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Abstract
Introduction  The challenge of treating Glioblastoma (GBM) tumors is due to various mechanisms that make the 
tumor resistant to radiation therapy. One of these mechanisms is hypoxia, and therefore, determining the level of 
hypoxia can improve treatment planning and initial evaluation of its effectiveness in GBM. This study aimed to design 
an intelligent system to classify glioblastoma patients based on hypoxia levels obtained from magnetic resonance 
images with the help of an artificial neural network (ANN).

Material and method  MR images and PET measurements were available for this study. MR images were 
downloaded from the Cancer Imaging Archive (TCIA) database to classify glioblastoma patients based on hypoxia. 
The images in this database were prepared from 27 patients with glioblastoma on T1W + Gd, T2W-FLAIR, and T2W. 
Our designed algorithm includes various parts of pre-processing, tumor segmentation, feature extraction from 
images, and matching these features with quantitative parameters related to hypoxia in PET images. The system’s 
performance is evaluated by categorizing glioblastoma patients based on hypoxia.

Results  The results of classification with the artificial neural network (ANN) algorithm were as follows: the highest 
sensitivity, specificity, and accuracy were obtained at 86.71, 85.99 and 83.17%, respectively. The best specificity was 
related to the T2W-EDEMA image with the tumor to blood ratio (TBR) as a hypoxia parameter. T1W-NECROSIS image 
with the TBR parameter also showed the highest sensitivity and accuracy.

Conclusion  The results of the present study can be used in clinical procedures before treating glioblastoma patients. 
Among these treatment approaches, we can mention the radiotherapy treatment design and the prescription of 
effective drugs for the treatment of hypoxic tumors.

Keywords  Glioblastoma, Hypoxia, MRI, PET, Machine learning

Automated glioblastoma patient classification 
using hypoxia levels measured through 
magnetic resonance images
Mohammad Amin Shahram1, Hosein Azimian1,2, Bita Abbasi3, Zohreh Ganji1, Zahra Khandan Khadem-Reza1, 
Elham Khakshour1 and Hoda Zare1,2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12868-024-00871-2&domain=pdf&date_stamp=2024-5-24


Page 2 of 9Shahram et al. BMC Neuroscience           (2024) 25:26 

Introduction
Most patients with neurological disorders who suf-
fer a stroke die from brain tumors, which are masses of 
abnormal cells in brain tissue [1]. Brain tumors are gen-
erally divided into primary and secondary. Primary brain 
tumors include those tumors that originate from brain 
tissues or tissues around the brain and are divided into 
benign and malignant groups [2]. Most malignant cen-
tral nervous system (CNS) tumors are glioblastoma mul-
tiforme (GBM), which accounts for 49.1% of all invasive 
primary brain tumors. As the most common form of 
malignant brain tumors, GBM has the highest incidence 
rate of 3.23 per 100,000 people [3]. . The average sur-
vival of patients is usually about 12 to 15 months from 
the diagnosis time [4]. According to studies, glioblastoma 
patients have one of the lowest survival rates among all 
cancers. Less than 30% of newly diagnosed patients sur-
vive more than one year, and only 3–5% survive more 
than two years [5]. More than half a century has passed 
since the use of chemotherapy drugs along with radio-
therapy to treat brain tumors. However, treatment out-
comes for brain tumors, especially glioblastoma, are 
highly variable. Many factors are involved in the inef-
fectiveness of GBM treatment, like the heterogeneous 
nature of the tumor, the relatively high age at the onset 
of the disease, the metastasis of malignant cells to the 
surrounding areas, and various mechanisms that cause 
tumor resistance to radiation therapy, especially hypoxia 
[6].

This section presents the studies that have been done 
in determining the hypoxia status of brain tumors, espe-
cially in glioblastoma patients. These studies were col-
lected and separated into three parts to evaluate the 
state of tumor hypoxia in patients with the help of oxy-
gen-sensing electrodes, PET imaging, and MRI imaging 
methods.

Sydney M. Evans et al. (2004) compared the Eppendorf 
electrode method and the method of using the EF5 kit to 
measure tumor hypoxia. The results showed that most 
glial-derived tumor cells in 28 studied cases had mild to 
moderate hypoxia levels (10–0.5% pO2) [7]. Brian E. Lally 
et al. (2006) measured tissue oxygen pressure using the 
Eppendorf pO2 histograph for 23 glioma patients. They 
showed that for 13 patients with high-grade glioma and 
ten patients with low-grade glioma, the average pO2 of 
the tumor for the whole group was 5.1  mm Hg, which 
indicated a hypoxic condition based on the classifica-
tion of the study [8]. Alexander M. Spence et al. (2008) 
presented a study to evaluate the effect of hypoxic tumor 
volume on tumor resistance to radiation therapy and 
glioblastoma survival in 22 GBM patients. In patients 
whose tumors contained Hypoxic Volume (HV) or Maxi-
mum Tumor to Blood ratio (T/Bmax) was higher than 
average, based on Kaplan-Meier curves, survival was at 

lower levels (HV 12.8 cm3, T/Bmax 2.06; P < 0.0005) [9]. 
Yamamoto et al. (2012) investigated the level of hypoxia 
in 30 patients with newly diagnosed glioma tumors 
using FMISO PET and compared the results with tumor 
grade. Tumor hypoxia was measured using the amount 
of radiotracer absorption in PET images, 120  min after 
drug injection and with the help of TBRmax parameter. 
The results showed that Low-grade gliomas did not have 
hypoxia, and high-grade gliomas showed hypoxia. The 
amount of TBRmax FMISO in glioblastoma was signifi-
cantly higher than grade III gliomas [10]. Elizabeth R. 
Gerstner et al. (2016) investigated the impact of hypoxia 
measured by MRI and PET imaging on survival in 50 glio-
blastoma patients. The results showed that those tumors 
with the highest baseline markers of hypoxia (F-FMISO 
SUVpeak) were associated with worse survival [11]. Niha 
Beig et al. (2018) evaluated radiomic texture descriptors 
obtained from MRI of 115 glioblastoma patients that can 
indicate tumor heterogeneity in hypoxic conditions. The 
results showed that the radiomics features identified in 
this research could be used to measure hypoxia [12]. Shil-
iang Huang et al. (2021) investigated the hypoxia features 
of MRI and PET images in 33 patients with GBM to eval-
uate tumor drug resistance. There was a positive correla-
tion between hypoxia volume and volume ratio (rs = 0.77, 
P < 0.0001), as well as hypoxia volume and T1-enhancing 
tumor volume (rs = 0.75, P < 0.0001). Bevacizumab-refrac-
tory GBM patients exhibit hypoxia as a critical disease 
biomarker [13]. Ramon F Barajas, Jr. et al. (2022) studied 
the immunotherapy responses in tumor hypoxia of six 
glioblastoma patients due to the possible increased inci-
dence of pseudoprogression. Given that hypoxia is an 
important determinant of glioblastoma regrowth, they 
hypothesized that [18  F] FMISO PET could provide an 
additional physiological measure to detect immunother-
apy failure. The hypoxic fraction was defined as the ratio 
of hypoxic volume to T1W gadolinium enhancing vol-
ume. Results showed a mean hypoxia rate of 9.8 ± 10% in 
the four patients with false progression and Two subjects 
with recurrent tumor showed a mean hypoxic deficit of 
131 ± 66%. These results demonstrate that noninvasive 
assessment of hypoxic fraction by FMISO PET/MRI is 
clinically feasible and serves as a specific biological met-
ric of treatment failure [14].

From the results of the studies, it can be concluded that 
most glioblastoma patients have treatment resistance 
caused by tumor hypoxia. The relationship between the 
present study and other studies on the importance of 
measuring hypoxia and predicting the hypoxia status of 
glioblastoma tumors is to improve the treatment of these 
patients. There are limitations to checking the hypoxia 
status of tumors: the invasiveness of the oxygen-sensing 
electrode method, the non-routine use of PET for glio-
blastoma patients in clinical procedures, the low spatial 
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resolution of PET, and the lack of access to radiotracers 
related to determining hypoxia due to their scarcity and 
high cost. Also, we have limitations in using advanced 
and functional MRI techniques. These techniques, such 
as Bold MRI and perfusion techniques, require advanced 
and expensive devices and equipment that are not avail-
able in all places, and it is not possible to perform these 
protocols for glioblastoma patients routinely during the 
treatment period. As seen in the studies, a combination 
of MRI and PET imaging systems is currently used to 
identify these tumors [11, 13].

In this study, an intelligent system was designed to 
determine glioblastoma patients’ hypoxia levels based 
on the radiomics features extracted from structural MRI 
images, a non-invasive method. For this purpose, lower-
cost and more accessible structural MRI protocols have 
been used for glioblastoma patients. These protocols 
have been used to overcome the limitations of advanced 
PET/MRI methods.

Materials and methods
Participants
The images for this study were collected from the TCIA 
(https://www.cancerimagingarchive.net/ ) database [15]. 
In this study, T1W + Gd, T2W-FLAIR, and T2W MRI 
images were obtained from glioblastoma patients, all of 
whom were included in the clinical trial plan (ACRIN 
6684). Also, the PET images used in this study were 
obtained as a 20-minute static 18  F-FMISO PET emis-
sion image was acquired 110  min after injection of 3.7 
MBq/kg of 18 F-FMISO. The total number of patients in 
this study was 45. However, since not all patients under-
went PET scan and we needed the hypoxia parameters 
related to this modality, 27 patients were selected for 
this study. Finally, the MRI images of the patients, along 
with their clinical information related to the PET scan 
hypoxia parameters, including maximum tumor-to-back-
ground (TBRmax) and hypoxic tumor volume (HV), were 
obtained from the TCIA database. As shown in Table 1, 
the demographics of the study population included their 

mean age, Karnofsky Performance Score (KPS), and gen-
der. The Karnofsky Performance Status measures the 
capability of cancer patients to perform ordinary tasks on 
a scale from 0 to 100. A higher score means the patient 
can perform daily activities better [16].

MRI acquisition
Structural MR images used in this study on three 
weights, including T2W, T2W-FLAIR, and T1W with 
injection, were taken using three device models (GE, 
Siemens, Philips). The complete specifications of 
the sequences used in the present study are given in 
Table 2 (The TI value for the FLAIR weight of all scan-
ners is equal to 2.5s).

Pre-processing
After acquiring MR images, a preprocessing step is 
required to prepare the images for segmentation. In this 
study, FSLv6.0 software was used to reduce the noise of 
the images by using the SUSAN noise reduction tool with 
the threshold by default. At this stage, the skull was not 
removed because parts of the tumors were located at the 
periphery of the brain, and if the skull was removed, part 
of the tumor would be removed from the images and 
related features would be lost. The original brain tumor 
image and the noise-reduced image after the preprocess-
ing step are shown in Fig. 1.

Manual segmentation
In this study, the images were manually segmented 
into four areas by an experienced radiologist using the 

Table 1  Patient demographics of the study
Features Number 

(percentage)
Gender 27
  Male 18 (66.7%)
  Female 9 (33.3%)
Mean age ± standard deviation 58.70 ± 7.97
  Male 57.77 ± 7.68
  Female 60.55 ± 8.67
Karnofsky performance status
  Less than 80 18.6%
  More than 80 81.4%
  Average life expectancy from the time of presentation 412 days

Table 2  MRI Image Acquisition Parameters
Scanner Weighted TR(s) TE(s) ST(mm) Matrix Size
GE (1.5T) T2 3 0.1 5 512*512

FLAIR 10 0.1 5 256*256
T1 0.4 0.02 5 256*256

GE (3T) T2 5 0.12 2 512*512
FLAIR 10 0.13 5 256*256
T1 0.5 0.01 5 256*256

Siemens (1.5T) T2 5 0.1 5 384*512
FLAIR 10 0.1 5 384*512
T1 0.5 0.01 5 384*512

Siemens (3T) T2 3.2 0.4 1 256*256
FLAIR 10 0.07 5 448*512
T1 0.19 0.004 5 448*512

Philips (1.5T) T2 5 0.1 5 512*512
FLAIR 10 0.14 5 320*320
T1 0.4 0.02 5 320*320

Philips (3T) T2 3 0.1 5 560*560
FLAIR 4.8 0.3 5 432*432
T1 0.5 0.01 5 432*432

TR: Time of Repetition

TE: Time of Echo

ST: Slice Thickness

https://www.cancerimagingarchive.net/
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ITK-SNAP software. In such a way that in each rele-
vant slice, the region of interest (ROI) was drawn, and 
finally, the volume of the tumor was segmented. Then 
these areas were examined by a neurosurgeon and 
the following measures were taken after his approval. 
These four areas included: the tumor necrosis area in 
T1W images with injection (24 regions), the tumor 
enhancement area in T1W images with injection (27 
regions), the tumor edema area in T2W images (24 
regions), and the tumor edema area in T2W-FLAIR 
images (26 regions). Figure  2 shows the segmented 
regions in ITK-SNAP software.

.

Feature extraction
Pyradiomics, an image analysis library installed in 
Python software, was used to extract radiomic features 
from segmented regions of the tumor [17]. Twelve shape-
dependent features, 158 First-order features (histogram 
features), and 612 s-order features (texture features) were 
extracted from the segmented area in the previous step. 
The first-order features show the intensity distribution 
of the gray levels of the voxels in the region of interest 
(ROI), including entropy, energy, and skewness. Second-
order features describe the spatial relationship of gray 
level values between different voxels using different algo-
rithms [18]. The number of slices containing segmented 
tumor regions for each imaging protocol and region of 
the image is given in Table 3.

Features harmonization with combat method
With the increase of multi-scanner studies, non-biolog-
ical variations introduced by different image access set-
tings, affect the reliability and reproducibility of radiomic 
results. for this reason there’s a greater need for address-
ing non-biological variance presented by differences in 
MRI scanners and acquisition protocols [19]. As a means 
of reducing the inherent variability in medical images, 
harmonization processes have been proposed. Harmo-
nization aims to overcome the lack of reproducibility in 
radiomics features and comparability among medical 
images [20]. In order to eliminate the effects of the scan-
ner and increase the repeatability of radiomic features in 
brain MRI images, at this stage, combat harmonization 
methods on radiomic features were utilized. The combat 
method was used to apply the field strength of each scan-
ner as a batch effect to the radiomics features, resulting 
in harmonized features. The code is available at the fol-
lowing address: https://github.com/Jfortin1/ComBatHar-
monization. Additionally, prior to the classifications and 

Fig. 2  Tumor segmentation via ITK-SNAP by using input (a) T1W + GD 
image for tumor necrosis area, (b) T1W + GD image for enhancement area, 
(c) T2W image for edema area, and (d) T2W-FLAIR for edema area

 

Fig. 1  Original brain image (a) and noise-reduced image (b)

 

https://github.com/Jfortin1/ComBatHarmonization
https://github.com/Jfortin1/ComBatHarmonization
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following this step, the z-score method was utilized to 
normalize the features [21, 22].

 
Classification
After the feature harmonization and normalization 
stages, the automatic classification of the patient’s tumor 
hypoxia status in 4 sections: edema (T2W), edema 
(FLAIR), necrosis and enhancement (T1W), and with the 
help of artificial neural network (ANN) were performed 
in MATLAB software. Artificial neural networks (ANNs) 
are computational models based on predefined activation 
functions that receive inputs and deliver outputs [23]. To 
deal with the problem of overfitting, we used dropout 
and early stopping techniques.

Figure  3. Overview of the methodology and overall 
workflow.

Results
Evaluation metrics
During this section, evaluation criteria were discussed to 
be applied when evaluating the effectiveness of the clas-
sification algorithm. Also, three statistical parameters of 
sensitivity, specificity, and accuracy have been used to 
evaluate the performance of the ANN algorithm. Before 
we go into different evaluation metrics, we explain some 
basic terminologies with the help of a confusion matrix 
(Fig.  4). Finally, using the formulas written in Fig.  4, 

Table 3  Number of slices of segmented tumor regions for 
imaging protocol
Scanner Type Image Protocol Region Number of Slices
GE 1.5T (30 slices)
GE 3T (98 slices)
Siemens 1.5T (21 
slices)
Siemens 3T (92 slices)
Philips 1.5T (46 slices)
Philips 3T (48 slices)

T2 Edema 335

GE 1.5T (34 slices)
GE 3T (54 slices)
Siemens 1.5T (42 
slices)
Siemens 3T (18 slices)
Philips 1.5T (45 slices)
Philips 3T (83 slices)

T2-FLAIR Edema 276

GE 1.5T (4 slices)
GE 3T (23 slices)
Siemens 1.5T (25 
slices)
Siemens 3T (8 slices)
Philips 1.5T (27 slices)
Philips 3T (19 slices)

T1 Necrosis 106

GE 1.5T (13 slices)
GE 3T) 45 slices (
Siemens 1.5T (38 
slices)
Siemens 3T (15 slices)
Philips 1.5T (32 slices)
Philips 3T (35 slices)

T1 Enhance 178

Fig. 3  illustrates an overview of the proposed study
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the system’s sensitivity, specificity, and accuracy were 
measured.

 	• TP = The true positive parameter in this article refers 
to cases that show high hypoxia in the parameters of 
PET images and high hypoxia in the features of MRI 
images.

 	• FP = The false positive parameter in this article 
represents the cases that show low hypoxia in the 
parameters of PET images and high hypoxia in the 
features of MRI images.

 	• TN = The true negative parameter in this article 
represents the cases that show low hypoxia in the 
parameters of PET images and low hypoxia in the 
features of MRI images.

 	• FN = The false negative parameter in this article 
refers to the items that show high hypoxia in the 
parameters of PET images and low hypoxia in the 
features of MRI images.

Evaluation of the ANN algorithm for the classification of 
hypoxia status
In this classification method, a feed-forward neural net-
work was used to separate the hypoxia regions into low 
and high classes, which include input, output, and hid-
den layers. The number of neurons in the input layer 
was equal to the number of features of the resulting 
matrix, and the number of neurons in the hidden layer 
was considered 10. Conversely, the neural network’s out-
put includes one neuron, so it has 0 or 1 output. Output 

equal to 1 indicates areas with high hypoxia, and output 
equal to 0 corresponds to images with low hypoxia. 70% 
of the data was used for training the system and 30% of 
the data was used for testing and validation. After deter-
mining the number of layers and neurons, the ANN clas-
sifier was trained on the selected features. The sensitivity, 
specificity, and accuracy values in the ANN classifica-
tion were calculated after 30 epochs. The mean results 

Table 4  Evaluation of ANN classification performance
MRI
Protocol
&
PET Parameter

Sensitivity(%) Specificity(%) Accuracy(%)

FLAIR – EDEMA
(HV)

83.60 79.28 81.51

FLAIR – EDEMA
(TBR)

83.98 81.88 81.74

T2 – EDEMA
(HV)

80.19 81.15 81.41

T2 – EDEMA
(TBR)

80.34 85.99 82.07

T1 – ENHANCE
(HV)

78.77 73.54 73.66

T1 – ENHANCE
(TBR)

79.01 79.65 79.35

T1 – NECROSIS
(HV)

83.68 75.22 79.59

T1 – NECROSIS
(TBR)

86.71 80.29 83.17

For each protocol, the highest sensitivity, specificity and accuracy are bolded 
in the table

Fig. 4  Evaluation metrics for classification model
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obtained for each protocol and the PET parameters are 
given in Table 4.

Discussion
The evaluation parameters related to the classification of 
the hypoxia status based on MRI.

protocols and PET parameters are discussed in this 
section.

According to Fig.  5, the highest specificity obtained 
to classify the hypoxia status of the patient’s tumor in 
the T2W-EDEMA protocol and with the TBR hypoxia 
parameter was 85.99%. Using this MRI imaging pro-
tocol and PET hypoxia parameter, the highest fraction 
of patients with low hypoxia in PET, who also have low 
hypoxia in MRI, can be detected. This may be due to the 
fact that prolonged exposure to hypoxic conditions can 
lead to the development of cerebral edema and T2w 
abnormalities are known to capture proliferative tumor 
margins and vasogenic edema [12, 24–26]. The high-
est level of sensitivity was related to the T1W-NECRO-
SIS protocol with the TBR hypoxia parameter, which 
equals 86.71%. Using this MRI protocol and PET hypoxia 
parameter, it was possible to detect a fraction of patients 
with high hypoxia in PET who also have high hypoxia 
in MRI. It may be because necrosis appears relatively 
hypointense in Gd-T1W images, especially in the central 
region of the tumor [12]. The highest level of accuracy 
was 83.17%, corresponding to the T1W-NECROSIS pro-
tocol with the TBR hypoxia parameter, which is the same 
as the fraction of people whose hypoxia status is the same 
in MRI and PET (both low or both high).

According to the obtained results, if the patients have 
all three protocols in the treatment process, it is better 
to use the T1W-NEC protocol to identify hypoxia. Still, if 

it was impossible to perform the T1W protocol for some 
patients, the T2W protocol can be used to determine 
hypoxia status.

The present study’s results contradict the study of 
Elizabeth R. Gerstner et al. (2016) [11]. Their results 
showed that the correlation between most pairs of MRI 
and PET markers was not statistically significant, and 
there was only a moderate positive correlation between 
nCBF and HV. However, in the present study, there was a 
significant relationship between the radiomic features of 
the patient’s MRI images and their PET hypoxia param-
eters. The difference between the present study and this 
study could be the difference in the extracted features, 
the type of MRI imaging protocol, and the classification 
algorithms.

The present study also confirms the study by Niha Beig 
et al. (2018) [12], which had differences in the number of 
patients, type of classification algorithms, and extracted 
features. Also, their gold standard for tumor hypoxia sta-
tus was gene expression, but in the present study, it was 
PET parameters. However, both studies proved a signifi-
cant relationship between hypoxic status and the features 
of MRI images.

The present study could use conventional MRI images 
of T1W + Gd, FLAIR, and T2W to nominate affected 
tumor areas with high or low hypoxia levels. Such results 
can be used clinically before treating these patients. 
Among these treatment approaches, we can mention the 
design of radiotherapy treatment specifically for each 
group of patients. Also, by knowing the hypoxia condi-
tion of each group of patients, different drugs can be used 
that inhibit the oxidative phosphorylation mechanism 
(OXPHOS) in the mitochondria. These drugs can reduce 
oxygen consumption by inhibiting OXPHOS by targeting 

Fig. 5  Evaluation parameters of classification for MRI protocols and PET parameters
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the electron transfer chains in the mitochondria, and as 
a result, more oxygen will be available around the tumor 
tissue. Reoxygenation of radioresistant tumors increases 
their radiosensitivity and increases tumor cell death as a 
result of radiotherapy. Among these drugs, Atovaquone, 
Ivermectin, and Mefloquine can be mentioned.

This study had limitations, such as the lack of access 
to many patients and the lack of direct participation. 
Although the overall performance of classifiers depends 
on the extent to which a dataset represents the original 
distribution rather than its size. However, classifiers can-
not effectively learn with small data sets due to various 
issues such as overfitting, noise, outliers, and sampling 
bias, which can render the learned model ineffective. 
The larger the sample size, the more the results can be 
generalized. Also, it was not possible to perform deep 
learning methods in this study due to the limited num-
ber of patients. Another limitation was the impossibil-
ity of removing the skull due to the tumor’s location at 
the edges of the brain, which led to the impossibility of 
using automatic segmentation methods in this study. It 
is suggested that the present study be conducted with 
more patients, other classification algorithms, and other 
hypoxia parameters of PET scans (for example SUVmax) 
and other MRI protocols such as dynamic susceptibil-
ity contrast (DSC) and dynamic contrast enhancement 
(DCE). Looking into the future, it is possible to investi-
gate the relationship between the state of tumor hypoxia 
obtained by analysis of images using advanced MRI tech-
niques with clinical data such as survival, predicting the 
state of response to treatment, tumor recurrence, and its 
relationship with the molecular characteristics such as 
IDH and EGFR status.

Conclusion
In the present study, the hypoxia status of 27 patients 
was analyzed using extracted features from MRI images 
and with the help of PET hypoxia parameter as the gold 
standard. Using the ANN algorithm, the hypoxia status 
of patients was classified into two groups, including low 
and high. The highest average sensitivity, specificity, and 
accuracy were obtained in the best conditions at 86.71%, 
85.99%, and 83.17%, respectively. The results of the pres-
ent study can be used in clinical measures before treating 
these patients. Among these treatment approaches, we 
can mention the design of treatment in radiotherapy and 
the prescription of effective drugs for tumor treatment, 
specifically for each group of patients.
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