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Abstract 

Autism Spectrum Disorders (ASD) are neurodevelopmental disorders that cause people difficulties in social interac-
tion and communication. Identifying ASD patients based on resting-state functional magnetic resonance imaging 
(rs-fMRI) data is a promising diagnostic tool, but challenging due to the complex and unclear etiology of autism. 
And it is difficult to effectively identify ASD patients with a single data source (single task). Therefore, to address this 
challenge, we propose a novel multi-task learning framework for ASD identification based on rs-fMRI data, which can 
leverage useful information from multiple related tasks to improve the generalization performance of the model. 
Meanwhile, we adopt an attention mechanism to extract ASD-related features from each rs-fMRI dataset, which can 
enhance the feature representation and interpretability of the model. The results show that our method outper-
forms state-of-the-art methods in terms of accuracy, sensitivity and specificity. This work provides a new perspective 
and solution for ASD identification based on rs-fMRI data using multi-task learning. It also demonstrates the potential 
and value of machine learning for advancing neuroscience research and clinical practice.

Keywords Autism Spectrum Disorders, Artificial intelligence, Biological information, Multi-task learning, Transformer 
network

Introduction
ASD (Autism Spectrum Disorders) is a heterogene-
ous condition that affects communication, behavior, 
and social interactions in various ways and degrees [1]. 
According to the latest Diagnostic and Statistical Man-
ual of Mental Disorders (DSM-5), ASD encompasses a 

spectrum of disorders that were previously diagnosed 
separately, such as autism, Asperger’s syndrome, and 
other pervasive developmental disorders. The global 
prevalence of ASD has increased dramatically over the 
years, reaching 1 in 59 children in the United States in 
2014 [2]. ASD poses a major public health challenge, as it 
impacts not only the individuals with ASD, but also their 
families and society [3]. Early diagnosis and interven-
tion are crucial for improving the outcomes and reducing 
the costs of ASD [4], but the current standard diagnosis 
relies on subjective and time-consuming assessments 
by multidisciplinary teams using standardized tools [5]. 
These assessments require highly specialized knowledge 
and experience from the evaluators, and are often inac-
cessible or unavailable to many patients [6]. Therefore, 
there is an urgent need for objective and efficient diag-
nostic methods based on biological markers.

With the rapid development of AI (Artificial Intelli-
gence) technology, machine learning as a subfield of AI, it 
has largely enhanced the role of computational methods 
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in neuroscience [7]. Machine learning has been suc-
cessfully applied in Alzheimer’s disease, mild cognitive 
impairment [8, 9], temporal lobe epilepsy, schizophrenia, 
Parkinson’s [10], dementia [11, 12], ADHD [13, 14], ASD 
[15, 16] and major depressive disorder [17]. In particular, 
the identification of ASD has made great progress and 
a series of effective methods have been developed [18]. 
These methods can be briefly divided into two catego-
ries as follows: (1) Based on traditional machine learning 
methods, it models ASD data as a binary classification 
problem using traditional machine learning techniques. 
Crippa et  al. [19] used support vector machine (SVM) 
algorithm to segment ASD patient samples and normal 
controls (NC) samples by fitting a hyperplane. Rane et al. 
[20] used logistic regression method to predict ASD diag-
nosis by transforming fMRI data into probabilities of spe-
cific binary values through linear operations. Abbas et al. 
[21] used an integrated learning approach to construct 
an ASD screening tool by combining a parent question-
naire-based classifier and a behavioral video-based classi-
fier; (2) Based on the deep learning approach, it uses deep 
neural networks to extract hidden features in ASD data 
for ASD identification. Heinsfeld et al. [22] used autoen-
coders to downscale rs-fMRI data and then used deep 
neural networks for ASD prediction. Alsaade et  al. [23] 
performed prediction of ASD disease by constructing a 
functional brain connectivity matrix and projecting it to 
a deep feature space. Pavăl [24] used convolutional neu-
ral networks for facial abnormality identification in ASD 
patients.

Despite the success of these methods, the identifica-
tion of ASD remains a challenge due to the complex 
causes of autism formation and unclear pathogenesis 
[25, 26]. Moreover, most existing methods are based on 

single-task learning, which ignores the potential cor-
relations and complementarities among different ASD 
recognition tasks [27, 28]. To address these issues, we 
propose a novel multi-task learning framework for ASD 
identification based on resting-state functional mag-
netic resonance imaging (rs-fMRI) data. Figure  1 is the 
multitasking transformer framework diagram. Rs-fMRI 
is increasingly used to study neural connectivity and 
identify biomarkers of psychiatric disorders. It performs 
imaging based on blood oxygen level-dependent (BOLD) 
signal changes in brain regions in a non-invasive man-
ner. Thus rs-fMRI-based ASD identification can provide 
more accurate, stable and interpretable predictions.

The main contributions and novelties of our work are 
as follows:

This paper proposes a novel multi-task learning frame-
work for ASD identification based on rs-fMRI data, 
which can leverage useful information from multiple 
related tasks to improve the generalization performance 
of the model. We introduce a temporal encoding mod-
ule to encode the rs-fMRI data, which can capture the 
sequential information embedded in the temporal nodes. 
Meanwhile, we adopt an attention mechanism to extract 
ASD-related features from each rs-fMRI dataset, which 
can enhance the feature representation and interpretabil-
ity of the model.

We design a feature sharing module to share the ASD 
features learned from each dataset, which can exploit the 
correlations and complementarities among different tasks.

We conduct extensive experiments on two public 
rs-fMRI datasets to evaluate the effectiveness of our 
proposed method. The results show that our method 
outperforms state-of-the-art methods in terms of accu-
racy, sensitivity and specificity. This work provides a 

Fig. 1 Multitasking transformer framework diagram
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new perspective and solution for ASD identification 
based on rs-fMRI data using multi-task learning. It also 
demonstrates the potential and value of machine learn-
ing for advancing neuroscience research and clinical 
practice.

Materials and methods
Materials
In the present study, we used rs-fMRI data from the 
Autism Imaging Data Exchange (ABIDE). Due to the 
limited number of subjects at the site, we selected 2 
different sites (number of subjects > 100) from a large 
number of sites, including UM and NYU. Also, data and 
detailed information are available at https://fcon_1000.
projects.nitrc.org/indi/abide/, where Table 1 shows the 
demographic information of the subjects aggregated.

Data preprocessing
There is no consensus on the best methods for preproc-
essing resting state fMRI data. Rather than being pre-
scriptive and favoring a single processing strategy, we 
have preprocessed the data using Connectome Com-
putation System (CCS), Configurable Pipeline for the 
Analysis of Connectomes (CPAC), Data Processing 
Assistant for Resting-State fMRI (DPARSF), Neuroim-
aging Analysis Kit (NIAK), each of which was imple-
mented using the chosen parameters and settings of the 
pipeline developers.

The preprocessing steps implemented by the different 
pipelines are very similar. The largest changes are for 
the specific algorithms used for each step, their soft-
ware implementations, and the parameters used. The 
following sections outline the different preprocessing 
steps and their differences in the pipeline.

Basic processing

Step CCS C-PAC DPARSF NIAK

Drop first “N” 
volumes

4 0 4 0

Slice timing cor-
rection

Yes Yes Yes No

Motion realign-
ment

Yes Yes Yes Yes

Intensity nor-
malization

4D Global 
mean = 1000

4D Global 
mean = 1000

No Non-uniform-
ity correction
using median 
volume

Nuisance signal removal
Each pipeline implemented some form of nuisance vari-
able regression to clean confounding variation due to 
physiological processes (heart beat and respiration), head 
motion, and low frequency scanner drifts, from the fMRI 
signal.

Regressor CCS C-PAC DPARSF NIAK

Motion 24-param 24-param 24-param Scrubbing 
and 1st 
principal 
component 
of 6 motion 
parameters 
and their 
squares

Tissue 
signals

Mean WM 
and CSF 
signals

CompCor
(5 PCs)

Mean WM 
and CSF 
signals

Mean WM 
and CSF 
signals

Motion rea-
lignment

Yes Yes Yes Yes

Low-
frequency 
drifts

Linear 
and quad-
ratic trends

Linear 
and quad-
ratic trends

Linear 
and quad-
ratic trends

Discrete 
cosine basis 
with a 0.01 Hz 
high-pass 
cut-off

Processing strategies
Each pipeline was used to calculate four different pre-
processing strategies:

Strategy Band-
pass 
filtering

Global 
signal 
regression

filt_global Yes Yes

filt_noglobal Yes No

nofilt_global No Yes

nofilt_noglobal No No

For strategies that include global signal correction, the 
global mean signal was included with nuisance variable 
regression. Band-pass filtering (0.01–0.1 Hz) was applied 
after nuisance variable regression.

Table 1 Demographic information of subjects

Site ASD NC Total

Age Avg(SD) Count Age Avg(SD) Count

NYU 14.76(7.12) M 64, F 10 15.75(6.18) M 72, F 26 172

UM 13.71(2.37) M 38, F 9 14.84(3.62) M 55, F 18 120
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Registration
A transform from original to template (MNI152) space 
was calculated for each dataset from a combination of 
functional-to-anatomical and anatomical-to-template 
transforms. The anatomical-to-template transforms were 
calculated using a two step procedure that involves (one 
or more) linear transform that is later refined with a very 
high dimensional non-linear transform. When data are 
written into template space (typically after the calculation 
of derivatives, except for NIAK) all transforms are used 
simultaneously to avoid multiple interpolations.

Registration CCS C-PAC DPARSF NIAK

Functional 
to Anatomical

Boundary-
based rigid 
body (BBR)

Boundary-
based rigid 
body (BBR)

Rigid body Rigid body

Anatomical 
to Standard

FLIRT + FNIRT ANTs DARTEL CIVET

Methods
In this section, we design the multitask Transformer 
framework to improve the ASD prediction performance 
by sharing the knowledge learned from multiple tasks. 
Specifically, Section“Problem definition” formally defines 
the problem. Section“Location coding” describes how to 
encode positions according to the order of time nodes. 
Section“Attention module” defines the way the attention 
mechanism in the Transformer captures useful features. 
Section“Feature sharing” describes the process of feature 
sharing among different tasks. Section“Objective func-
tion” defines the objective function for Optimization of 
the objective function.

Problem definition
In this section, we describe the proposed multi-task 
Transformer learning framework. Suppose we have D 
tasks and the rs-fmri dataset as follows (1), An instance 
as follows (2) in Xd contains T time nodes and N brain 
regions, and the corresponding label yd ∈ {0, 1} is a 
binary classification task, In the experiment, label 1 rep-
resents illness, label 0 represents no disease, and the label 
and label of both tasks have the same significance. We 
further assume that there are D different Transformer 
networks, and each Transformer network consists of 
L-layer feedforward networks, where the lth layer net-
work extracts the features of task d through f ld ∈ R

T×N . 
Specifically, our goal is to improve the generalization per-
formance of task d by sharing features learned from other 
tasks as follows (3).

(1)D = {Xd, Yd}
D
d=1

Location coding
Temporal order information in time series data helps 
to improve model prediction accuracy [29]. To take full 
advantage of the sequential information embedded in the 
time nodes in the rs-fMRI data, we inject information 
about the position in the time node sequence for each 
input data. Specifically, we obtain a position-encoded 
PE with the same dimensionality as xd using the sine and 
cosine function, which is calculated as follows (4, 5).

where t denotes the position of the time node in T time 
nodes, 2n denotes the brain region of even number, and 
2n+ 1 denotes the brain region of base number. In our 
model, xd represents the input features of the task d. It is 
a two-dimensional matrix, where each row corresponds 
to a time node and each column corresponds to a brain 
region. Thus, the dimension of xd is (T, R), where T is 
the number of time nodes and R is the number of brain 
regions. Then, the location information embedding, 
which we implement by summing the location encoding 
PE and xd , is calculated as follows (6).

Attention module
The Transformer network consists of several attention 
modules to improve the ASD prediction performance, 
as shown in Fig. 2. In our model, Q, K, and V represent 
the query (Query), the Key (Key), and the value (Value), 
respectively. These manipulations are central parts of 
the attention mechanism and are used to compute cor-
relations between input features. f ld represents the l-layer 
feature of the task d. These features are extracted through 
feed-forward networks and attention modules and can 
capture important information about the input data. Our 
goal is to improve the generalization performance of task 
d by sharing features learned from other tasks.

Specifically, the features of f ld are first extracted by three 
different linear operations of Q, K and V, and the number 
of channels is reduced to half of the original one to reduce 
the computational effort, as follows (7–9).

(2){Td(·)}
D
d=1

(3){flj}
L

l=1
, ∀j �= d

(4)PE(t,2n) = sin(t/100002n/N)

(5)PE(t,2n+1) = cos(t/100002n/N

(6)x̃d = PE+ xd
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where WQ ∈ R
T×N , WK ∈ R

T×N and WV ∈ R
T×N 

denote the output feature vectors. Then, we matrix mul-
tiply WQ and WK to calculate the correlation weights 
between time nodes and score them using softmax oper-
ation. Finally, we weight sum the correlation weights and 
WV to obtain the attention feature vector, which is calcu-
lated as follows (10).

where f ld ∈ R
T×N denotes the attention feature vector. 

Finally, we fuse the attentional feature vector f̂
l

d and the 
feature fld , which aims to compensate for the information 
lost when the attentional mechanism captures the fea-
tures, calculated as follows (11).

where f ld ∈ R
T×N denotes the output fused features. In 

addition, each layer of the feedforward network consists 
of an attention module and a Forward network, and the 
fused features are transformed into the task-specific fea-
ture space by a fully connected Forward network, calcu-
lated as follows (12).

where f̃
l

d ∈ R
T×N denotes the output, Relu(•) denotes 

the activation function, and Wf and bf denote the corre-
sponding parameters.

(7)WQ = Q(f ld)

(8)WK = K(f ld)

(9)WV = V(f ld)

(10)f̂
l

d = softmax(WQWK
T)WV

(11)f
l
d = f̂

l

d + f ld

(12)f̃
l

d = Relu(Wff
l
d + bf)

Feature sharing
To realize the interaction of features between tasks, we 
build a feature sharing module, as shown in Fig. 3. Each 
layer of the network defines D learnable activation 
mappings MD = {Md}

D
d=1 , where Md = {M1d, ...,MDd} . 

We use MD to linearly combine the feature vectors of 
different task networks and use them as inputs for the 
next layer of feedforward networks. Specifically, we 

matrix the activation mapping MD =

∣∣∣∣∣∣

M11 ... MD1

... Mdd ...
M1D ... MDD

∣∣∣∣∣∣
 

and use it to linearly combine multiple feature vectors, 
which are computed as follows (13).

(13)

∣∣∣∣∣∣∣∣∣∣∣∣∣

f l+1
1
...

f l+1
d
...

f l+1
D

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

M11 ... MD1

... Mdd ...
M1D ... MDD

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f̃
l

1
...

f̃
l

d
...

f̃
l

D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Fig. 2 Attention module

Fig. 3 Feature sharing module, in this graph, M represents 
the activation map for linearly combining the feature vectors 
of different task networks
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where fl+1
d  denotes the output of the l + 1-layer net-

work. We can identify specific layer tasks by setting Mi,k , 
i < D, k < D to zero, or share more features by assigning 
them higher values.

Objective function
Feedforward networks do not change the dimensional-
ity of the feature vectors; however, high-dimensional and 
high-noise data have a negative impact on the prediction 
performance. To solve this problem, we reduce the dimen-
sionality of the feature vector fLd ∈ R

T×N by FC Layers and 

perform the prediction. FC Layers consists of three layers 
of fully connected operations, the first two layers are used 
to reduce the dimensionality and the last layer gets the 
prediction output, which is calculated as follows (14):

where ŷd denotes the output, and Wi=1,2,3 and bi=,1,2,3 
denote the corresponding parameters. Then, we use the 
binary cross-entropy as the loss and the objective func-
tion is calculated as follows (15).

Results and discussion
In this section, we conduct extensive experiments to 
verify the effectiveness of our approach. Specifically, 
Section“Experimental setup” describes the experimental 
setting and setup. Section“Evaluation metrics” gives the 
evaluation metrics to evaluate the experimental results. 
Section“Experimental results and discussion” presents 
the comparison of our method with the current popu-
lar methods on two ASD datasets and the analysis of the 
experimental results.

Experimental setup
The experiments are programmed and implemented as 
follows: PyTorch 1.9, Python 3.8, using a GeForce RTX 
3090 GPU for training. With grid search method for 
tuning hyperparameters, we use Adam as the training 
optimizer with 120 iterations, an initial learning rate of 
1× 10−5 , 50% decay every 30 iterations, and a Batch size 
of 16. The number of feedforward network layers L is 5, 

(14)
ŷd = softmax(W3(Relu(W2(Relu(W1f

L
d + b1))+ b2))+ b3)

(15)L =

D∑

d=1

[∑
xd∈Xd
yd∈Yd

−ydlogŷd

]

and the three fully-connected layers in FC Layers have 
output dimensions of 4096, 2048, and 2. In addition, we 
divide the ASD data in Section“Materials and methods” 
randomly into a training set and a test set in the ratio of 
8:2 ratio randomly into training set and test set for subse-
quent experiments.

Evaluation metrics
We used Accuracy, Sensitivity and Specificity as metrics 
to evaluate the ASD identification results. All methods 
are tested using these metrics and calculated as follows 
(16–18):

where True Positive indicates the number of ASD-posi-
tive patients correctly classified, True Negative indicates 
the number of ASD-false-negative patients, False Posi-
tive indicates the number of ASD-false-positive patients, 
and False Negative indicates the number of ASD-negative 
patients correctly classified.

Experimental results and discussion
Effects of loss function
This experiment established two datasets. Figure 4 shows 
the loss plot lines during the training of the experiments. 
For the Fig. 4a and b loss function, the loss value curve 
has fluctuated several times in a large range during the 
training process, which may indicate the occurrence of 
gradient explosion, resulting in excessive weight update 
of the model, thus causing instability of the model. There-
fore, we need multiple training to improve the stability of 
training. From the graphs, the following conclusions can 
be drawn: (1) The experiments have converged for both 
datasets and the experimental results are reliable; (2) The 
experiments both have the fastest rate of decline until 90 
iterations. This indicates that the model was able to effec-
tively learn how to classify ASD patients and NC patients 
during this time; and (3) The experiments both reached 
convergence at 105–120 iterations, and the model was 
able to fit the training data. In summary, our model can 
fit the ASD dataset well and the experimental results are 
reliable and valid.

(16)Accuracy =
TruePostive+ TrueNegative

TruePostive+ FalsePostive+ TrueNegative+ FalseNegative

(17)Sensitivity =
TruePostive

TruePostive+ FalseNegative

(18)Specifificity =
TrueNegative

TrueNegative+ FalsePostive
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Confusion matrix
Figure  5 is a confusion matrix showing the number of 
true negative (TN), false positive (FP), false negative 
(FN) and true positive (TP) samples. From the figure, we 
can observe that (1) the TN value is the largest among 
the four values, i.e., the number of correctly predicted 
NC samples is the largest. Meanwhile, FP is the small-
est, i.e., the number of incorrectly predicted NC sam-
ples is the least. This again validates that our method 

has a low misdiagnosis rate; (2) TP indicates the num-
ber of samples that correctly identified ASD patients. 
The difference between the TP and FN values is not sig-
nificant. The reason for this result is that the number of 
NC samples in the training sample is high, which leads 
to category imbalance and thus affects the ability of the 
model to identify ASD patients; and (3) In the confusion 
matrix corresponding to the two datasets, the propor-
tions of TN, FP, FN and TP are similar, which proves that 

Fig. 4 Training loss plots. a NYU corresponding loss plot. b NYU corresponding loss plot

Fig. 5 Confusion matrix. a Confusion matrix corresponding to NYU dataset. b Confusion matrix corresponding to UM dataset
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the model has some generalizability. In summary, our 
method can identify NC patients well and has some abil-
ity to identify ASD patients.

Ablation studies
As shown in Fig. 1, Multitasking transformer framework 
diagram can be regarded as a federated network com-
posed of multiple features share modules. In this section, 
we conduct ablation studies to verify the effectiveness of 
the crucial components in multi-task learning framework 
and evaluate the impact of each single task network on 
the results. The transformer network consists of several 
attention modules to improve the ASD prediction per-
formance. Based on the transformer network, we built a 
single network and a feature sharing module respectively. 
All experiments are performed with the same hyperpa-
rameter configuration. Table 2 shows the ablation studies 
with different network configurations.

From index in Table 2, we can see that when we sim-
ply add a single task network to the transformer network, 
Accuracy and Specificity all suffer a decline, but the sen-
sitivity suffers a rise. This shows that adding the multi-
task will bring better results. When we applied Single task 
network and Multitask network to the NYU dataset, the 
accuracy, sensitivity, and specificity indicators of Single 
task network were 63.15%, 52.63%, and 73.68%, respec-
tively. The accuracy, sensitivity, and specificity indicators 
of Multitask network were 67.64%, 40.00%, and 89.47%, 
respectively. When we applied Single task network and 
Multitask network to the UM dataset, the accuracy, sen-
sitivity, and specificity indicators of Single task network 
were 70.68%, 66.00%, and 73.68%, respectively, while the 
accuracy, sensitivity, and specificity indicators of Multi-
task network were 72.00%, 55.00%, and 86.66%, respec-
tively. In summary, adding the feature sharing module 
to the transformer network has the best recognition and 
prediction performance for rs-fMRI data, indicating the 
necessity of the feature sharing module in deep learning 
networks.

Comparison with the state-of-the-art methods
In this section, we compare the proposed method with 
some popular machine learning and deep learning meth-
ods, including support vector machines [30], random 

forests [31], multilayer perceptron [32], SAENet [33], 
MLwSGSU [34] and MCNNet [35]. To test the results of 
these methods, we used their public codes on the NYU 
and UM datasets for training and evaluation. The experi-
mental results of the seven models on the two datasets 
are shown in Figs.  6 and 7. The figures show that com-
pared with other methods, the accuracy values obtained 
by us have better results. Figures 6 and 7 show that com-
pared with the suboptimal method, the accuracy values 
obtained by us have increased by 4.54% and 5.88% on the 
two data sets respectively.

Table  3 shows the results of the different methods on 
the NYU and UM datasets. On the NYU dataset, our 
proposed model achieves 67.64%, 40% and 89.47% in 
accuracy, sensitivity and specificity respectively, which 
are the best results among all compared methods. Unlike 
the case on the NYU dataset, on the UM dataset, our 
proposed model achieves 72%, 50% and 86.66% in accu-
racy, sensitivity and specificity respectively. Through 
qualitative comparisons on the two datasets, we find that 
both our model can guarantee the improvement of com-
prehensive performance and maintain a high specificity 
without introducing too many false positives. Therefore, 
compared to other methods, we believe that Multitasking 
Transformer framework can better cope with the ASD 
prediction.

To sum up, (1) Multi-task learning methods are com-
petitive with traditional machine learning methods and 
deep learning methods in ASD recognition; (2) Our 
methods are significantly better than other methods in 
both accuracy and specificity; and (3) Our methods are 
not as sensitive as other methods. We hypothesize that 
since the number of NC patients in the dataset is slightly 
more than that of ASD patients, the attention mechanism 
when training the model is more biased towards learning 
to capture NC features, thus negatively influencing the 
extraction of ASD features, and therefore less sensitive. 
In addition, the method is effective for ASD identifica-
tion. In conclusion, our method can better identify ASD 
patients with a lower probability of misdiagnosis of NC 
patients.

Limitations
Although our method performs very well compared 
to other methods, several limitations exist. Although 
our method has higher accuracy and specificity, there 
is still lower sensitivity. And the accuracies are only 
67.64% and 72%. This is attributed to the amount of 
training data being too small, which leads too poor 
generalization on the rs-fMRI data. We plan to explore 
more effective data augmentation techniques in future 
work.

Table 2 Ablation studies with different network configurations

Site Method Accuracy (%) Sensitivity (%) Specificity (%)

NYU Single task 63.15 52.63 73.68

Ours 67.64 40.00 89.47

UM Single task 70.68 66.00 73.68

Ours 72.00 50.00 86.66
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Conclusion
In this study, we propose the multi-task Transformer net-
work, which are essential for predicting and diagnosing 
ASD diseases. The proposed network utilizes multi-task 
learning and attention mechanisms for ASD recognition 

and achieves excellent classification performance on 
NYU and UM ASD datasets. In addition, the attention 
mechanism enhances the model’s attention to ASD-
related features. Multi-task learning enhances the model 
generalization performance by fusing knowledge learned 
from different ASD datasets. We evaluated our method 

Fig. 6 Accuracy comparison of different network models in NYU dataset

Fig. 7 Accuracy comparison of different network models in UM dataset
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on two public datasets and found that it outperformed 
several state-of-the-art methods with high performance. 
The results show that combining multitask learning and 
attention mechanism can better classify ASD patients 
and NC patients.
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