. 2A-C). After 3 w, the pathway was activated by using 
blue light pulse stimulation of 1 Hz, 5 Hz (Figs. 3A-B and 
4A-B),10 Hz and 20 Hz (Figs. 3D-E and 4D-E). The pulse 
stimulation was delivered in sessions of 300 s each (10 ms 
per pulse), and the stimulus intensity was 6–8 mW. The 
proportion of NREM sleep was significantly increased 
under only 5 Hz and 20 Hz but not 1 Hz and 10 Hz blue 
light pulse stimulation during the dark phase (Fig.  4C 
and F, Fig. S2A-B and Fig.S3C-D). During the light phase, 
there were no significant differences in NREM sleep and 
wakefulness times (Fig. 3C and F and Fig.S3A-B).

Chemogenetic activation of the SCN–HDB pathway 
promotes NREM sleep during the dark phase
The optogenetic results showed that activation of the 
SCN–HDB pathway promotes NREM sleep during the 
dark phase. To further verify the results, chemogenetic 
methods were used. AAV2/2-Retro-tdTomato-iCre into 
the HDB and injected AAV2/9-DIO-hM3D(Gq)-eGFP 
were injected into the SCN (Fig.  5A-D). By analyzing 
the lantency of NREM sleep, we found that the admin-
istration of CNO significantly shorten sleep lantency 
compared to the control group during the dark phase 
(Fig. 5E-F).

Furthermore, the time of NREM sleep-promoting 
effect lasted for 4 h (Fig. 6A-D). The time of NREM sleep 
significantly increased in the 4 h after CNO administra-
tion during the dark phase (Fig.  6E-H). There was no 
significant effect on the sleep–wake cycles during the 
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light phase (Fig.  6C). Meanwhile, the numbers of epi-
sode, duration of episodes and PSD were also analyzed 
(Fig.  7). No changs in the number of episodes of wake-
fulness, NREM sleep, REM sleep during light or dark 
phase (Fig.  7.A-F). Only the duration of episodes of 
wakefulness, NREM sleep, REM sleep has changed dur-
ing the dark phase (Fig.  7.G-L). In addition, the overall 
PSD was been a slight change at 0.5–4.5 Hz during night 
phase, which is characteristic of NREM sleep. From 
these results, we can see that activating this pathway can 
increase the effect of sleep on the structure of sleep wake. 
It was not due to increasing the number of episodes of 
NREM sleep, but to lengthening the duration of episodes 
each NREM sleep.

Discussion
In recent years, the circuitry and function of brain 
regions involved in the sleep–wake regulation have been 
characterized by different viral tools [20, 21]. In this 
study, we verified the direct innervation of the BF and 
the SCN. First, we confirmed that the HDB subregion is 
the downstream target nucleus of the SCN by retrograde 

tracing. Furthermore, both optogenetic and chemoge-
netic activation of the SCN–HDB pathway promotes 
NREM sleep during the dark phase. These findings elu-
cidate the role of the SCN–HDB pathway in sleep–wake 
regulation.

The HDB is downstream of the SCN
Previous studies have shown that the BF is the primary 
projection targets of the SCN [15, 16]. However, the 
function of the SCN–BF pathway has not been reported. 
Our experiment used the anterograde AAV and retro-
grade tracer to confirm that the SCN projects to the HDB 
(Fig.  1 and Fig.S1). The HDB contains cholinergic and 
GABAergic neurons which located adjacent to the VLPO, 
a sleep-promoting center; these two regions may be func-
tionally related [22, 23]. In our previous studies, we found 
that anesthetics DEX can affect neuronal activity in HDB 
[24]. These findings suggest that the HDB nucleus may 
play a role in sleep–wake regulating. However, detailed 
studies on the involvement of HDB in the sleep–wake 
regulation is still insufficient. Our study may also suggest 
a possible link between this role.

Fig. 1  The HDB is downstream of the SCN. A A simple diagram of the experimental procedure. B Schematic of the injection of cholera toxin subunit 
B-488 into the HDB of C57BL/6J mice. C Localization of cholera toxin subunit B-488 in the HDB. The HDB, MCPO and SI are subregions of the BF. The scale 
bar represents 250 μm. D The cell bodies of neurons were labeled in the SCN. The upper right is an enlargement of the area within the red dotted square 
in the center. The scale bar represents 100 μm
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Optogenetic activation of the SCN–HDB pathway promotes 
NREM sleep during the dark phase
In this study, optogenetic activation of the SCN–HDB 
pathway could promote NREM sleep (Figs.  3 and 4). 
Light pulses stimulation at a frequency of 5–20 Hz could 
promote NREM sleep during the dark phase (Fig.  4, 
Fig.S2). A possible explanation is that the mice are noc-
turnal and therefore mainly active during the dark phase. 
Sleep pressure accumulates during wakefulness and dissi-
pates during sleep [25]. Since the mice mostly awake dur-
ing the dark phase, it may have accumulated more sleep 
pressure, making it easier to fall asleep. However, it spend 
most of their time asleep during the light phase, accumu-
lating less sleep pressure and making it difficult to further 
increase their NREM sleep. According to the statisti-
cal results, 20  Hz pulse stimulation can cause a change 
of 40%, but 5  Hz frequency can only cause a change of 
nearly 30%. The high frequency pulse of 20 Hz can play 
this role more obviously. This may be caused by the fact 
that this high frequency pulse is closer to the normal 

physiological frequency. Meanwhile, our results showed 
that 1  Hz and 10  Hz light stimulation had no effect on 
NREM sleep. Since we ignored the sleep state of the mice 
at the beginning of the optogenetic experiment, this may 
affect the results of the experiments. Another possible 
reason is that the experimental sample size is not enough. 
Furthermore, we found that within that 300  s showed a 
significant increase in NREM sleep (Fig.  4). Previous 
research mostly used 120 s periods of light pulse stimula-
tion [26, 27]. However, there was no significant difference 
between the first 120s and the remaining 300 s. The pos-
sible reason is that the experimental sample size is not 
enough.

Several neurotransmitters are expressed in the SCN, 
almost all SCN neurons are GABAergic [28]. Moreover, 
GABA neurons in the SCN nucleus are co-located with a 
variety of neuropeptides, and the overall neuronal inhibi-
tion cannot explain the problem. In addition, there was a 
lack of inhibition experiments in our experiment. Since 
virus injection has the limitation of injection site, and can 

Fig. 2  Optogenetic experiments of activating the SCN–HDB pathway. A A simple diagram of the experimental procedure. B Schematic diagram of virus 
injection, optical fiber implantation and EEG/EMG recording electrodes in C57BL/6J mice. C SCN and BF were injected with AAV-chR2-eGFP or the control 
virus AAV-GFP and implanted with optical fibers. The scale bar represents 150 μm
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Fig. 3  Optogenetic activation of the SCN-HDB pathway promotes NREM sleep during the dark phase. A and D An example trial of one of the opto-
genetic experiments. Shown are the EEG power spectrum, EEG traces and EMG trace of 900 s. The black bar represents the dark phase. The blue bar 
represents the period of laser stimulation (Left:10 ms per pulses, 5 Hz, 300 s; Right:10 ms per pulses, 20 Hz, 300 s). B and E Propotion of wake, NREM sleep, 
and REM sleep states before, during, and after 5–20 Hz laser stimulation during the dark phases. Blue shading indicates pulse laser stimulation of 300 s. 
C and F 5–20 Hz laser-induced change in the proportion of each states in AAV-ChR2-treated and AAV-eGFP-treated mice (N = 8 mice for 5 Hz, N = 7 mice 
for 20 Hz, One way ANOVA. Error bars represent ± s.e.m.) W means Wake; S means NREM sleep; R means REM sleep. The data in here came from 8 mice or 
7 mice injected with control virus or ChR2 virus, and each data indicated the proportion of Wake, NREM and REM during the 300s period given 5–20 Hz 
blue light pulse stimulation
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only inhibit neurons at the injection site, but not all neu-
rons in the SCN nucleus. Therefore, in the next step of 
our experiment, we will further focus on specific neuro-
peptide neurons to detect their specific functions.

Chemogenetic activation of the SCN–HDB pathway 
promotes NREM sleep during the dark Phase
In this study, activation of the SCN–HDB pathway by 
chemogenetic experiments produced significant changes 
in NREM sleep but not REM sleep (Figs. 5 and 6). From 
the chemogenetic experimental results, it can be seen 

Fig. 4  Optogenetic activation of the SCN-HDB pathway is not working during the light phase. A and D An example trial of one of the optogenetic 
experiments. Shown are the EEG power spectrum, EEG traces and EMG trace of 900 s. The white bar represents the light phase. The blue bar represents 
the period of laser stimulation (Left:10 ms per pulses, 5 Hz, 300 s; Right:10 ms per pulses, 20 Hz, 300 s). B and E Propotion of wake, NREM sleep, and REM 
sleep states before, during, and after 5–20 Hz laser stimulation during the light phases. Blue shading indicates laser pulse stimulation of 300 s. C and F 
5–20 Hz laser-induced change in the proportion of each states in AAV-ChR2-treated and AAV-eGFP-treated mice (N = 14 mice for 5 Hz, N = 13 mice for 
20 Hz, One way ANOVA). Error bars represent ± s.e.m. W means Wake; S means NREM sleep; R means REM sleep. The data in here came from 14 mice or 
13 mice injected with control virus or ChR2 virus, and each data indicated the proportion of Wake, NREM and REM during the 300s period given 5–20 Hz 
blue light pulse stimulation
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that this sleep-promoting effect occurs within 4  h. We 
also compared the effective time that other researchers 
used chemogenetic experiments. Most were found to 
be concentrated in 2–6 h, but there were also those that 
lasted 12 h or more [29, 30]. The reason of lasting 4 h in 
our experiment may be its own homeostasis regulation of 
the sleep–wake states. Therefore it is impossible to stay in 
a certain state for a particularly long time. After a certain 

period of time, it may return to its original state due to 
other compensatory effects.

Previous studies have shown that the BF is a key 
nucleus that regulates NREM sleep [31]. Cholinergic, 
glutamatergic and parvalbumin-positive GABAergic 
(GABAPV+) neurons in the BF can reduce NREM sleep, 
while GABASOM+ neurons can promote NREM sleep 
[32]. Neither has any effect on REM sleep, which is 

Fig. 5  Chemogenetic activation of the SCN–HDB pathway shorten the lantency during the dark phase. A A simple diagram of the chemogenetic 
experimental procedure. B Schematic diagram of virus injection in C57BL/6 mice. C The HDB was injected with AAV2/2-Retro-tdTomato-iCre. The scale 
bar represents 100 μm. D The SCN was injected with AAV-DIO-hM3Dq-eGFP or AAV-DIO-eGFP. SCN neurons projecting to the HDB express eGFP. The 
scale bar represents 100 μm. E The lantency of the NREM sleep (time form light onset until first NREM sleep) during the light phase (N = 6 mice, *P < 0.05, 
vehicle-hM3Dq vs. CNO-hM3Dq, paired T test). F The lantency to NREM sleep (time from light off until first NREM sleep) during the dark phase (N = 6 mice, 
*P < 0.05, vehicle-hM3Dq vs. CNO-hM3Dq, paired T test). Vehicle-hM3Dq: SCN was injected to express eGFP instead of hM3Dq (i.p. NACL); CNO-hM3Dq: 
SCN was injected to express hM3Dq (i.p. CNO); CNO-GFP: SCN was injected to express eGFP instead of hM3Dq (i.p. CNO)
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consistent with our experimental results [19]. Studies of 
REM sleep mostly focus on neural circuits of the pons, 
and more generally, the brainstem, which are required 
for REM sleep [33–35]. Moreover, the hypothalamus also 

plays a role in REM sleep, as reported in recent studies 
[36, 37]. It can be seen that SCN dominates the down-
stream nucleus of BF, and thus participates in the regula-
tion of sleep wake function.

Fig. 6  Chemogenetic activation of the SCN–HDB pathway promotes NREM sleep during the dark phase. A-D The example trial of the chemogenetic 
experiments. The EEG power spectrum, EEG traces and EMG traces after CNO injection are shown. The white bar represents the vehicle and CNO group 
in the light phase, and the black bar represents the vehicle and CNO group in the dark phase. E and F After CNO injection, EEG and EMG were recorded 
continuously during the light and dark phase. Time spent in wakefulness, NREN sleep and REM sleep was counted. G and H The total durations of wake-
fulness, NREM sleep, and REM sleep in a 4 h period in the vehicle-hM3Dq group and CNO-hM3Dq group during the light and dark phase (N = 6 mice, 
vehicle-hM3Dq vs. CNO-hM3Dq, One way ANOVA). W means Wake; S means NREM sleep; R means REM sleep
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Fig. 7  Chemogenetic activation of the SCN–HDB pathway increases duration of episodes of NREM sleep during dark phase. A-C The statistical graph of 
number of episodes of wakefulness, NREM sleep, REM sleep during light phase (N = 6 mice, NACL-hM3Dq vs. CNO-hM3Dq, Paired T test). D-F The statisti-
cal graph of number of episodes of wakefulness, NREM sleep, REM sleep during dark phase (N = 6 mice, NACL-hM3Dq vs. CNO-hM3Dq, Paired T test). G-I 
The statistical graph of duration of episodes of wakefulness, NREM sleep, REM sleep during light phase (N = 6 mice, NACL-hM3Dq vs. CNO-hM3Dq, Paired 
T test). J-L The statistical graph of duration of episodes of wakefulness, NREM sleep, REM sleep during dark phase (N = 6 mice, NACL-hM3Dq vs. CNO-
hM3Dq, Paired T test). M The statistical graph of PSD during light phase. N The statistical graph of PSD during dark phase
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Conclusion
Our findings reveal that the SCN–HDB pathway par-
ticipates in NREM sleep regulation and provides direct 
evidence of a novel SCN-related pathway involved in 
sleep–wake states regulation.
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