RESEARCH

Prodromal Parkinson disease signs are predicted by a whole-blood inflammatory transcriptional signature in young *Pink1^{-/-}* rats

Sarah A. Lechner¹, David G. S. Barnett¹, Stephen C. Gammie² and Cynthia A. Kelm-Nelson^{1*}

Abstract

Background Parkinson disease (PD) is the fastest growing neurodegenerative disease. The molecular pathology of PD in the prodromal phase is poorly understood; as such, there are no specific prognostic or diagnostic tests. A validated *Pink1* genetic knockout rat was used to model early-onset and progressive PD. Male *Pink1^{-/-}* rats exhibit progressive declines in ultrasonic vocalizations as well as hindlimb and forelimb motor deficits by mid-to-late adult-hood. Previous RNA-sequencing work identified upregulation of genes involved in disease pathways and inflammation within the brainstem and vocal fold muscle. The purpose of this study was to identify gene pathways within the whole blood of young *Pink1^{-/-}* rats (3 months of age) and to link gene expression to early acoustical changes. To accomplish this, limb motor testing (open field and cylinder tests) and ultrasonic vocalization data were collected, immediately followed by the collection of whole blood and RNA extraction. Illumina[®] Total RNA-Seq TruSeq platform was used to profile differential expression of genes. Statistically significant genes were identified and Weighted Gene Co-expression Network Analysis was used to construct co-expression networks and modules from the whole blood gene expression dataset as well as the open field, cylinder, and USV acoustical dataset. ENRICHR was used to identify the top up-regulated biological pathways.

Results The data suggest that inflammation and interferon signaling upregulation in the whole blood is present during early PD. We also identified genes involved in the dysregulation of ribosomal protein and RNA processing gene expression as well as prion protein gene expression.

Conclusions These data identified several potential blood biomarkers and pathways that may be linked to anxiety and vocalization acoustic parameters and are key candidates for future drug-repurposing work and comparison to human datasets.

Keywords Parkinson disease, Pink1^{-/-}, RNA-sequencing, Rat, Whole blood

*Correspondence:

Cynthia A. Kelm-Nelson

CAKelm@wisc.edu

¹ Department of Surgery, Division of Otolaryngology-Head and Neck

Surgery, Medical Sciences Center, University of Wisconsin–Madison, 1300 University Avenue, 416, Madison, WI 53706, USA

² Department of Integrative Biology, University of Wisconsin, Madison, WI, USA

Background

Parkinson disease (PD) is the fastest growing neurological disorder and affects approximately 1% of the world's population over the age of 60 [1]. The neuropathological hallmark of PD is death of dopaminergic neurons in the substantia nigra which leads to the diagnostic motor signs of the disease (*eg.*, bradykinesia, rigidity, and resting tremor). In most cases, however, a protracted period of significant neuron death, beginning in the prodromal stage, precedes clinical presentation of motor signs [2–4].

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Prodromal and early-stage PD is associated with a multitude of heterogeneous non-motor signs and symptoms such as sleep and vision disturbances, olfactory and gastrointestinal dysfunction, anxiety, and early-onset cranial sensorimotor impairments that likely have a variety of systemic pathologies [5]. Moreover, there is no specific biomarker test to diagnose PD in the early-stage, before the cardinal motor features of the disease appear, and consequently diagnosis and treatment are delayed.

Early-stage PD is difficult to investigate in humans due to inconsistencies in symptom manifestation, age of onset, and environmental factors. Biomarker identification research has generally focused on cerebrospinal fluid (CSF), yet CSF collection via lumbar puncture is invasive, expensive, painful, and requires skilled healthcare providers to collect specimens. Alternatively, blood collection via phlebotomy is a ubiquitous, relatively non-invasive source for potential biomarkers that is inexpensive, routine, and still has a high clinical application. Several recent studies have evaluated whole-blood transcriptome data that have demonstrated consistent PD-specific changes in neutrophil gene expression and lymphocyte cell counts linked to the motor progression of PD [6, 7]. Data also suggest that PD gene expression signals such as phosphorylated α -synuclein, DJ-1, and oxidative stress markers are detectable in blood and plasma of clinicallyill patients [8-10]. These studies validate use of peripheral whole blood gene expression in biomarker discovery and potential development of diagnostics and prospective therapeutics. Despite these promising findings, identification and understanding of early-stage PD genetic biomarkers within whole blood samples remains limited.

Most cases of PD are idiopathic; however, 5–10% of cases are monogenic familial forms such as those due to mutations in LRRK2, PRKN, DJ1, SNCA, and PINK1 [11-13]. Large genome-wide association studies have shown these specific genes are concomitantly implicated in idiopathic PD pathophysiology [14], and are involved in a set of molecular pathways that trigger an earlyonset pathology sequence that is indistinguishable from sporadic forms [12]. Mitochondria within the CNS are subject to the immense metabolic demands of neuronal activity. Mitochondrial stress, abnormal mitophagy, and lysosomal dysfunction leads to the release of damageassociated molecules that can activate an innate immune response, as seen in genetic murine models of PD. For example, PINK1 (PARK6, phosphatase and tensin homolog (PTEN)-induced putative kinase 1) is involved in mitochondrial quality control and protects cells from stress-induced mitochondrial dysfunction. Altered mitophagy due to Pink1 deficiency is likely involved in multiple CNS disorders, including PD, Alzheimer's disease, and glaucoma [15]. In general, loss of *Pink1* is also

involved in increased generation of pro-inflammatory cytokines and chemokines within plasma, sera, CSF, and blood linked to neuron death [16] as well as increased cytosolic mitochondrial mtDNA and induction of type-I interferon responses and apoptosis [17].

Genetic rodent models of early-stage PD provide insight into the underlying genetics of idiopathic disease, provide experimental control to link genes to behavioral dysfunction associated with disease progression, and identify targets for the development of treatments [18]. The *Pink1^{-/-}* rat parallels human idiopathic PD progression including early-stage behavioral changes due to sensorimotor and cranial motor dysfunction (eg, vocal communication) [19, 20]. Work over the past decade has demonstrated that *Pink1^{-/-}* rats develop early motor and non-motor deficits as soon as two months of age [21, 22]. This includes alterations in early affected peripheral head and neck muscles and nerves involved in communication, as well as decreased norepinephrine, abnormal α -synuclein aggregation, and increased inflammation in multiple brainstem regions including those associated with sensorimotor vocal function (eg. periaqueductal gray; vocal modulator) [22-30]. Rats communicate during social interactions by producing ultrasonic vocalizations (USVs) in part by contraction and adduction of the thyroarytenoid (TA) muscle [31, 32]. At 2-3 months of age, in the prodromal period, Pink1^{-/-} rats show differences in acoustical parameters compared to wild-type rats [22, 29]. Recent research has shown that loss of functional Pink1 in the TA muscle leads to increased inflammatory and cell death pathways including the TNF- α / NF-kB signaling pathway [28]. The identification of key disease-related genes and biological pathways are important to develop to identify treatment targets for early signs including communication dysfunction. Yet, there is a need to establish translatability between biomarker identification within tissue types and an easily accessible, comprehensive sample type.

While previous cranial motor behavior and tissuespecific genetic studies have been done in the $Pink1^{-/-}$ rat model, whole blood gene expression has not been evaluated [25, 28, 29, 33]. By identifying whole blood gene expression profiles in early-stage PD, we can develop a transcriptomic signature capable of detecting PD in prodromal stages. The purpose of the current study was to identify dysregulated gene pathways within the blood of young $Pink1^{-/-}$ rats (3 months of age), develop genetic biomarkers or signatures that appear during the early-stage of disease, prior to the onset of hallmark limb motor signs, and evaluate whether they can predict early-stage, cranial motorbased vocalization outcomes. Here, we tested the specific hypothesis that loss of *Pink1* alters inflammation gene expression in whole blood, resulting in the upregulation of genetic pathways that begin in early-stage disease and are bioinformatically correlated to vocal communication acoustic parameters.

Results

Overall DEG analysis

There were 101 differentially expressed genes (DEG) identified in this study including 16 downregulated and 85 upregulated in *Pink1^{-/-}* compared to WT male rats. *Pink1* was confirmed to be significantly downregulated in the dataset (log(Fold Change) = -7.49×10^{10}). Within the entire DEG dataset, the top gene biological processes from the KEGG 2021 Human included mitophagy, ubiquitin mediated proteolysis, apoptosis,

PPAR signaling, and others including Parkinson disease (Table 1).

Downregulated gene pathways

Downregulated pathways identified using WikiPathways (Table 2) included those related to mitochondrial longchain fatty acid beta-oxidation (*Acadl*), type II interferon signaling (*Nos2*), and PD (*Pink1*). Within the significantly downregulated DEG dataset, gene enrichment analysis for the GO biological process (Table 3) included nucleotide biosynthesis (*Pink1*, *Nos2*), apoptotic processes (*Pink1*, *Lig4*), and immune responses (*Nos2*, *Lcn2*, *Mid2*) were identified. Drug compounds identified to reverse downregulated gene transcription (Table 4) included multiple interferon-like compounds (IFNA-MCF7, BT20, SKBR3, MDAB231, HS578T).

Table 1 Gene enrichment KEGG analysis of the DEG dataset

KEGG 2021 human	P-value	Combined score	Genes
Mitophagy	0.005077	48.84843934	PINK1;UBC;ULK1
Ubiquitin mediated proteolysis	0.005756	30.5893287	UBE2H;UBC;NEDD4L;BTRC
Apoptosis	0.006049	29.85283778	PIDD1;TUBA1C;GADD45A;CTSW
PPAR signaling pathway	0.006424	42.71533574	ACADL;ACSL1;UBC
Peroxisome	0.008523	36.22486703	NOS2;ACSL1;ECH1
Pathways of neurodegeneration	0.010884	13.82892126	PRNP;TUBA1C;PINK1;NOS2;UBC;ULK1;COX5B
Ferroptosis	0.018559	40.60210583	PRNP;ACSL1
Fatty acid degradation	0.020303	37.7473815	ACADL;ACSL1
Cell cycle	0.025616	18.15012594	CDKN2C;GADD45A;BUB1
Arginine and proline metabolism	0.026918	29.89881632	NOS2;CKB
Lysosome	0.027792	17.17490197	LAPTM4B;ENTPD4;CTSW
Pyrimidine metabolism	0.033181	25.03114045	ENTPD4;TK1
Amyotrophic lateral sclerosis	0.03869	9.123903065	TUBA1C;PINK1;NOS2;ULK1;COX5B
Parkinson disease	0.038692	10.64788748	TUBA1C;PINK1;UBC;COX5B
Adipocytokine signaling pathway	0.04845	17.92029129	ACSL1;AGRP

ACADL, Acyl-CoA Dehydrogenase Long Chain; ACSL1, Acyl-CoA Synthetase Long Chain Family Member 1; AGRP, Agouti Related Neuropeptide; BTRC, Beta-Transducin Repeat Containing E3 Ubiquitin Protein Ligase; BUB1, BUB1 Mitotic Checkpoint Serine/Threonine Kinase; CDKN2C, Cyclin Dependent Kinase Inhibitor 2C; CKB, Creatine Kinase B; COX5B, Cytochrome C Oxidase Subunit 5B; CTSW, Cathepsin W; ECH1, Enoyl-CoA Hydratase 1; ENTPD4, Ectonucleoside Triphosphate Diphosphohydrolase 4; GADD45A, Growth Arrest And DNA Damage Inducible Alpha; LAPTM4B, Lysosome-associated transmembrane protein 4B; NEDD4L, NEDD4 Like E3 Ubiquitin Protein Ligase; NOS2, Nitric Oxide Synthase 2; PIDD1, P53-Induced Death Domain Protein 1; PINK1, PTEN Induced Kinase 1; PRNP, Major prion protein; TK1, Thymidine Kinase 1; TUBA1C, Tubulin Alpha 1c; UBC, ubiquitin C, UBE2H, Ubiquitin Conjugating Enzyme E2 H; ULK1, Unc-51 Like Autophagy Activating Kinase 1

Table 2 Downregulated gene pathways

WikiPathways 2019	P-value	Combined score	Genes
Mitochondrial LC-fatty acid beta-oxidation WP401	0.013518558	358.0671609	ACADL
Type II interferon signaling (IFNG) WP1253	0.028521354	134.4018728	NOS2
Fatty acid beta oxidation WP1269	0.028521354	134.4018728	ACADL
Parkinsons disease pathway WP3638	0.032650532	112.2527604	PINK1

ACADL, Acyl-CoA Dehydrogenase Long Chain; NOS2, Nitric Oxide Synthase 2; Pink1, PTEN induced putative kinase 1

Table 3	Gene enrichment	GO Biological Proces	s analysis of the s	significantly do	wnregulated genes
		5		J /	

GO biological processes 2021	P-value	Combined score	Genes
Positive regulation of purine nucleotide biosynthetic process (GO:1900373)	5.27E-05	2384.526542	PINK1;NOS2
Negative regulation of neuron apoptotic process (GO:0043524)	0.001632573	246.9566012	PINK1;LIG4
Innate immune response (GO:0045087)	0.001981189	87.80293162	NOS2;LCN2;MID2
Positive regulation of autophagy (GO:0010508)	0.00260634	179.3506662	PINK1;MID2
Positive regulation of cold-induced thermogenesis (GO:0120162)	0.003019429	161.9703169	ACADL;LCN2
Regulation of neuron apoptotic process (GO:0043523)	0.003080796	159.7193234	PINK1;LIG4
Negative regulation of neuron death (GO:1901215)	0.003080796	159.7193234	PINK1;LIG4
Positive regulation of metabolic process (GO:0009893)	0.004071108	131.3781523	ACADL;LCN2

ACADL, Acyl-CoA Dehydrogenase Long Chain; LCN2, Lipocalin 2; LIG4, DNA Ligase 4; MID2, Midline 2; NOS2, Nitric Oxide Synthase 2; Pink1, PTEN-induced kinase 1

Table 4 DrugrepurposingusingLINCSL1000anddownregulated gene targets

Drug compound	P-value	Combined score	Genes
IFNA-MCF7	2.26E-04	254.9535019	PHF11;LCN2;HERC6
IFNA-BT20	0.005922153	100.5446808	PHF11;HERC6
IFNA-SKBR3	0.006006249	99.52598888	PHF11;HERC6
IFNA-MDAMB231	0.006877312	90.20902738	PHF11;HERC6
IFNA-HS578T	0.006967409	89.35667103	PHF11;HERC6
PDGFBB-SKBR3	0.007519304	84.50918235	LAPTM4B;LCN2
BTC-MCF10A	0.008090459	80.07848334	LAPTM4B;LCN2

Gene HERC6, HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase Family Member 6; LAPTM4B, Lysosome-associated transmembrane protein 4B; PHF11, PHD Finger Protein 11; LCN2, Lipocalin 2

Upregulated gene pathways

There were notably more upregulated DEG compared to downregulated; this is consistent with DEG expressed in the brain and thyroarytenoid muscle of the $Pink1^{-/-}$ rat [25, 28]. The gene enrichment for the gene ontology (GO) biological processes (Table 5) included a long list of cellular activities (cell cycle, ubiquitin activity, protein modifiers) as well as multiple blood-specific processes. These findings were mirrored in the WikiPathways analysis in which fatty acid biosynthesis (Acsl1, Ech1), cell cycle control (Cdkn2c, Gadd45A), p54 signaling (Pidd1, Gadd45A), and PPAR signaling (Acsl1, Ubc) were significantly upregulated (Table 6). Finally, drugs that were matched to reverse upregulation included EPG-MCF7, MCF-MCF7 (apoptosis resistance), HBEGF-SKRB3 (Anti-EGFR monoclonal antibodies), and IFNG-MCF7 (interferon) (Table 7).

Top 1000 genes

To expand the number of pathways and capture significant biological changes in both directions, the top 1000 up- and downregulated genes were used in a separate gene enrichment analysis. Additional file 1: File S1 lists the significant WikiPathways and GO Biological Process for both up- and downregulated gene lists, respectively. Upregulated pathways included heme biosynthesis (*Urod, Uors, Hmbs, Cpox, Ppox*) and ferroptosis (*Prnp; Steap3; Map1lc3a; Tfrc; Acsl1; Lpcat3; Alox15; Slc11a2; Slc3a2*). Downregulated pathways included mitochondrial fatty acid synthesis (*Mecr; Oxsm; Hsd17b12*) and mitochondrial long-chain fatty acid beta-oxidation (*Pecr; Acadl; Cpt2; Eci1*).

When the top 1000 up-and downregulated genes were put in STRING, 96 interacting genes were identified (Additional file 2: File S2). These are replotted and shown in Fig. 1 and demonstrate enrichment for PD and prion disease.

WGCNA

Additional file 3: File S3 includes the sortable output files, *P*-values, correlations, and list of genes in the top modules. There were 4 significant modules (ME): Red, Yellow, Midnightblue, and Purple. The top module was Red and included Pink1. To determine the genes and their functions that interact with Pink1 within this whole blood RNA dataset, the 248 genes that were in Red were put into the gene enrichment analysis tool to evaluate this specific gene list against preexisting data sets. Several areas of enrichment were identified including protein catabolic process, ion homeostasis, and protein destabilization. The Yellow module significantly correlated to frequency modulated USV duration (length) and bandwidth (frequency range) and Yellow (335 genes) was enriched for mitochondrial gene expression. Both the Red and Yellow modules correlated to open field number of entries (movement into the open field indicating less anxiety; increased exploration). Other significant modules, Midnightblue (89 genes) demonstrated enrichment in iron ion homeostasis, as well as macrophage activation, and immune processes. Purple (152 genes) showed enrichment in multiple cellular processes.

Table 5 Gene enrichment GO biological process analysis of the significantly upregulated genes

Intercendence2.28-641.4 Sen134CoUSE_TPCAPE ResPict onMatch signific organization (GOOSDS)531-644.26.57.67CMUNENT4Patch sequitation of hemostatis (GOISOSD)2.26-644.26.57.67COUSENTC4Patch sequitation of hemostatis (GOISOSD)2.26.644.26.27.67COUSENTC4Patch sequitation of hemostatis (GOISOSD)2.26.644.27.20.61COUSENTC4Patch sequitation of hemostatis (GOISOSD)0.01049144.27.20.61COUSENTC4Patch sequitation of hemostatis (GOISOSD)0.010491484.27.20.62RE27.40.10.10.10.10.10.10.10.10.10.10.10.10.10	GO biological processes 2021	P-value	Combined score	Genes
Munk spurk-engination (GO000707)5 517-446 9498795COLGA2/TR25/L921/F13411Pather enginator and cogniston (GO000707)7867-442637744DMNr-NPMPather enginator of cogniston (GO000707)8651-4425/07264COLGA2/TR23/F21Pather enginator of cogniston (GO000707)8651-4425/07264COLGA2/TR23/F21Beginator of splin dependent protein activa (GO1900244)00015751991296CONSC.GO0043COFReginator of splin dependent protein conjugation (GO002240)000227517229850EXCANDA4COFReginator of solide organisation (GO002241)000227517229850COLGA2/TR23/COLGA2044Reginator of solide organisation (GO002241)000227517229850COLGA2/TR23Reginator of solide organisation (GO002241)000227517229850COLGA2/TR23Reginator of solide organisation (GO002340)000327517229850COLGA2/TR23Reginator of solide organisation (GO002340)000327617229850COLGA2/TR23Reginator of solide organisation (GO003430)000350114228940COLGA2/TR23Reginator of solide organisation (GO003430)000350112429940COLGA2/TR23Reginator of solide organisation (GO003404)0004534012940540COLGA2/TR23Reginator of solide organisation (GO003404)0004534012940540COLGA2/TR23Reginator of solide organisation (GO003404)0004534012940540COLGA2/TR24Reginator of solide organisation (GO003404)0004534012940540COLGA2/TR24Reginator of solide organisation (GO003404)	Mitotic nuclear division (GO:0140014)	2.79E-04	114.5941314	GOLGA2;TPX2;KIF18B;KIFC1
Panker explained recognition (S0050907)786-0486 7774UNINE NPM4Borker explained nebrostas (G0 200407)845-04820 7284GGS2 (FFC 40071)Borker explained recognition (S0050937)8474 80519217284GGS2 (FFC 40071)Borker explained recognition (S00509401)001641842142442BE2HUHR (CM 3112CM 20142)Borker explained recognition (S00509401)0012978727080UDINE NPM4Pasile recognition (S00509401)00229751378859UDINE NPM4Pasile requiration (S0050924)00229751378859UNINE NPM4Requiration of explained regonitation (S0050924)00377701378894UDINE NPM4Requiration of explained regonitation (S0050924)00377701378894UDINE NPM4Requiration of explained regonitation (S0050924)00357701378894UDINE NPM4Requiration of explained regonitation (S0050924)00357011428846UDINE NPM4Requiration of explained regonitation (S0050924)00357011428846UDINE NPM4Requiration of explained regonitation (S0050924)00359211428846UDINE NPM4Requiration of explained regonitation (S0050924)00359211428846UDINE NPM4Requiration of explained regonitation (S0050924)00359211428846UDINE NPM4Requiration (S0050924)00359211428846UDINE NPM4UDINE NPM4Requiration (S0050924)00359211428846UDINE NPM4UDINE NPM4Requiration (S0050924)00359210035921UDINE NPM4UDINE NPM4 <t< td=""><td>Mitotic spindle organization (GO:0007052)</td><td>5.53E-04</td><td>60.9428395</td><td>GOLGA2;TPX2;STIL;KIFC1;BUB1</td></t<>	Mitotic spindle organization (GO:0007052)	5.53E-04	60.9428395	GOLGA2;TPX2;STIL;KIFC1;BUB1
Pacies equilation of memotasis GO1.2000H8786:-44428.0776/4DIVINELEMP4Boalter equilation of abcjuilin protein ligase acidity GO1.204.66800.001147589.972781GOGA2BTRCBoalter equilation of abcjuilin protein ligase acidity GO1.204.66800.001147589.972781GORA2GTRCBroalter equilation of abcjuilin protein ligase acidity GO1.204.66010.0012927819.727880UREAUHFF JGCA2HL4FF JGCA2HL4FFProtein madification by mail protein copugation GOGO303100.0021297517.228835UREAUHFF JGCA2HL4FFNagater equilation of deptosphorytion (GOG0303100.0022197515.2788429GOCA2ETFCRequires on factor anamembrane transport GO1.004.0630.0022197515.2788429GOCA2ETFCRequires equilation of deptosphorytion (GOG0331300.0032970511.2288456DMTNSADDAANagater equilation of peptodylasme phophorytion (GOG0331370.003510114.2288465DMTNSADDAANagater equilation of peptodylasme phophorytion (GOG0331370.035104114.288465DMTNSADDAANagater equilation of peptodylasme phophorytion (GOG0331370.035107114.288465DMTNSADDAANagater equilation of poptodylasme charge acid (GOG031081)0.05847779.871840DMTNSADDAANagater equilation of poptodylasme charge acid	Positive regulation of coagulation (GO:0050820)	7.86E-04	428.6577674	DMTN;ENPP4
Monte qualation of abquish protein lingue activity (GD 190400000000000000000000000000000000000	Positive regulation of hemostasis (GO:1,900,048)	7.86E-04	428.6577674	DMTN;ENPP4
Pasitie organization of ubiquity protein lagae activity (COL 190.468) 0001 14598 24.7269518 COLDA2BTRC Biquition of organization dependent protein catabolic process (CO.001991) 0.0016914 40.1420442 UBEJHLIHST (LOCKIDA0454CC)F Patter madiation of by mail protein catabolic process (CO.001991) 0.00162915 172.258865 UBEJHLIHST (LOCKIDA0454CC)F Positer englation of action transmembane transport (CO.1000204) 0.00221275 172.258865 SIC.43A1 NEDDUL Regulation of genophorylation (CO.000204) 0.00322703 152.7884920 PIPITISA542D044 Negative explaintion of genophorylation (CO.0033127) 0.0035011 142238405 DMINCAD045A Regulation of displating brain ingrate/late calcium source (CO.0033127) 10035011 142238405 DMINCAD045A Regulation of displating brain ingrate/late calcium source (CO.0033127) 10035011 142238405 DMINCAD045A Regulation of displating brain ingrate/late calcium source (CO.0033127) 10035011 142238405 DMINCAD045A Regulation of displating protein ingrate/late calcium source (CO.0033127) 100350181 142238405 DMINCAD045A Regulation of colondation protein sace intervity (CO.00045A) 0.00350182 32.87242991	Mitotic spindle assembly (GO:0090307)	8.65E-04	125.0712864	GOLGA2;TPX2;KIFC1
Begulation of yelm-dependent protein states (1940) (2013942)001871539197281CINR2CAOLPACKONTMadification dependent protein catabolic protein scalabolic protein sc	Positive regulation of ubiquitin protein ligase activity (GO:1,904,668)	0.001145981	324.7869518	GOLGA2;BTRC
Madification-dependent protein calability process (aC001991) 001192078 2757203266 UBE21UHERLIGNEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUE	Regulation of cyclin-dependent protein kinase activity (GO:1,904,029)	0.001571551	91.9912981	CDKN2C;GADD45A;CCNF
Preter modification by small protein conjugation (SQ003344)0.00129097.2720364UERPLIMENT_CONFURCENTEDALIGTECTRINATPositive regulation of action transmembrane transport (GQ) 9040630.002512977.8229885SLGAAI NEDDALRegulation of action transmembrane transport (GQ) 9040630.002512977.8229885SLGAAI NEDDALRegulation of action transmembrane transport (GQ) 9070200.002512977.8229885GLGA2TPV2Native regulation of action transmetoring (GQ) 9070200.00352011.02283455GUGA2TPV2Native regulation of action transmetoring (GQ) 9031700.003556111.42283456GUGA2TPV2Nagative regulation of pertubly-service holpsohyolis (GQ) 9031700.003556111.42283456GUGA2TPV2Nagative regulation of pertubly-service holpsohyolis (GQ) 9031700.003556111.42283456GUGA2TPV2Nagative regulation of pertubly-service holpsohyolis (GQ) 9031700.90355611.42283456GUGA2TPV2Nagative regulation of potent sentel/heorenic Rinsea etity0.00351294.8396192GUGA2TPV2Sprinde assembly (GQ) 9031250.00532779.837814GUGA2TPV2Sprinde assembly (GQ) 9031930.00547719.871844GUTACQA2DPACRegulation of potent sentel/heorenic Rinsea etity0.00547179.871844GUTACQA2DPACRegulation of potent sentel/heorenic Rinsea etity0.00547179.871844GUTACQA2DPACRegulation of potent sentel/heorenic Rinsea etity0.00547179.871844GUTACQA2DPACRegulation of potent sentel/heorenic Rinsea etity0.00547179.871844GUTACQA2D	Modification-dependent protein catabolic process (GO:0019941)	0.001669146	40.21420442	UBE2H;UHRF1;UBC;NEDD4L;BTRC
Pacha equilation of Hood coagulation (CA003019)0.0022079193.78250VMINEIPPPNegative regulation of dephosphosition (CA003224)0.0021297178.228835178.278473Negative regulation of dephosphosition (CA0033355)0.0032270315.2788492CACAAI NEDDALNetrouble ruleoding of pephosition (CA0033355)0.0032270315.2788492CACAAI NEGADANetrouble ruleoding of pephosition (CA0033355)0.0032570114.283845CACAAI NEGADANegative regulation of pephosition foctoristic of perioding o	Protein modification by small protein conjugation (GO:0032446)	0.001782978	27.57203266	UBE2H;UHRF1;CCNF;UBC;NEDD4L;BTRC;TRIM31
Negative regulation of calor transmembrane transport (GO1,904,063) 102,01297 172,29883 SICAINCOLL Regulation of spinde organization (GO090224) 0.002,12975 152,788492 OEACATPX - Microtubule nucleation (GO009024) 0.003,22703 122,288492 OEACATPX - Calchammediated spinal guing intracellular cicle unserve (GO0033531) 142,2838495 OEACATPX - Negative regulation of pacityl-serine phosphorylution (GO033137) 0.00355871 142,2838495 OEACATPX - Negative regulation of pacityl-serine phosphorylution (GO033137) 0.00351821 122,38495 OEACATPX - Negative regulation of pacityl-serine phosphorylution (GO033137) 0.00351825 439549715 CDR02,GAD045ACCNF Negative regulation of CO030129 0.00453647 19,788564 OEACATPX - NEWP Regulation of phosphatase activity (GO0301923 0.0059797 9,85166344 URESTRE NEWP Negative regulation of phosphatase activity (GO0010923 0.0069718 8,746534 URESTRE Negative regulation of phosphatase activity (GO0051434 0.0069218 0.0493014 URESTRE Negative regulation of phosphatase activity (GO0051434 0.0069218 <td< td=""><td>Positive regulation of blood coagulation (GO:0030194)</td><td>0.002329057</td><td>193.7985609</td><td>DMTN;ENPP4</td></td<>	Positive regulation of blood coagulation (GO:0030194)	0.002329057	193.7985609	DMTN;ENPP4
Begulation of spinole organization (GO009024)00032703172.08895PKPIRIDAS/EDVANegative regulation of dephosphorylation (GO0035305)00032705152.788497GOLGA2TIV2Calcum-mediated spinaling using intracellular colum source (GO005558)0035591142.83895PMTNGADOSANegative regulation of dephosphorylation (GO003137)0035591142.83895GOLGA2TINCBegulation displantly including protein ligas activity (GO1,9466)0035891142.83895GOLGA2TINCUbing infradement protein regulation of displantly including protein ligas activity (GO1,9466)0035891152.84929GOLGA2TINCBegulation of cyclin-dependent protein serine/htroonine kinase activity0046436417.0882506GOLGA2TIN2AIRCSpinde assembly (GO005125)00509779.57186344UMTNENPP4Serse-activated potein kinase activity (GO1001023)00509779.57186344UMTNENPP4Negatiation of loophatase activity (GO1001023)00672178.7748941UMTNENPP4Negatiation of loophatase activity (GO1001023)00672178.7489140GOLGA2TIN2AIRCNegatiation of loophatase activity (GO05140100672738.0490114SCLGA2TRCNegatiation of loophatase activity (GO05140100767238.0490114SCLGA2TRCNegatiation of loophatase activity (GO05140100767238.0490114SCLGA2TRCNegatiation of loophatase activity (GO05140100767238.0490114SCLGA2TRCNegatiation of loophatase activity (GO05140100767238.0490114SCLGA2TRCNegatiation of loophatase activity (GO051401 <td>Negative regulation of cation transmembrane transport (GO:1,904,063)</td> <td>0.002612975</td> <td>178.2298835</td> <td>SLC43A1;NEDD4L</td>	Negative regulation of cation transmembrane transport (GO:1,904,063)	0.002612975	178.2298835	SLC43A1;NEDD4L
Negation of depices/polylation (GD0033305)QD032270512.288429PRIPEMinitubule nucleation (GD0037020)QD032270512.288429GOLGACTPX2Calcium mediated signaling using lintacellular calcium source (GD003550112.288495DRNP_ONINNegation of depicity-serine phosphosylation (GD0031701QD03550112.288495GOLGACTPX2Using intracellular calcium source (GD0035200.203550112.288495GOLGACTPX2Using intracellular calcium conservity (GD1.0946060.003500112.088505GOLGACTPX2Using intracellular calcium conservity (GD1.0946060.004504511.088205GOLGACTPX2Using intracellular calcium conservity (GD1.0947060.004504710.088477GOLGACTPX2Spinden servity (GD0.001023)0.0058477185.718840UBCETPX2GOLGACTPX2Spinden for porticin targeting carcade (GD0310800.0058477184.810340GOLGACTPX2Spinden for porticin targeting carcade (GD0.01023)0.00627184.91044GOLGACTPX2Negation of porticin targeting carcade (GD0.01023)0.00727184.91044GOLGACTPX2Negation of porticin targeting carcade (GD0.01023)0.00727384.91044GOLGACTPX2Negation of porticin targeting carcade (GD0.01023)0.00727384.91044GOLGACTPX2<	Regulation of spindle organization (GO:0090224)	0.002612975	178.2298835	TPX2;TACC3
Microdubile nucleation (GO00020)0.003227039.02848290.0402477CCalcium mediated signal using intracellul raciolul (GO003137)0.03550114.2838450MINCADD4SARegulation of perjudi-seme phospharylation (GO00317)0.03550112.3849500.040247TCRegulation of perjudi-seme phospharylation (GO00317)0.03550112.3849500.060247TCUpidation dependent protein state activity (GO004182)0.0512503.3957100.050247CEgulation of cyclic dependent protein seiner/threaning state activity (GO00192)0.05047719.5718640O.06047TCState activity (GO00192)0.05047719.5718640O.06047TC9.671670Regulation of cyclic dependent protein state activity (GO00192)0.06021708.7712049.0716704Negative regulation of phospharse activity (GO00192)0.06021708.7712049.0716714Negative regulation of phospharse activity (GO00192)0.06021708.7712049.0716714Negative regulation of phospharse activity (GO00192)0.0762738.74921409.0164274Negative regulation of state activity (GO00192)0.0762738.04901140G.06427TCNegative regulation of state activity (GO00192)0	Negative regulation of dephosphorylation (GO:0035305)	0.003227035	152.7884929	PPP1R15A;SH2D4A
Calcium-mediated signaling using intracellular calcium source (GO 003558)0035567114.2.838495PRIMPICMINegative regulation of ubiquitin protein lagas exitivity (GO 00566)0035567114.2.838495GOLGA/28TRCUbiquitin dependent protein satebile process via the multivesicular body0039104232.9442988UBAP1/PS25Ubiquitin dependent protein sectivity (GO 003129)0.005529532.954298UBAP1/PS25Spinde assembly (GO 0031257)0.00552984.9594073OKRCGADD45ACCFFSpinde assembly (GO 003129)0.0058977198.57188344UGC3TRCNegative regulation of phosphatas extivity (GO 001923)0.0058071798.7188344UGC3TRCNegative regulation of phosphatas extivity (GO 001923)0.0058071798.748204PMININNegative regulation of phosphatas extivity (GO 001923)0.0058071784.4683040COLGA/27VCNetroin big diracing to membrane (GO 000313)0.007770184.718204BURLNetroin big diracing (GO 004785)0.007627384.4633040COLGA/28CA4Phospholiped transformato (GO 005824)0.007627384.4633040COLGA/28CA4Organic add tansport (GO 005824)0.007627384.4633040COLGA/28CA4Organic add tansport (GO 005824)0.007627384.493040COLGA/28CA4Organic add tansport (GO 005824)0.007627384.493040COLGA/28CA4Organic add tansport (GO 005824)0.007627384.493040COLGA/28CA4Organic add tansport (GO 005824)0.007627384.493040COLGA/28CA4Organic add tansport (GO 0058	Microtubule nucleation (GO:0007020)	0.003227035	152.7884929	GOLGA2;TPX2
Negative regulation of peptidyl-serine phosphoylation (GO033137)GO3556714.2.2838495OMTNCADDESARegulation of ubiquitin protein lagse activity (GO1094,660)0.003519111.2.2442980URAPILYSESLight translocation (GO004204)0.0046364817.088250S.C.6A62,40C.44Regulation of cyclin-dependent protein serine/theonine kinase activity0.0055298048.39549715GD10A2C,GADD4SA,CCNFSignel assembly (GO005125)0.0050970798.57185440DMTNCNPNP4Regulation of locid caugulaton (GO003019)0.0058777198.57185440DMCRCNPLACNegative regulation of phosphates activity (GO001092)0.0058277198.57185440DMCRTNPNP4Negative regulation of phosphates activity (GO000192)0.0058277198.7786340DMCRTNPNP4Negative regulation of chosphates activity (GO000192)0.0058277198.7786340DMCRTNPNP4Negative regulation of chosphates activity (GO000192)0.0058277198.7786340DMCRTNPNP4Negative regulation of chosphates activity (GO000192)0.005827798.7786340GD16A211Negative regulation of chosphates activity (GO000192)0.005727184.803200GD16A211Netre tubititie protein transferse activity (GO000192)0.007627384.903104GD16A211Netre tubititie protein transferse activity (GO000192)0.007627384.903104GD16A211Netre tubititie protein transferse activity (GO000192)0.00168237.0402790NC16A2211C4Netre tubititie protein transferse activity (GO000192)0.00168237.0402790NC16A2211C4Netr	Calcium-mediated signaling using intracellular calcium source (GO:0035584)	0.003556911	142.2838495	PRNP;DMTN
Begulation of ubiquitin protein ligase activity (GO1,904,660)0035561114.288,495GOLGA28TRCUbiquitin-dependent potein catabolic process via the multivesicular body0.0030152312.944.298UBAP1/V525Lipid translocation (GO0303404)0.00463,6411.088.206SLG6A2,ABCAARegulation of cyclin dependent protein serine/threonine kinase activity0.00519234.0394.9175GLGA21TPX2HFC1Spinel assembly (GO0301525)0.00519719.5718.6344UBCA2TTPX2HFC1Spinel assembly (GO030130)0.005877719.5718.6344UBCA2TTPX2HFC1Stress-activated protein kinase signaling cascade (GO031098)0.005877719.5718.6344UBCA2TTPX2HFC1Spinel assembly (GO0301525)0.005877719.5718.6344UBCA2TTPX2HFC1Pogulation of phosphatase activity (GO030132)0.005877719.5718.6344UBCA2TTPX2Pogulation of protein transfers on membrare (GO0301092)0.005971816.6786.7084UBE2HQHRF1CCNFL/BCAECDP4L9TRCTRIM31Postpicit distransfers on control (GO040785)0.00718738.0493014GLGA28TTCPostpicit distransfers activity (GO05144)0.00718738.0493014GLGA28TTCPostpicit distransfers activity (GO05144)0.00718738.0493014GLGA24TTP2Postpicit distransfers activity (GO03162)0.00718738.0493014GLGA28TTCPostpicit distransfers activity (GO030164)0.0016837.2490.579HILSATCSTFCPostpicit distransfers activity (GO030182)0.0016837.2490.579HILSATCSTFCPostpicit distransfers activity (GO03026)0.001683	Negative regulation of peptidyl-serine phosphorylation (GO:0033137)	0.003556911	142.2838495	DMTN;GADD45A
Ubiquitand conting pathway (GO0043162)UBAP1/PS2Ubid translocation (GO0043162)0.0046364117.0882506SLG6A2,ABCA4Regulation of cyclin-dependent protein serine/threonine kinase activity0.0051525348.39549715CDKN2CGADD45A,CCNFSpindle assembly (GO005122)0.00519979.57186344OMTKNPP40.0011210Regulation of bload congulation (GO003193)0.0058477719.57186344UBC_BTCRegulation of phosphase activity (GO001922)0.005847719.57186344UBC_BTCRegulation of phosphase activity (GO001923)0.00627018.877492914UBC_BTLRegulation of phosphase activity (GO001923)0.00762138.4673304EQL4URFE (CNF-UBC_NEUBCNEDD4LBTRCTRIM31Recotable ophymerization (GO004678)0.001762378.049300114SLG6A2,ABCA4Phospholipid translocation (GO004532)0.00166376.001802790GOLGA2_TRLRegulation of chrosphase activity (GO051144)0.00166270.0016627GOLGA2_TRLPostbe regulation of GO0001824/0.001664837.02490279GOLGA2_TRLRegulation of chrosphase activity (GO051444)0.001664837.02490279GOLGA2_URLOrganic acti atrasport (GO001972)0.001664837.02490279GOLGA2_URLStet chromating (GO001972)0.00166437.02490279GOLGA2_URLRegulation of motol segnaling (GO001972)0.00166437.02490279GOLGA2_URLRegulation of motol segnaling (GO001972)0.00166437.02490279GOLGA2_URLRegulation of motol segnaling pathway (GO0050266)0.09967516.73	Regulation of ubiquitin protein ligase activity (GO:1,904,666)	0.003556911	142.2838495	GOLGA2;BTRC
Lipid0.0046364611.0882506SLG66A,B&CARegulation of cyclin-dependent protein serine/threonine kinase activity0.00515235&8.39549715SLG66A,ZBCASpindle assembly (G0.0051225)0.0055098846.59461952GOLGAZ,TPXZ,KFC1Regulation of blood coagulation (G0.0030193)0.0058477198.57186344UGCSTPCNesservice regulation of phosphatase activity (G0.001923)0.00628031293.4605238PP1R15A,SH2D4ARegulation of protein inarse ignaling cascade (G0.0030198)0.0067270188.77492914PNNP_DMTNProtein ubiquitination (G0.0046785)0.00718773884.4633049GOLGAZ,TPX2Protein ubiquitination (G0.0046785)0.0071623780.49300114SLC66A/ABCA4Poshpleipid translocation (G0.004533)0.0076237380.49300114SLC66A/ABCA4Poshpleipid translocation (G0.0046785)0.0071623780.49300114SLC66A/ABCA4Poshpleipid translocation (G0.0046785)0.0071623780.49300114SLC66A/ABCA4Poshpleipid translocation (G0.0046785)0.0071623780.49300114SLC66A/ABCA4Poshpleipid translocation (G0.0008194)0.0091684370.24902579KTIB&MFCPoshpleipid translocation (G0.0008194)0.0091684370.24902579KTIB&MFCPoshpleipid translocation (G0.0006925)0.0091751667.3024308TPXCTAC3Poshpleipid translocation (G0.0006925)0.0096751667.3024308TPXCTAC3Poshpleipid translocation (G0.0006925)0.0096751667.3024308TPXCTAC3Poshpleipid translocation (G0.0006925)0.009697516	Ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway (GO:0043162)	0.003901842	132.9442998	UBAP1;VPS25
Regulation of cyclin-dependent protein serine/threonine kinase activity0.00515235948.39549715CDKN2CGADD45ACCNFSindle assembly (G0:0051225)0.0055099846.59461952GOLGA2,TPX2,KIFC1Regulation of blood coagulation (G0:0030193)0.00584777198.57186344UBCBTRCNegative regulation of phosphatase activity (G0:001923)0.006220183.47742914PNPIR15A,SH2D4AARegulation of phosphatase activity (G0:001923)0.0067270184.4633049GOLGA2,TPX2Phospholigit translocation (G0:004557)0.0071773884.4633049GOLGA2,TPX2Phospholigit translocation (G0:004533)0.0076237380.49300114SCGA2,MECAPostive regulation of ubiquitin-protein transferase activity (G0:001944)0.0076237380.49300114SCGA2,MECAPostive regulation of ubiquitin-protein transferase activity (G0:001544)0.0076237380.49300114SCGA2,MECAPostive regulation of coll signaling coll coll coll signaling coll coll coll signaling coll coll coll signaling coll coll coll coll coll coll coll col	Lipid translocation (GO:0034204)	0.004636346	117.0882506	SLC66A2;ABCA4
Spinole assembly (GO.0051225)00055097465946192GOLGAZTPX2/KIFC1Regulation of bood cacquation (GO.003109)0.005807798.7186344UMTNENPP4Stress-activated protein kinase signaling cascade (GO.003109)0.006202193.4052228PINEINSASt2D4ARegulation of phosphatase activity (GO.00792)0.006201788.7492140PINEINSAST2D4AProtein ubiquitination (GO.006787)0.006707184.46633040.006247PXPINEINSAST2D4APhospholipid translocation (GO.0046783)0.007623780.4930114SICGAZTPXCAUCAUCAUCAUCAUCAUCAUCAUCAUCAUCAUCAUCAUC	Regulation of cyclin-dependent protein serine/threonine kinase activity (GO:0000079)	0.005152359	48.39549715	CDKN2C;GADD45A;CCNF
Regulation of blood coagulation (GO.0030193)0.0058477198.57186344DMTNENPP4Strest-activated protein knase signaling cascade (GO.0010923)0.00584777198.57186344UBC_STRCNegative regulation of phosphatase activity (GO.0010923)0.0067270183.7492914PNNP_DMTNProtein ubiquitination (GO.0016567)0.0067910884.7463104GU.CaS.2TRV2Phospholipid translocation (GO.0047575)0.00718773884.46633049GU.CaS.2RTV2Postive regulation of ubiquitin-protein transferase activity (GO.051434)0.0076623780.4930114GU.CaS.2RTV2Postive regulation of ubiquitin-protein transferase activity (GO.051434)0.0089072832.8697393SLC16A1,ACS.1,SLC.4A31Organele disassembly (GO.0193849)0.0091684870.24902579KIFL8B4FC1Organele disassembly (GO.0008193)0.0091684870.24902579KIFL8B4FC1Potein destabilization (GO.0000819)0.0091684870.24902579KIFL8B4FC1Regulation of Tell receptor signaling pathway (GO.0050856)0.0096975167.3024308PNNP_KTNARegulation of Tell receptor signaling pathway (GO.0050856)0.01636970.24902579KIFL8B4FC1Regulation of Tell receptor signaling pathway (GO.0050856)0.0096975167.3024308PNNP_KTNARegulation of Tell receptor signaling pathway (GO.0050856)0.01636970.24902579KIFL8D4NLA1Regulation of the phosphatzes activity (GO.001792)0.0196995167.3024308PNNP_KTNARegulation of the phosphatzes activity (GO.0016364)0.0163699.57463692PNNP_KTNARe	Spindle assembly (GO:0051225)	0.00550998	46.59461952	GOLGA2;TPX2;KIFC1
Stresa-activated protein kinase signaling cascade (GC0031098)0.005847719.857186344UBC_RTRCNegative regulation of phosphatase activity (GC0010923)0.006280193.4052238PPP1B1SASH2D4ARegulation of protein targeting to membrane (GC0090313)0.0067870188.7749214PMNPDMTNProtein ubiquitination (GC0016557)0.0076912081.67887098UBE2HUHRF1, SCNF.UBCNEDD4LgTRC,TRIM31Microtubule polymerization (GC0046785)0.0076623780.49300114SLC6A2,ABCA4Poshibipid translocation (GC0010824)0.0076623780.49300114SLC6A2,ABCA4Regulation of ubiquitin-protein transferase activity (GC0015144)0.009762832.8697393SLC6A1,ACSL1,SLC43A1Organic acid transport (GC0010824)0.0091684870.24902579GCL6A2,ULK1Organic acid transport (GC0000819)0.0091684870.24902579GCL6A2,ULK1Potein detabilization (GC0000819)0.0091684870.24902579FNNP,BTRCCalcium-mediated signaling (GC0019722)0.0096975167.3024038PN2,TACC3Regulation of trotic signaling pathway (GC005056)0.0096975167.3024038PN2,TACC3Regulation of trotic signaling pathway (GC0007902)0.01968957.9173257BE2HCCNF,BGC,NEDD4LgTRCRegulation of protein signaling pathway (GC0007902)0.0196995167.3024038PN2,TACC3Regulation of rotic signaling pathway (GC0007902)0.01869955.9124818OKTACC3Regulation of rotic signaling pathway (GC0007902)0.0186985.91246312DMNP,CNLRegulation of rotin sensition (GC00404772)0.0	Regulation of blood coagulation (GO:0030193)	0.005847771	98.57186344	DMTN;ENPP4
Negative regulation of phosphatase activity (GO:010923)0.006280129.46052238PPPI R15A;SH2D4ARegulation of protein targeting to membrane (GO:0090313)0.006727188.7492914PNNPDMTNProtein bulquitination (GO:0016567)0.0069218884.4633049GOLGA;2TPXMicrotubule polymerization (GO:0046785)0.0076237384.4633049SLG66A;2ABCA4Pospholipil tarnslocation (GO:001824)0.00766237380.4930114SLG6A;2ABCA4Regulation of ubiquitin-protein transferase activity (GO:0051443)0.0076623780.4930114GOLGA;2RTRCOrganic acid transport (GO:001824)0.0091684370.24902570GOLGA;2UL(1Organic acid transport (GO:000819)0.0091684370.24902570SLS16A1;ACSL15LG43A1Organic dissembly (GO:1903,008)0.0091684370.24902570PNNPATRCCalcium-mediate signaling (GO:001524)0.0091684370.24902570PNNPATRCCalcium-mediate signaling (GO:000209)0.0096751567.30243038PNPACCARegulation of mitotic spinaling pothway (GO:0050565)0.0096751567.30243038PNPACCARegulation of phosphoprotein phosphatase activity (GO:0043666)0.0116904917.9173573UBE2HCCNF,UBC,NEDD4L,BTRCRegulation of phosphoprotein phosphatase activity (GO:0043666)0.01169309.77767156CDKN2C,CONF,IACC3,BTRCRegulation of phosphoprotein phosphatase activity (GO:0043666)0.01169491.91732573UBE2HCCNF,UBC,NEDD4L,BTRCRegulation of phosphoprotein phosphatase activity (GO:0043666)0.01169495.1943181DCM2C,CONF,IACC3,BTRCRegu	Stress-activated protein kinase signaling cascade (GO:0031098)	0.005847771	98.57186344	UBC;BTRC
Regulation of protein targeting to membrane (GO.0090313) 0.00672701 8.8.77492914 PRNP.DMTN Protein ubiquitination (GO.0016567) 0.006991208 16.67867098 UBE2H,UHRF1;CCNF,UBC,NEDD4L,BTRC,TRIM31 Microtubule polymerization (GO.0045332) 0.00762373 80.49330114 SLC66A/2ABCA Pospholipid translocation (GO.0045332) 0.007662373 80.49300114 GOLGA/2TPX2 Regulation of ubiquitin-protein transferase activity (GO.0051443) 0.007662373 80.49300114 GOLGA/2TBX Organic acid transport (GO.0016849) 0.009607728 35.28697393 SLC16A1:ACSL1;SLC43A1 Organic acid transport (GO.000819) 0.00916843 70.24902579 GOLGA/2UK1 Protein designaling (GO.0019722) 0.00916843 70.24902579 PRNP.pMTN,CCRL2 Regulation of mitotic spinale granuty (GO.000856) 0.009697515 67.30243038 PRNP.KCNA Regulation of protein pasphaty (GO.0003656) 0.009697515 67.30243038 PRNP.KCNA Regulation of protein pasphaty (GO.0004366) 0.009697515 67.30243038 PRNP.KCNA Regulation of protein pasphaty activity (GO.004366) 0.01186396 59.57463629 PPIPIR 5, NUAK1	Negative regulation of phosphatase activity (GO:0010923)	0.006280312	93.46052238	PPP1R15A;SH2D4A
Protein ubiquitination (GC0016567)0.0069112081.6.7867098UBE2H_UHRF1;CCNF,UBC_NEDD4_LBTRC;TRIM31Microtubule polymerization (GC0046785)0.0071877884.46633049GCLGA2;TPX2Phospholipid translocation (GC0046333)0.0076623780.49300114SCG6A2;ABCA4Regulation of ubiquitin-protein transferas eactivity (GC0051434)0.0081637780.49300114GCLGA2;BTCAOrganic acid transport (GC0015849)0.0091604870.24902579GCLGA2;ULK1Organelle disassembly (GC1,903,008)0.0091648370.24902579FS188;MFC1Order atballization (GC0001972)0.0091648370.24902579FN18;BK/GC1Protein destabilization (GC0001972)0.0091648370.24902579FN18;BK/GC1Regulation of trait cspinale organization (GC00050236)0.00969751567.3024308FN27;ACC3Regulation of polybipquitination (GC00050236)0.00969751567.3024308PNEN;KCNN4Protein destabilization (GC0009023)0.0116390659.57465902PP181;ANUAK1Regulation of protein seneit/throenine kinase activity (GC0071900)0.0125397255.1924318DMTN;ENP4Notic cell cycle phase transition (GC0009303)0.0125397255.1924318DMTN;ENP4Positor ergunization (GC0004732)0.01364743.1940640PHETA2,LS2CLNegulation of vial transcription (GC004732)0.01346743.1940640PHETA2,LS2LNetic cell cycle phase transition (GC0004732)0.01346743.1940640SHETA2,LS2LNetic cell cycle phase transition (GC004762)0.01346743.1940640SHETA2,LS2L<	Regulation of protein targeting to membrane (GO:0090313)	0.00672701	88.77492914	PRNP;DMTN
Microtubule polymerization (GO:0046785)000718778884.46633049GOLGA2;TPX2Phospholipid translocation (GO:0045332)000766237380.49300114SLC66A2;ABCA4Positive regulation of ubiquitin- protein transferase activity (GO:0051443)00076623780.49300114GOLGA2;BTRCRegulation of centrosome duplication (GO:0010824)00081507976.81903446STL;CCNFOrganic acid transport (GO:0015849)00091684370.24902579GOLGA2;UL\$1Organic disassembly (GO:1903,008)00091684370.24902579RNP;BTRCSter chromatid segregation (GO:0001819)00091684370.24902579RNP;BTRCProtein destabilization (GO:000201722)00091684370.24902579RNP;BTRCRegulation of mitotic spindle organization (GO:0002056)00096751567.30243038TPX2;TACG3Protein polybiquitination (GO:000209)0101805917.9173273UBEH;CCNF;UBC;NEDD4L;BTRCRegulation of phosphorotein phosphatase activity (GO:0071900)0118194329.77767145CDKN2C;GADD45A;CCNFRogulation of protein serine/threonine kinase activity (GO:0071900)0118194329.7767145CDKN2C;GADD45A;CCNFRogulation of forotin serine/threonine kinase activity (GO:0071900)0118194351.914081UDTH;ENP44Rogulation of vord transcription (GO:007472)01314674953.194064DVTH;ENP44Rogulation of vord transcription (GO:0046782)01314674953.194064SUTH;ITRIM31Rogulation of vord transcription (GO:0046782)01314674953.194064SUTH;ITRIM31Veicle organization (GO:0016050) <t< td=""><td>Protein ubiquitination (GO:0016567)</td><td>0.006991208</td><td>16.67867098</td><td>UBE2H;UHRF1;CCNF;UBC;NEDD4L;BTRC;TRIM31</td></t<>	Protein ubiquitination (GO:0016567)	0.006991208	16.67867098	UBE2H;UHRF1;CCNF;UBC;NEDD4L;BTRC;TRIM31
Phospholipid translocation (GO:0045332)0.007623738.04930114SLG6A2,ABCA4Positive regulation of ubiquitin-protein transferase activity (GO:0051443)0.007623738.04930114GOLGA2,BTRCRegulation of centrosome duplication (GO:0010824)0.008150717.81903446STL;CNFOrganelle disassembly (GO:1,93,008)0.009168437.24902579GOLGA2,ULK1Sister chromatid segregation (GO:000819)0.009168437.24902570KIF188,KIFC1Protein destabilization (GO:001722)0.009168437.24902570RNP,BTRCCalcum-mediated signaling (GO:0097020)0.00967156.73024308PN2,TACC3Regulation of Tictler spinalice grativation (GO:000239)0.00967516.73024308PN2,KICNProtein polybulquitination (GO:000209)0.00967516.73024308PN2,KICNRegulation of protein spinaling pathway (GO:004366)0.01363905.95763692PP1R15A,NUAK1Regulation of protein spinaling pathway (GO:007900)0.018194232.97767145CDKN2,CGNF,TACC3,BTRCRegulation of notorici spinaling pathway (GO:0079100)0.011819422.9477814DINN,ENPP4Regulation of notorici spinaling (GO:004362)0.01146395.1940046DINN,ENPP4Regulation of notorici spinaling (GO:004372)0.01146395.1940046DINN,ENPP4Regulation of notorici spinaling (GO:004372)0.01146395.1940046DINN,ENPP4Regulation of notorici franceription (GO:004672)0.013167495.1940046SLI1404Regulation of notorici transpinaling (GO:000501)0.01346745.1940046SUIA	Microtubule polymerization (GO:0046785)	0.007187738	84.46633049	GOLGA2;TPX2
Positive regulation of ubiquitin-protein transferase activity (GO0051443)0.0076237380.49300114GOLGA2,BTRCRegulation of centrosome duplication (GO:0010824)0.00815079176.81903460STL;CCNFOrganic acid transport (GO:0015849)0.0091684370.24902570GOLGA2,ULK1Sister chromatid segregation (GO:000819)0.0091684370.24902570RIF188,KIFC1Protein destabilization (GO:001648)0.0091684370.24902570RNP,BTRCCalcium-mediated signaling (GO:0019722)0.0091684370.24902570RNP,BTRCRegulation of Ticel receptor signaling pathway (GO:0050856)0.0096975167.30243038PRNP;KCNN4Protein polyubiquitination (GO:000209)0.0190895917.91732573UBE2H;CCNF;UBC,NEDD4L;BTRCRegulation of phosphoprotein phosphatase activity (GO:0043660)0.011839059.5746362PPN181SANUAK1Regulation of protein serine/threonine kinase activity (GO:0043660)0.0121689251.943818DKN12CQC,FTACC3,BTRCNotitotic cell cycle phase transition (GO:0004772)0.012168751.940818DKN12CQC,FTACC3,BTRCPositive regulation of word healing (GO:009303)0.012168751.940818DKN12CQL2Regulation of viral transcription (GO:0046782)0.013167051.940818DKN12CQL2Regulation of viral transcription (GO:0046782)0.013167031.94064SUP14H1,TRIM31Vesicle organization (GO:0016050)0.013267731.94064SUP14H1,TRIM31Vesicle organization (GO:0046782)0.013167031.94064SUP14H1,TRIM31Vesicle organization (GO:0046782)<	Phospholipid translocation (GO:0045332)	0.007662373	80.49300114	SLC66A2;ABCA4
Regulation of centrosome duplication (GO.0010824)0.00815079176.81903446STLCCNFOrganic acid transport (GO.0015849)0.0089072835.26697393SLC16A1;ACSL1;SLC43A1Organelle disassembly (GO.1903,008)0.0091684370.24902579GOLGA2;ULK1Siter chromatid segregation (GO.0000819)0.0091684370.24902579KF188KFC1Protein destabilization (GO.0017922)0.0091684370.24902579PRNP;DRTCCalcium-mediated signaling (GO.0019722)0.00906751667.30243038PNP;CNL4Regulation of rictor signaling pathway (GO.006236)0.00969751667.30243038PNP;CNL4Protein polyubiquitination (GO.0000209)0.0190895917.91732573UBE2HCCNF;UBC;NEDD4L;BTRCRegulation of prosphoprotein phosphatase activity (GO.0071900)0.01184922.97767145CDKN2C;GADD45A;CNFRegulation of vound healing (GO.0090303)0.012485742.94178916CDKN2C;GCNF;ACC3;BTRCNotice cell cycle phase transition (GO.0044772)0.0114674953.194064PHETA2;ALS2CLRegulation of viral transcription (GO.0046782)0.0134674953.194064PHETA2;ALS2CLRegulation of viral transcription (GO.0046782)0.0172807723.50565989STLFCC3;BTRCViscore ungalization involved in mitosis (GO.1902,8281)0.017280773.194064PHETA2;ALS2CLUbiquitin-dependent protein catabolic process (GO.0006511)0.017280773.194064PHETA2;ALS2CLViscore ungalization (GO.0005129)0.017280773.194064PHETA2;ALS2CLViscore ungalization involved in mitosis (GO.1902,8280) <td< td=""><td>Positive regulation of ubiquitin-protein transferase activity (GO:0051443)</td><td>0.007662373</td><td>80.49300114</td><td>GOLGA2;BTRC</td></td<>	Positive regulation of ubiquitin-protein transferase activity (GO:0051443)	0.007662373	80.49300114	GOLGA2;BTRC
Organic acid transport (GO0015849)0.00890772835.28697393SLC16A1;ACSL1;SLC43A1Organelle disassembly (GC1,903,008)0.0091684370.24902579GOLGA2;ULK1Siter chromatid segregation (GO.000819)0.0091684370.24902579KIF188;KIFC1Protein destabilization (GO.0017622)0.0091684370.24902579PNP.PBRCCaldum-mediated signaling (GO.0019722)0.0096075167.30243038PNP.pCNN1VCCRL2Regulation of mitotic spindle organization (GO.0006236)0.0096075167.30243038PNP.KCNN4Protein polyubiquitination (GO.000209)0.0190899517.9173257UBE2H;CCNF;UBC;NEDD4L;BTRCRegulation of phosphoprotein phosphatase activity (GO.0014666)0.0113630659.5746369PPIFITSANUAK1Regulation of protein serine/threonine kinase activity (GO.0017000)0.011819422.97776145CDKN2C;GCNF;IACC3;BTRCNotic cell cycle phase transition (GO.004472)0.0131467453.194064PIETA2;ALS2CLRegulation of viral transcription (GO.0046782)0.0131467453.194064SUPT4H1;TRIM31Veide organization (GO.001650)0.01280772.194084SUPT4H1;TRIM31Veide organization (GO.001650)0.017280712.3194064SUPT4H1;TRIM31Veide organization involved in mitosis (GC1;09.2580)0.117280712.194084SUPT4H1;TRIM31Veide organization involved in mitosis (GC1;09.2680)0.017280712.16830784SUPT4H1;TRIM31Veide organization involved in mitosis (GC1;09.2680)0.1174073SUE2H;UHET1;NEDD4L;UBAP1;STRCD4L;BAP1;STRCD4L;BAP1;STRCD4L;BAP1;STRCD4L;BAP1;STRCD4L;BAP1;STRCD4L;	Regulation of centrosome duplication (GO:0010824)	0.008150791	76.81903446	STIL;CCNF
Organelle disassembly (GO:1,903,008)0.00916848370.24902579GOLGA2;ULK1Sister chromatid segregation (GO:000819)0.00916848370.24902579KIF188;KIFC1Protein destabilization (GO:0031648)0.00916848370.24902579PRNP;BTRCGaldium-mediated signaling (GO:0019722)0.00940150634.17553607PRNP;DMTN;CCRL2Regulation of mitotic spindle organization (GO:0050856)0.00969751567.30243038PX2;TACC3Protein polyubiquitination (GO:000209)0.0190895917.91732573UBE2H;CCNF;UBC;NEDD4L;BTRCRegulation of phosphoprotein phosphatase activity (GO:0043666)0.0118639059.57463692PPP1R15A;NUAK1Regulation of protein serine/threonine kinase activity (GO:001900)0.01181942329.77767145CDKN2C;GADD45A;CCNFNitotic cell cycle phase transition (GO:0044772)0.01214685420.94178916CDKN2C;GADD45A;CCNFPostim regulation of vound healing (GO:009033)0.01314674953.1940064SUPT4H1;TRIM31Regulation of volat transcription (GO:0046782)0.0134674953.1940064SUPT4H1;TRIM31Vesicle organization (GO:0046782)0.0127807123.5056598STIL;TACC3;8UB1Ubiquitin-dependent protein catablic process (GO:000511)0.0149835414.17570870UBE2H;UHRF1;NEDD4L;UBAP1;BTRCNegative regulation of transcription, DNA-templated (GO:0045892)0.019313179.468307834UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRCProtein homotetramerization (GO:0051289)0.0202983137.1548944GOLGA2;TK1	Organic acid transport (GO:0015849)	0.008907728	35.28697393	SLC16A1;ACSL1;SLC43A1
Sister chromatid segregation (GO:000819)0.0091684370.24902579KIF 188,KIF C1Protein destabilization (GO:0031648)0.0091684370.24902579PRNP;BTCCalcium-mediated signaling (GO:0019722)0.00940150634.1755367PRNP;DMTN;CCRL2Regulation of mitotic spindle organization (GO:0060236)0.0096975167.30243038PTX2;TACC3Regulation of Tcell receptor signaling pathway (GO:0050856)0.0096975167.30243038PRNP;KCNN4Protein polyubiquitination (GO:000209)0.0190895917.91732573UBE2H;CCNF;UBC;NEDD4L;BTRCRegulation of phosphoprotein phosphatase activity (GO:0071900)0.01181942329.77767145CDKN2C;GADD45A;CCNFMitotic cell cycle phase transition (GO:0044772)0.012146842.094178916CDKN2C;CNF;TACC3;BTRCPositor engulation of wound healing (GO:009303)0.013167495.1943818DMTN;ENPP4Regulation of viral transcription (GO:0046782)0.013167495.194304PHETA2;ALS2CLRegulation of viral transcription (GO:0046782)0.0131467495.194084STIL_TACC3;BUE1Ubiquitin-dependent protein catabolic process (GO:000511)0.01284714.17570879UBE2H;UHRF1;MED14L;UBAP1;BTRCUbiquitin-dependent protein catabolic process (GO:000551)0.01311379.468307834UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRCProtein homotetramerization (GO:0051289)0.020629813.1154844GOLGA2;TK1	Organelle disassembly (GO:1,903,008)	0.009168483	70.24902579	GOLGA2;ULK1
Protein destabilization (GO:0031648)0.00916848370.24902579PRNP;BTRCCalcium-mediated signaling (GO:0019722)0.00940150634.17553607PRNP;DMTN;CCRL2Regulation of mitotic spindle organization (GO:0060236)0.00969751567.30243038TPX2;TACG3Regulation of T cell receptor signaling pathway (GO:0050856)0.00969751567.30243038PRNP;KCNN4Protein polyubiquitination (GO:000209)0.01090895917.91732573UBE2H;CCNF;UBC;NEDD4L;BTRCRegulation of protein spentors kinase activity (GO:0017900)0.01181942329.77767145CDKN2;GADD45A;CCNFNitotic cell cycle phase transition (GO:0044772)0.0124685420.94178916CDKN2;CCNF;TACC3;BTRCPostive regulation of vound healing (GO:009303)0.01253972555.1924318DMTN;ENPP4Endosome organization (GO:0046782)0.01314674953.1940064SUP14H1;TRIM31Viscle organization (GO:0046782)0.01728077123.50565989STL;TACC3;BUB1Ubiquitin-dependent protein catabolic process (GO:0006511)0.0174835414.17570879UBE2H;UHRF1;NEDD4L;UBAP1;BTRCNegative regulation of franscription, DNA-templated (GO:0045892)0.01311379.468307834UHRF1;GADD45A;UBC,SUPT4H1;DPF3;NEDD4L;BTRCUbiquitin-dependent protein catabolic process (GO:0006511)0.017481379.468307834UBE2H;UHRF1;NEDD4L;UBAP1;BTRCNegative regulation of franscription, DNA-templated (GO:0045892)0.0191311379.468307834ULRF1;GADD45A;UBC,SUPT4H1;DPF3;NEDD4L;BTRCNegative regulation of franscription, DNA-templated (GO:0045892)0.0191311379.468307834ULRF1	Sister chromatid segregation (GO:0000819)	0.009168483	70.24902579	KIF18B;KIFC1
Clacium-mediated signaling (GO:0019722)0.00940150634.17553607PRNP;DMTN;CCRL2Regulation of mitotic spindle organization (GO:0060236)0.00969751567.30243038TPX2;TACG3Regulation of Tcell receptor signaling pathway (GO:0050856)0.00969751567.30243038PRNP;KCNN4Protein polyubiquitination (GO:000209)0.01090895917.91732573UBE2H;CCNF;UBC;NEDD4L;BTRCRegulation of phosphoprotein phosphatase activity (GO:0071900)0.0118390659.57463692PP1R15A;NUAK1Regulation of protein serine/threonine kinase activity (GO:0071900)0.01181942329.77767145CDKN2C;GADD45A;CCNFMitotic cell cycle phase transition (GO:0044772)0.01214685420.94178916CDKN2C;CCNF;TACC3;BTRCPositive regulation of wound healing (GO:0090303)0.01253972555.19243818DMTN;ENPP4Endosome organization (GO:0046782)0.01314674953.1940064PHETA2;ALS2CLNeiscle organization (GO:0016050)0.016368444.75221974PHETA2;ALS2CLMicrotubule cytoskeleton organization involved in mitosis (GO:1,902,85000.0172807123.5055989STIL;TACC3;BUB1Ubiquitin-dependent protein catabolic process (GO:0005511)0.0174835414.17570879UBE2H;UHRF1;MEDD4L;UBAP1;BTRCNegative regulation of transcription, DNA-templated (GO:0045892)0.0191311379.468307834UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRCProtein home transcription, GO:0051289)0.020629813.154894GOLGA2;TK1	Protein destabilization (GO:0031648)	0.009168483	70.24902579	PRNP;BTRC
Regulation of mitotic spindle organization (GO:0060236)0.00969751s67.3024303sTPX2;TACC3Regulation of Tcell receptor signaling pathway (GO:0050856)0.00969751s67.3024303sPRNP;KCNN4Protein polyubiquitination (GO:000209)0.01090895917.91732573UBE2H;CCNF;UBC;NEDD4L;BTRCRegulation of phosphoprotein phosphatase activity (GO:0043666)0.0118630659.57463692PPP1R15A;NUAK1Regulation of protein serine/threonine kinase activity (GO:0071900)0.01181942329.7776145CDKN2C;GADD45A;CCNFNitotic cell cycle phase transition (GO:0044772)0.0124685420.94178916CDKN2C;GCNF;TACC3;BTRCPositive regulation of wound healing (GO:0090303)0.01253972555.19243818DMTN;ENPP4Endosome organization (GO:007032)0.01314674953.1940064SUT4H1;TRIM31Vesicle organization (GO:0046782)0.01728077123.5056598STL;TACC3;BUB1Ubiquitin-dependent protein catabolic process (GO:006511)0.01749835414.17570879UBE2H;UHRF1;NEDD4L;UBAP1;BTRCNegative regulation of transcription, DNA-templated (GO:0045892)0.019311379.468307834UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRCPotein home terr1.0206298137.154894SOLGA;TK1	Calcium-mediated signaling (GO:0019722)	0.009401506	34.17553607	PRNP;DMTN;CCRL2
Regulation of T cell receptor signaling pathway (GO0050856)0.00969751567.30243038PNP.KCNN4Protein polyubiquitination (GO:000209)0.01090895917.91732573UBE2H;CCNF;UBC;NEDD4L;BTRCRegulation of phosphoprotein phosphatase activity (GO:0043666)0.0118390659.57463692PPP1R15A;NUAK1Regulation of protein serine/threonine kinase activity (GO:0071900)0.01181942329.77767145CDKN2C;GADD45A;CCNFMitotic cell cycle phase transition (GO:0044772)0.01214685420.94178916CDKN2C;GCNF;TACC3;BTRCPositive regulation of wound healing (GO:0090303)0.01253972555.19243818DMTN;ENPP4Endosome organization (GO:0046782)0.01314674953.1940064PHETA2;ALS2CLRegulation of viral transcription (GO:0046782)0.0172807123.5055898STIL;TACC3;BUB1Vesicle organization involved in mitosis (GC:1,902,850)0.0172807123.5055898STIL;TACC3;BUB1Ubiquitin-dependent protein catabolic process (GO:006511)0.01749835414.17570879UBE2H;UHRF1;NEDD4L;UBAP1;BTRCNegative regulation of transcription, DNA-templated (GO:0045892)0.0191311379.468307834UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRCProtein home transcription, GO:0050500.02062983137.1548944GOLGA;TK1	Regulation of mitotic spindle organization (GO:0060236)	0.009697515	67.30243038	TPX2;TACC3
Protein polyubiquitination (GO:000209)0.0109089517.91732573UBE2H;CCNF;UBC;NEDD4L;BTRCRegulation of phosphoprotein phosphatase activity (GO:0043666)0.01136390659.57463692PPP1R15A;NUAK1Regulation of protein serine/threonine kinase activity (GO:0071900)0.01181942329.77767145CDKN2C;GADD45A;CCNFMitotic cell cycle phase transition (GO:0044772)0.01214685420.94178916CDKN2C;CNF;TACC3;BTRCPositive regulation of wound healing (GO:0090303)0.01253972555.19243818DMTN;ENPP4Endosome organization (GO:0007032)0.01314674953.1940064PHETA2;ALS2CLRegulation of viral transcription (GO:0046782)0.01314674953.1940064SUPT4H1;TRIM31Vesicle organization (GO:0016050)0.01728077123.50565989STIL;TACC3;BUB1Ubiquitin-dependent protein catabolic process (GO:0006511)0.01749835414.17570879UBE2H;UHRF1;NEDD4L;UBAP1;BTRCNegative regulation of transcription, DNA-templated (GO:0045892)0.01311379.468307834UHRF1;GADD45;UBC;SUPT4H1;DPF3;NEDD4L;BTRCProtein homotert0.0206298313.154844OLGA2;TK1	Regulation of T cell receptor signaling pathway (GO:0050856)	0.009697515	67.30243038	PRNP;KCNN4
Regulation of phosphoprotein phosphatase activity (GO:0043666)0.01136390659.57463692PPP1R15A;NUAK1Regulation of protein serine/threonine kinase activity (GO:0071900)0.01181942329.77767145CDKN2C;GADD45A;CCNFMitotic cell cycle phase transition (GO:0044772)0.01214685420.94178916CDKN2C;CCNF;TACC3;BTRCPositive regulation of wound healing (GO:0090303)0.01253972555.19243818DMTN;ENPP4Endosome organization (GO:007032)0.01314674953.1940064PHETA2;ALS2CLRegulation of viral transcription (GO:0046782)0.01314674953.1940064SUPT4H1;TRIM31Vesicle organization (GO:0016050)0.01728077123.50565989STIL;TACC3;BUB1Ubiquitin-dependent protein catabolic process (GO:0006511)0.01749835414.17570879UBE2H;UHRF1;NEDD4L;UBAP1;BTRCNegative regulation of transcription, DNA-templated (GO:0045892)0.01311379.468307834UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRCProtein homotetra merization (GO:0051289)0.020298313.154844OLGA2;TK1	Protein polyubiquitination (GO:0000209)	0.010908959	17.91732573	UBE2H;CCNF;UBC;NEDD4L;BTRC
Regulation of protein serine/threonine kinase activity (GO:0071900)0.01181942329.77767145CDKN2C;GADD45A;CCNFMitotic cell cycle phase transition (GO:0044772)0.01214685420.94178916CDKN2C;CCNF;TACC3;BTRCPositive regulation of wound healing (GO:0090303)0.01253972555.19243818DMTN;ENPP4Endosome organization (GO:0007032)0.01314674953.1940064PHETA2;ALS2CLRegulation of viral transcription (GO:0046782)0.01314674953.1940064SUPT4H1;TRIM31Vesicle organization (GO:0016050)0.016368444.75221974PHETA2;ALS2CLMicrotubule cytoskeleton organization involved in mitosis (GO:1,902,850)0.01728077123.50565989STIL;TACC3;BUB1Ubiquitin-dependent protein catabolic process (GO:0006511)0.01749835414.17570879UBE2H;UHRF1;NEDD4L;UBAP1;BTRCNegative regulation of cranscription, DNA-templated (GO:0045892)0.0128071137.1548944GOLGA2;TK1	Regulation of phosphoprotein phosphatase activity (GO:0043666)	0.011363906	59.57463692	PPP1R15A;NUAK1
Mitotic cell cycle phase transition (GO:0044772) 0.012146854 20.94178916 CDKN2C;CCNF;TACC3;BTRC Positive regulation of wound healing (GO:0090303) 0.012539725 55.19243818 DMTN;ENPP4 Endosome organization (GO:007032) 0.013146749 53.1940064 PHETA2;ALS2CL Regulation of viral transcription (GO:0046782) 0.013146749 53.1940064 SUPT4H1;TRIM31 Vesicle organization (GO:0016050) 0.0132867 44.75221974 PHETA2;ALS2CL Microtubule cytoskeleton organization involved in mitosis (GO:1,902,850) 0.01728071 23.50565980 STL;TACC3;BUB1 Ubiquitin-dependent protein catabolic process (GO:0006511) 0.017498354 14.17570879 UBE2H;UHRF1;NEDD4L;UBAP1;BTRC Negative regulation of transcription, DNA-templated (GO:0045892) 0.019131137 9.468307834 UHRF1;GADD45A;UBC,SUPT4H1;DPF3;NEDD4L;BTRC Protein homoterm (GO:0051289) 0.020629831 37.154844 GUGA2;TK1	Regulation of protein serine/threonine kinase activity (GO:0071900)	0.011819423	29.77767145	CDKN2C;GADD45A;CCNF
Positive regulation of wound healing (GO:0090303) 0.012539725 5.19243818 DMTN;ENPP4 Endosome organization (GO:0007032) 0.013146749 5.194064 PHETA2;ALS2CL Regulation of viral transcription (GO:0046782) 0.013146749 5.194064 SUPT4H1;TRIM31 Vesicle organization (GO:0016050) 0.013684 44.75221974 PHETA2;ALS2CL Microtubule cytoskeleton organization involved in mitosis (GO:1,902,850) 0.01728071 23.50565980 STL;TACC3;BUB1 Ubiquitin-dependent protein catabolic process (GO:006511) 0.017498354 14.17570870 UBE2H;UHRF1;NEDD4L;UBAP1;BTRC Negative regulation of transcription, DNA-templated (GO:0045892) 0.019131137 9.468307834 UHRF1;GADD45A;UBC,SUPT4H1;DPF3;NEDD4L;BTRC Protein homoterin (GO:0051289) 0.020629831 37.154844 GLGA2;KL	Mitotic cell cycle phase transition (GO:0044772)	0.012146854	20.94178916	CDKN2C;CCNF;TACC3;BTRC
Endosome organization (GO:0007032) 0.013146749 53.1940064 PHETA2;ALS2CL Regulation of viral transcription (GO:0046782) 0.013146749 53.1940064 SUPT4H1;TRIM31 Vesicle organization (GO:0016050) 0.013684 44.75221974 PHETA2;ALS2CL Microtubule cytoskeleton organization involved in mitosis (GO:1,902,850) 0.017280771 23.50565989 STIL;TACC3;BUB1 Ubiquitin-dependent protein catabolic process (GO:0006511) 0.017498354 14.17570879 UBE2H;UHRF1;NEDD4L;UBAP1;BTRC Negative regulation of transcription, DNA-templated (GO:0045892) 0.019131137 9.468307834 UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRC; BAP1;DEDD2 Protein homotermerization (GO:0051289) 0.020629831 37.1548944 GOLGA2;TK1	Positive regulation of wound healing (GO:0090303)	0.012539725	55.19243818	DMTN;ENPP4
Regulation of viral transcription (GO:0046782) 0.013146749 53.1940064 SUPT4H1;TRIM31 Vesicle organization (GO:0016050) 0.0163684 44.75221974 PHETA2;ALS2CL Microtubule cytoskeleton organization involved in mitosis (GO:1,902,850) 0.017280771 23.50565989 STIL;TACC3;BUB1 Ubiquitin-dependent protein catabolic process (GO:006511) 0.017498354 14.17570879 UBE2H;UHRF1;NEDD4L;UBAP1;BTRC Negative regulation of transcription, DNA-templated (GO:0045892) 0.019131137 9.468307834 UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRC; ;BAP1;DEDD2 Protein homotetramerization (GO:0051289) 0.020629831 37.1548944 GOLGA2;TK1	Endosome organization (GO:0007032)	0.013146749	53.1940064	PHETA2;ALS2CL
Vesicle organization (G0:0016050) 0.0163684 44.75221974 PHETA2;ALS2CL Microtubule cytoskeleton organization involved in mitosis (G0:1,902,850) 0.017280771 23.50565989 STIL;TACC3;BUB1 Ubiquitin-dependent protein catabolic process (G0:0006511) 0.017498354 14.17570879 UBE2H;UHRF1;NEDD4L;UBAP1;BTRC Negative regulation of transcription, DNA-templated (G0:0045892) 0.019131137 9.468307834 UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRC Protein homotetramerization (G0:0051289) 0.020629831 37.1548944 GOLGA2;TK1	Regulation of viral transcription (GO:0046782)	0.013146749	53.1940064	SUPT4H1;TRIM31
Microtubule cytoskeleton organization involved in mitosis (GO:1,902,850)0.01728077123.50565989STIL;TACC3;BUB1Ubiquitin-dependent protein catabolic process (GO:0006511)0.01749835414.17570879UBE2H;UHRF1;NEDD4L;UBAP1;BTRCNegative regulation of transcription, DNA-templated (GO:0045892)0.0191311379.468307834UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRC ;BAP1;DEDD2Protein homotetramerization (GO:0051289)0.02062983137.1548944GOLGA2;TK1	Vesicle organization (GO:0016050)	0.0163684	44.75221974	PHETA2;ALS2CL
Ubiquitin-dependent protein catabolic process (GO:0006511) 0.017498354 14.17570879 UBE2H;UHRF1;NEDD4L;UBAP1;BTRC Negative regulation of transcription, DNA-templated (GO:0045892) 0.019131137 9.468307834 UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRC Protein homotetramerization (GO:0051289) 0.020629831 37.1548944 GOLGA2;TK1	Microtubule cytoskeleton organization involved in mitosis (GO:1,902,850)	0.017280771	23.50565989	STIL;TACC3;BUB1
Negative regulation of transcription, DNA-templated (GO:0045892) 0.019131137 9.468307834 UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRC Protein homotetramerization (GO:0051289) 0.020629831 37.1548944 GOLGA2;TK1	Ubiquitin-dependent protein catabolic process (GO:0006511)	0.017498354	14.17570879	UBE2H;UHRF1;NEDD4L;UBAP1;BTRC
Protein homotetramerization (GO:0051289) 0.020629831 37.1548944 GOLGA2;TK1	Negative regulation of transcription, DNA-templated (GO:0045892)	0.019131137	9.468307834	UHRF1;GADD45A;UBC;SUPT4H1;DPF3;NEDD4L;BTRC ;BAP1;DEDD2
Negative regulation of anion transmembrane transport (GO1903960) 0.021072075 228 7280021 SI C43A1	Protein homotetramerization (GO:0051289) Negative regulation of anion transmembrane transport (GO:1.903.960)	0.020629831	37.1548944 228 7280021	GOLGA2;TK1 SLC43A1

Table 5 (continued)

GO biological processes 2021	P-value	Combined score	Genes
Protein transport to vacuole involved in ubiquitin-dependent protein cata- bolic process via the multivesicular body sorting pathway (GO:0043328)	0.021072075	228.7280021	VPS25
Pyrimidine ribonucleotide metabolic process (GO:0009218)	0.021072075	228.7280021	ENTPD4
Negative regulation of collateral sprouting (GO:0048671)	0.021072075	228.7280021	ULK1
Regulation of caveolin-mediated endocytosis (GO:2,001,286)	0.021072075	228.7280021	NEDD4L
Regulation of chloride transport (GO:2,001,225)	0.021072075	228.7280021	PRNP
Negative regulation of PERK-mediated unfolded protein response (GO:1,903,898)	0.021072075	228.7280021	PPP1R15A
Regulation of DNA topoisomerase (ATP-hydrolyzing) activity (GO:2,000,371)	0.021072075	228.7280021	UHRF1
Establishment of protein localization to vacuole (GO:0072666)	0.021072075	228.7280021	VPS25
Ethanolamine-containing compound metabolic process (GO:0042439)	0.021072075	228.7280021	GDE1
Exocyst localization (GO:0051601)	0.021072075	228.7280021	EXOC3
Positive regulation of DNA topoisomerase (ATP-hydrolyzing) activity (GO:2,000,373)	0.021072075	228.7280021	UHRF1
Positive regulation of feeding behavior (GO:2,000,253)	0.021072075	228.7280021	AGRP
Modulation by symbiont of host autophagy (GO:0075071)	0.021072075	228.7280021	ULK1
N-acylethanolamine metabolic process (GO:0070291)	0.021072075	228.7280021	GDE1
Regulation of potassium ion transmembrane transport (GO:1,901,379)	0.022142345	35.07102076	NEDD4L;KCNN4
Interstrand cross-link repair (GO:0036297)	0.022915373	34.09768809	DCLRE1B;UBC
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest (GO:0006977)	0.02369944	33.16639759	PIDD1;GADD45A
Protein K48-linked ubiquitination (GO:0070936)	0.02449444	32.27464574	UBE2H;NEDD4L
Pteridine-containing compound biosynthetic process (GO:0042559)	0.025233543	174.4296658	SPR
Purine ribonucleoside catabolic process (GO:0046130)	0.025233543	174.4296658	ENPP4
Amino-acid betaine transport (GO:0015838)	0.025233543	174.4296658	SLC22A5
Regulation of anion channel activity (GO:0010359)	0.025233543	174.4296658	PRNP
Carnitine transport (GO:0015879)	0.025233543	174.4296658	SLC22A5
Negative regulation of protein targeting to membrane (GO:0090315)	0.025233543	174.4296658	DMTN
Regulation of glutamate receptor signaling pathway (GO:1,900,449)	0.025233543	174.4296658	PRNP
Centromeric sister chromatid cohesion (GO:0070601)	0.025233543	174.4296658	BUB1
Regulation of long-chain fatty acid import across plasma membrane (GO:0010746)	0.025233543	174.4296658	ACSL1
Positive regulation of protein glycosylation (GO:0060050)	0.025233543	174.4296658	GOLGA2
Maintenance of DNA methylation (GO:0010216)	0.025233543	174.4296658	UHRF1
Metaphase/anaphase transition of cell cycle (GO:0044784)	0.025233543	174.4296658	TACC3
Metaphase/anaphase transition of mitotic cell cycle (GO:0007091)	0.025233543	174.4296658	TACC3
Monoubiquitinated protein deubiquitination (GO:0035520)	0.025233543	174.4296658	BAP1
Negative regulation of amino acid transport (GO:0051956)	0.025233543	174.4296658	SLC43A1
Phospholipid transport (GO:0015914)	0.026116823	30.60067511	SLC66A2;ABCA4
Selective autophagy (GO:0061912)	0.026116823	30.60067511	UBC;ULK1
Stress-activated MAPK cascade (GO:0051403)	0.028629802	28.33369953	UBC;BTRC
Purine ribonucleoside metabolic process (GO:0046128)	0.029377529	139.3442448	ENPP4
Creatine metabolic process (GO:0006600)	0.029377529	139.3442448	СКВ
Regulation of myosin-light-chain-phosphatase activity (GO:0035507)	0.029377529	139.3442448	NUAK1
Piecemeal microautophagy of the nucleus (GO:0034727)	0.029377529	139.3442448	ULK1
Positive regulation by symbiont of host autophagy (GO:0075044)	0.029377529	139.3442448	ULK1
Golgi disassembly (GO:0090166)	0.029377529	139.3442448	GOLGA2
Response to host defenses (GO:0052200)	0.029377529	139.3442448	UBC
Positive regulation of integrin-mediated signaling pathway (GO:2,001,046)	0.029377529	139.3442448	DMTN
Late nucleophagy (GO:0044805)	0.029377529	139.3442448	ULK1
Lysosomal microautophagy (GO:0016237)	0.029377529	139.3442448	ULK1
Modulation by symbiont of host defense response (GO:0052031)	0.029377529	139.3442448	UBC
Protection from non-homologous end joining at telomere (GO:0031848)	0.029377529	139.3442448	DCLRE1B
DNA metabolic process (GO:0006259)	0.030445636	12.4064909	DCLRE1B;UHRF1;GADD45A;UBC

Table 5 (continued)

GO biological processes 2021	P-value	Combined score	Genes
Mitotic G1 DNA damage checkpoint signaling (GO:0031571)	0.03123562	26.31896204	PIDD1;GADD45A
Actin filament reorganization (GO:0090527)	0.033504106	114.9818124	DMTN
Negative regulation of cAMP-dependent protein kinase activity (GO:2,000,480)	0.033504106	114.9818124	PKIA
Regulation of collateral sprouting (GO:0048670)	0.033504106	114.9818124	ULK1
Regulation of dendritic spine maintenance (GO:1,902,950)	0.033504106	114.9818124	PRNP
Negative regulation of potassium ion transmembrane transporter activity (GO:1,901,017)	0.033504106	114.9818124	NEDD4L
Negative regulation of sodium ion transport (GO:0010766)	0.033504106	114.9818124	NEDD4L
Dendritic spine maintenance (GO:0097062)	0.033504106	114.9818124	PRNP
Peptidyl-lysine hydroxylation (GO:0017185)	0.033504106	114.9818124	PLOD1
Regulation of positive chemotaxis (GO:0050926)	0.033504106	114.9818124	F7
Regulation of protein glycosylation (GO:0060049)	0.033504106	114.9818124	GOLGA2
Positive regulation of fibroblast migration (GO:0010763)	0.033504106	114.9818124	DMTN
Positive regulation of homotypic cell-cell adhesion (GO:0034112)	0.033504106	114.9818124	DMTN
Positive regulation of isomerase activity (GO:0010912)	0.033504106	114.9818124	UHRF1
Positive regulation of meiotic nuclear division (GO:0045836)	0.033504106	114.9818124	STRA8
Lipid import into cell (GO:0140354)	0.033504106	114.9818124	ACSL1
Meiotic sister chromatid cohesion (GO:0051177)	0.033504106	114.9818124	BUB1
TORC1 signaling (GO:0038202)	0.033504106	114.9818124	NPRL3
Water homeostasis (GO:0030104)	0.033504106	114.9818124	NEDD4L
Protein tetramerization (GO:0051262)	0.036715013	22.90291137	GOLGA2;TK1
Regulation of cell cycle (GO:0051726)	0.037449209	10.90090233	PPP1R15A;CDKN2C;GADD45A;BAP1
Quaternary ammonium group transport (GO:0015697)	0.037613345	97.17686109	SLC22A5
Negative regulation of protein activation cascade (GO:2,000,258)	0.037613345	97.17686109	F7
Nucleoside diphosphate catabolic process (GO:0009134)	0.037613345	97.17686109	ENTPD4
Regulation of PERK-mediated unfolded protein response (GO:1,903,897)	0.037613345	97.17686109	PPP1R15A
DNA repair (GO:0006281)	0.038236126	10.75710824	DCLRE1B;GADD45A;UBC;BAP1
Proteolysis involved in cellular protein catabolic process (GO:0051603)	0.039583339	21.44576047	UBC;CTSW
DNA damage response, signal transduction by p53 class mediator (GO:0030330)	0.039583339	21.44576047	PIDD1;GADD45A
RNA processing (GO:0006396)	0.040835786	13.12275501	CELF3;SUPT4H1;DEDD2
Receptor recycling (GO:0001881)	0.041705318	83.65592939	PHETA2
Negative regulation of sodium ion transmembrane transport (GO:1,902,306)	0.041705318	83.65592939	NEDD4L
Negative regulation of sodium ion transmembrane transporter activity (GO:2,000,650)	0.041705318	83.65592939	NEDD4L
Neuron projection maintenance (GO:1,990,535)	0.041705318	83.65592939	PRNP
Positive regulation of behavior (GO:0048520)	0.041705318	83.65592939	AGRP
Positive regulation of circadian rhythm (GO:0042753)	0.041705318	83.65592939	BTRC
Long-chain fatty acid import into cell (GO:0044539)	0.041705318	83.65592939	ACSL1
Telomere maintenance in response to DNA damage (GO:0043247)	0.041705318	83.65592939	DCLRE1B
Modification-dependent macromolecule catabolic process (GO:0043632)	0.041705318	83.65592939	UBC
Modulation by symbiont of host process (GO:0044003)	0.041705318	83.65592939	UBC
Regulation of organelle assembly (GO:1,902,115)	0.042534001	20.1265342	STIL;NPRL3
Positive regulation of apoptotic process (GO:0043065)	0.043157194	9.945815682	PIDD1;PRNP;GADD45A;UBC
Negative regulation of protein serine/threonine kinase activity (GO:0071901)	0.043535419	19.71433284	GADD45A;PKIA
Negative regulation of centrosome duplication (GO:0010826)	0.045780097	73.0775545	CCNF
Pyrimidine nucleoside salvage (GO:0043097)	0.045780097	73.0775545	TK1
Pyrimidine-containing compound salvage (GO:0008655)	0.045780097	73.0775545	TK1
Negative regulation of interleukin-17 production (GO:0032700)	0.045780097	73.0775545	PRNP
Negative regulation of potassium ion transmembrane transport (GO:1,901,380)	0.045780097	73.0775545	NEDD4L
Negative regulation of protein localization to cell surface (GO:2,000,009)	0.045780097	73.0775545	NEDD4L
Negative regulation of protein maturation (GO:1,903,318)	0.045780097	73.0775545	PRNP

GO biological processes 2021	P-value	Combined score	Genes
Erythrocyte development (GO:0048821)	0.045780097	73.0775545	DMTN
Golgi inheritance (GO:0048313)	0.045780097	73.0775545	GOLGA2
Tetrahydrobiopterin metabolic process (GO:0046146)	0.045780097	73.0775545	SPR
Negative regulation of activated T cell proliferation (GO:0046007)	0.045780097	73.0775545	PRNP
Regulation of mitotic cell cycle phase transition (GO:1,901,990)	0.046095937	12.00589545	TPX2;UBC;BTRC
Negative regulation of protein modification process (GO:0031400)	0.046591985	18.55228225	PPP1R15A;PRNP
Proteasome-mediated ubiquitin-dependent protein catabolic process (GO:0043161)	0.047968823	9.27259786	CCNF;UBC;NEDD4L;BTRC
Vascular transport (GO:0010232)	0.049725133	17.4915333	SLC22A5;SLC16A1
Negative regulation of calcineurin-mediated signaling (GO:0106057)	0.049837753	64.60145816	PRNP
Negative regulation of calcineurin-NFAT signaling cascade (GO:0070885)	0.049837753	64.60145816	PRNP
Regulation of amyloid precursor protein catabolic process (GO:1,902,991)	0.049837753	64.60145816	PRNP
Cell cycle checkpoint signaling (GO:0000075)	0.049837753	64.60145816	BUB1
Regulation of feeding behavior (GO:0060259)	0.049837753	64.60145816	AGRP
Nucleoside salvage (GO:0043174)	0.049837753	64.60145816	TK1
Regulation of sister chromatid cohesion (GO:0007063)	0.049837753	64.60145816	BUB1

ABCA4, ATP Binding Cassette Subfamily A Member 4; ACSL1, Acyl-CoA Synthetase Long Chain Family Member 1; AGRP, Agouti Related Neuropeptide; ALS2CL, ALS2 C-Terminal Like; BAP1, ubiquitin carboxyl-terminal hydrolase; BTRC, Beta-Transducin Repeat Containing E3 Ubiquitin Protein Ligase; BUB1, Mitotic Checkpoint Serine/ Threonine Kinase; CDKN2C, Cyclin Dependent Kinase Inhibitor 2C; CELF3, CUGBP Elav-Like Family Member 3; CCNF, Cyclin F; CCRL2, C--C Motif Chemokine Receptor Like 2; CKB, Creatine Kinase B; CTSW, Cathepsin W; DCLRE1B, DNA Cross-Link Repair 1B; DEDD2, Death Effector Domain Containing 2; DMTN, Dematin Actin Binding Protein; DPF3, Double PHD Fingers 3; ENPP4, Ectonucleotide Pyrophosphatase/Phosphodiesterase 4; EXOC3, Exocyst Complex Component 3; F7, Coagulation Factor VII; GADD45A, Growth Arrest And DNA Damage Inducible Alpha; GDE1, Glycerophosphodiester Phosphodiesterase 1; GOLGA2, Golgin A2; KCNN4, Potasium Calcium-Activated Channel Subfamily N Member 4; KIF18B, Kinesin Family Member 18B; KIFC1, Kinesin Family Member C1; NEDD4L, NEDD4 Like E3 Ubiquitin Protein Ligase; NPRL3, NPR3 Like, GATOR1 Complex Subunit; NUAK1, AMPK-related protein kinase 5; PIDD1, P53-Induced Death Domain Protein 1; PHETA2, PH Domain Containing Endocytic Trafficking Adaptor 2; PKIA, CAMP-Dependent Protein Kinase Inhibitor Alpha; PLOD1, Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 1; PPP1R15A, Protein Phosphatase 1 Regulatory Subunit 15A; PRNP, prion protein; SH2D4A, SH2 Domain Containing 4A; SLC16A1, monocarboxylate transporter; SLC22A5, Solute Carrier Family 22 Member 5; SLC43A1, Solute Carrier Family 43 Member 1; SLC66A2, Solute Carrier Family 66 Member 2; SPR, Sepiapterin Reductase; SUPT4H1, SPT4 Homolog, DSIF Elongation Factor Subunit; STRA8, Stimulated By Retinoic Acid 8; STIL, STIL Centriolar Assembly Protein; TACC3, Transforming Acidic Coiled-Coil Containing Protein 3; TK1, Thymidine Kinase 1; TPX2, TPX2 Microtubule Nucleation Factor; TRIM31, Tripartite Motif Containing 31; UBAP1, Ubiquitin Associated Protein 1; UBC, u

Discussion

The general understanding of inherited, early-onset monogenic forms of PD is limited, yet necessary to provide insight into the polygenic nature of idiopathic PD as well as the development of candidate biomarkers which may be useful in early-stage diagnosis. Whole blood collection is a relatively non-invasive source of potential biomarkers that is inexpensive, easy to obtain, and has translatable clinical relevance. We hypothesized that loss of Pink1 alters inflammation gene expression in whole blood, resulting in the upregulation of genetic pathways that begin in early-stage disease. Further, we hypothesized that these dysregulated genetic pathways are bioinformatically correlated to behavioral outcomes including motor, anxiety, and vocal communication (cranial motor) acoustic parameters. The $Pink1^{-/-}$ rat was selected because it exhibits parallels to human prodromal PD features, including early and progressive changes to vocalization and anxiety with a gradual onset of limb motor dysfunction in adults [29]. The present study identified several dysregulated genes and biological pathways within the blood of young *Pink1^{-/-}* rats. These data suggest that the earliest PD signs, independent of nigrostriatal dopamine loss, are bioinformatically correlated to blood pathway data.

Loss of *Pink1* results in dysregulation of ribosomal protein and RNA processing gene expression

Consistent with previous sequencing studies on brain and TA muscle, there were notably more upregulated than downregulated DEG in *Pink1^{-/-}* rats. The most significantly downregulated genes were *Rpl12* (ribosomal protein L12) and *Lyzl1* (Lysozyme like protein 1). *Lzyl1* is a protein coding gene that has been recently identified in a microarray study as a new locus associated with dementia in PD [34]. Some ribosomal proteins, such as ribosomal protein s15, have been linked to neurodegeneration in LRRK2 overexpression human dopamine neuron models [35]. The most significantly upregulated gene in whole blood was *Celf3* (CUGBP Elav-Like Family Member 3). *Celf3* codes for an RNA-binding protein (RBP) involved in various aspects of RNA processing including nucleic acid binding and pre-mRNA alternative

WikiPathwaye 2010	P voluo	Combined score
	LITTIENT WIRFALTWays analysis of significantly upi	regulated genes

Table 6 Conseparite mont Wilki Dath ways analysis of significantly uprogulated going

WikiPathways 2019	P-value	Combined score	Genes
Fatty acid biosynthesis WP336	0.003901842	132.9442998	ACSL1;ECH1
G1 to S cell cycle control WP413	0.027781692	29.05924205	CDKN2C;GADD45A
p53 signaling WP2902	0.033023072	25.09708755	PIDD1;GADD45A
Heme biosynthesis WP18	0.037613345	97.17686109	PPOX
PPAR signaling pathway WP2316	0.046591985	18.55228225	ACSL1;UBC

ACSL1, Acyl-CoA Synthetase Long Chain Family Member 1; CDKN2C, Cyclin Dependent Kinase Inhibitor 2C; ECH1, Enoyl-CoA Hydratase 1; GADD45A, Growth Arrest And DNA Damage Inducible Alpha; PIDD1, P53-Induced Death Domain Protein 1; PPOX, protoporphyrinogen oxidase; UBC, ubiquitin gene

Table 7 Drug repurposing using LINCS L1000 and upregulated gene targets

Drug compound	P-value	Combined Score	Genes
EPG-MCF7	0.02841151	7 16.93884769	TSPAN8;PKIA;CKB
MCSF-MCF7	0.03031805	6 16.20021062	PRNP;TSPAN8;KCNN4
HBEGF-SKBR3	0.03432908	8 14.85626319	CDKN2C;ACSL1;TROAP
IFNG-MCF7	0.03805369	1 13.80794649	PRNP;PKIA;KCNN4

ACSL1, Acyl-CoA Synthetase Long Chain Family Member 1; CDKN2C, Cyclindependent kinase 4 inhibitor C; CKB, Creatine Kinase B; KCNN4, Potassium Calcium-Activated Channel Subfamily N Member 4; PKIA, CAMP-Dependent Protein Kinase Inhibitor Alpha; PRNP, prion protein; TSPAN8, Tetraspanin 8; TROAP, Trophinin Associated Protein

splicing. Dysregulation of RBPs has been implicated in neurodegenerative diseases including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and PD. RBPs have been found in inclusion bodies of some of these diseases, providing insight into the misfolding of proteins and subsequent protein aggregation. [36–38]

Interferon signaling is altered in whole blood of *Pink1^{-/-}* rats

Loss of *Pink1* results in increased production of proinflammatory cytokines and chemokines including tumor necrosis factor- α (TNF- α), interleukin-6 (IL-6) and interleukin1- β (IL1- β), as well as interferons (IFNs) IFN- β 1 and IFN- γ , within the blood and brain resulting in inflammation and loss of dopaminergic neurons in both a *Pink1*^{-/-} mouse model and PINK1-associated PD patients [16]. IFNs exhibit antiproliferative, proapoptotic, antiangiogenic and immunomodulatory functions. In cellular models of PD, loss of Pink1 also increased cytosolic dsDNA derived from mitochondria which resulted in elevated type-I IFN responses and correlated with apoptotic markers and cell death [17].

Type-I IFNs (IFN-Is; IFN- α and IFN- β) play a critical role in the innate immune responses by activating classical proinflammatory signaling pathways that result in the production of major inflammatory cytokines: TNF- α ,

IL-6, and IL1-β. IFN-Is have been shown to regulate neuroinflammation in the central nervous system (CNS) and contribute to degeneration and disease progression in several in vivo and in vitro models of PD [39, 40]. Mouse models of PD and postmortem studies of PD brains have confirmed that mRNA expression of IFN-Is is upregulated in PD. Whereas IFN-β deficiency causes mitochondrial dysfunction in primary cortical neuron cultures and causes defects in the nigrostriatal dopaminergic pathway as well as widespread α-synuclein accumulation in *Ifnb*^{-/-} mice [41]. In addition to Type-I IFNs, Type-II IFNs have also been implicated in PD pathophysiology. For instance, IFN-γ is elevated in the serum and brain of patients with PD and correlates with disease severity [42, 43].

Several genes identified in this dataset included those related to type I interferon signaling (Ifit1bl; interferoninduced protein with tetratricopeptide repeats 1B-like), type II interferon signaling (Nos2; nitric oxide synthase 2), and apoptosis (Dedd2; death effector domain containing 2). Interferon stimulated genes involved in chromatin remodeling (Gadd45a; Supt4h1; Esco2; Pelp1; Bap1; Tada2a) and ATP-binding proteins (Lig4; Slc22a5; Entpd4; Prnp; Vps25; Kifc1; Bub1; Uhrf1; Pidd1; Nek2l1; Abca4; Kif18b; Ckb) were upregulated in our dataset. Further, unpublished data from our lab show that at 12 months of age, *Pink1^{-/-}* rats have significantly more upand downregulated genes compared to age-matched WT rats (upregulated, n = 553; downregulated, n = 1561). In this unpublished data set, numerous interferon stimulated genes (ISGs) were upregulated including Rnasel, Fas, Casp4, Irf1, and Ifitm1. The second most significantly upregulated gene is *Ifit1* (interferon-induced protein with tetratricopeptide repeats 1; $P = 5.53 \times 10^{-27}$). In addition, receptors for IFN- α (*Ifnar2*) and IFN- γ (*Ifngr1*) were also upregulated in the dataset. Therefore, these data suggest that inflammation and interferon signaling begins early in the whole blood (3 months of age) and progresses as *Pink1^{-/-}* rats age. Further work will use bioinformatics to correlate these pathways to behavioral data at 12 months of age.

Fig. 1 STRING protein–protein interaction map with 97 interconnected genes. Nodes indicate protein and edges indicate protein interactions; line width reflects strength of evidence. Significant enrichment for Parkinson disease (purple) and prion disease (pink) (and overlapping) were identified

Drug compounds identified to reverse up- and downregulated gene transcription (Table 4) included multiple interferon-like compounds (IFNA-MCF7, BT20, SKBR3, MDAB231, HS578T and IFNG-MCF7).

From this dataset, we hypothesize that the lack of Pink1 may cause an early disruption in interferon signaling that may result in the downstream overproduction of proinflammatory cytokines (TNF- α , IL-1 β , IL-6) that will worsen over time. Targeting interferon signaling with drug compounds may be a potential therapeutic intervention to halt or prevent the further production of harmful proinflammatory cytokines that contribute to neuroinflammation and the death of neurons and should be studied in future work.

Major prion protein gene expression is upregulated

STRING analysis showed enrichment for prion disease and PD (as in Fig. 1). One of the most interesting genes identified in this dataset was *Prnp*, which was significantly upregulated in *Pink1^{-/-}* whole blood as early as 3 months of age. Prnp encodes major prion protein (PrP) that is primarily active in the brain and associated with several prion and prion-like diseases. This data further supports the prion hypothesis for PD that has been proposed due to the prion-like misfolding and aggregation of α -synuclein [44–49]. In a prion disease cell model, PINK1/Parkin signaling, specifically PINK1, was required for mitophagy of damaged mitochondria and activation attenuates prion-induced neuronal apoptosis [49]. To our knowledge, this is the first monogenic PD animal model to report significant genetic changes in the Prnp gene. In this dataset, Prnp was a significant gene in numerous GO Biological Processes identified through gene enrichment of the significantly upregulated genes including dendritic spine maintenance, apoptotic processes, negative regulation of interleukin-17 production, T-cell receptor signaling, and calcium-mediated signaling. There were only four drug compounds identified to reverse upregulated gene transcription and two of them, MCSF-MCF7 and IFNG-MCF7 included Prnp as a significant gene.

Tuba1c, a previously identified significant gene in *Pink1^{-/-}* rats, is upregulated in whole blood

Tuba1c upregulation has been recently identified in several of our RNA-sequencing datasets including the thyroarytenoid (TA) vocal fold muscle and brainstem [29]. Previously, *Tuba1c* was identified as key gene correlated to vocalization acoustic parameter at 2 months of age. In this study, *Tuba1c* was once again significantly upregulated in whole blood of *Pink1^{-/-}* rats; it is also an interconnected gene in the STRING analysis. A recent proteomics study, differential expression of Tuba1c protein was identified in the plasma of rotenone-exposed rats [50]. Here, *Tuba1c* was also identified as a significant gene in the gene enrichment KEGG pathway analysis including, apoptosis, pathways of neurodegeneration, ALS, and Parkinson disease (Table 1).

Bioinformatics analysis highlighted gene pathways that significantly correlate to behavioral outcomes in *Pink1^{-/-}* rats

Another goal of this study was to use bioinformatics to highlight biological gene pathways within the whole blood and determine whether they are significantly correlated to anxiety, motor, or ultrasonic vocalization behavioral outcomes in Pink1-/- rats. WGCNA enrichment analysis resulted in four significant modules, in which two of the four modules (Red and Yellow) were significantly correlated to behavioral outcomes. The Red module, which contained the Pink1 gene, correlated to open field number of entries (movement into the open field indicating less anxiety; increased exploration) (Table 8). The Red module demonstrated enrichment in the most biological processes including cell division, chromatin organization, regulation of autophagy, cellular response to ATP and reactive oxygen species, and regulation of the cell cycle. The Yellow module significantly correlated to frequency modulated USV duration (length) and bandwidth (frequency range) as well as open field number of entries. Enrichment of the Yellow module included mitochondrial gene expression, lipid transport across bloodbrain barrier, tRNA processing, and IL-7 signaling.

Limitations

The Pink1^{-/-} rat is a useful model to study aspects of early-stage PD, including cranial sensorimotor dysfunction in the absence of nigrostriatal dopamine loss [20]. However, it should be noted that there have been inconsistencies between research groups reporting number of nigral neurons as well as striatal dopamine concentrations in older $Pink1^{-/-}$ male rats [51]. Genetic drift, variation among cohorts of animals, differences in experimental and housing paradigms, and other laboratory variables are all common factors in producing inconsistent results and should be considered when making conclusions. The Pink1^{-/-} rat is a progressive model, and much of the neurological quantification has been done in late adulthood (8–12 months); when emphasizing prodromal behavior and neurochemical future studies should target younger prodromal ages (i.e. 2-3 months). Likewise, it would be interesting to compare $Pink1^{-/-}$ transcription with a focus on mitochondrial dysfunction to other PD genetic models, overexpression (synuclein) or neurotoxin lesion. In this study, due to smaller sample sizes used in RNA-seq it is not possible to correlate finding to behavioral outputs. The utility of these findings is the focus on

annotated protein coding mRNA and biological pathways for future study. Future work could involve the analysis of non-coding RNA as well as comparison to existing human datasets [52]. While this study focuses on mRNA that encodes protein, non-coding RNA can regulate cellular functions and signal transduction [53]. This study provides the targets for additional studies that focus on particular biological gene networks and manipulation. An additional limitation of this work is that females were not included, and future work should evaluate sex as a biological variable.

Conclusions

Neuroimaging and CSF biomarkers may be useful in research settings, but due to the ease, availability, and low cost of phlebotomy, whole blood biomarkers are among the most promising and practical methods to screen large populations for an occult, yet common and devastating disease with accelerating incidence. Whole blood genetic biomarkers of PD hold promise to screen large populations for PD risk factors. They may also inform prognosis as well as monitor response to future disease-modifying treatments of PD applied in the early-stage of disease, prior to manifestation of hallmark motor signs that currently form the basis of diagnosis. Using validated, monogenic rat models we can study the influence of Parkinsonian genes and their networks and provide data that is translatable to humans. PD has many different identified genes and pathways-mitochondrial dysfunction, deranged immune responses, oxidative stress, and prion protein. This study demonstrates that we can identify PD signature prior to development of a clinical motor phenotype and predict progression of ultrasonic vocalization parameters. Thus, using bioinformatics and whole blood sampling, it may be possible to identify genetic signatures in humans that correlate to vocalization dysfunction and target these gene signatures therapeutically for the treatment of vocal deficits in PD.

Table 8 WGCNA modules and correlated behavioral variable	es
--	----

Significant WGCNA module	Significant behavioral variables		
	Cylinder	Open field	FM USV
Red	N/a	# Entries	N/a
Yellow	N/a	# Entries	Duration (average, maximum, average of the top 10 calls) Bandwidth (average, maxi- mum, average of the top 10 calls)
Midnightblue	N/a	N/a	N/a
Purple	N/a	N/a	N/a

Methods

Animals and experimental design

A total of 4 male Long-Evans rats with homozygous Pink1 knockout and 4 male wild-type (WT) Long-Evans control rats (Inotiv, Chicago, IL, USA), aged 3 months, were used in this study. All rats arrived at 4 weeks old and were pairhoused (same-genotype) in standard polycarbonate cages $(17 \text{ cm} \times 28 \text{ cm} \times 12 \text{ cm})$ with corncob bedding. Food and water were provided ad libitum. Following arrival, all rats were immediately placed on a 12:12-h reverse light cycle as rats are nocturnal. All behavioral testing occurred under partial red-light illumination. Rats were acclimated to study procedures and experimenter handling prior to all behavioral testing. All rats were weighed upon arrival and weekly using a digital scale to monitor overall health. All procedures and protocols (M006329) were approved by the University of Wisconsin-Madison School of Medicine and Public Health Animal Care and Use Committee and were conducted in accordance with the NIH Guide for the Care and Use of Laboratory animals (National Institutes of Health, Bethesda, MA, USA).

Behavior

Corresponding rat behavioral data used in this study included open field (time in center ([sec]), number of entries, total movement [(cm])), cylinder limb motor (number of rears and lands, hindlimb and forelimb movements), and ultrasonic vocalizations (total number of calls, duration ([msec]), bandwidth ([kHz]), intensity [(dB]), and peak frequency ([kHz])). These measures were used in the gene statistical correlation analysis, discussed below, and were previously published by Lechner et al. [29].

Whole blood collection and RNA processing

Whole blood samples were collected from the body trunk during euthanasia by rapid decapitation via guillotine under heavy isoflurane anesthesia. Approximately 400 µl of trunk blood was immediately transferred to a sterile 2 mL microcentrifuge tube that contained 1.3 mL of RNAlaterTM RNA stabilization Solution (Invitrogen, Carlsbad, CA, USA) and inverted several times. RNA extraction was then performed using the Ribopure[™] kit, per manufacturer's instructions (Invitrogen). Briefly, the supernatant was removed, and blood cells were lysed with lysis and sodium acetate solution. An acid-phenol chloroform extraction was performed, and the RNA was purified through a filter cartridge and eluted. Total RNA was measured using a Nanodrop system (Thermo Scientific, Wilmington, DE, USA) as well as with an Agilent RNA 6000 Pico kit (Eukaryote Total RNA Pico, Agilent Technologies, Santa Clara, CA) and the Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

RNA sequencing

All RNA sequencing procedures followed ENCODE and were performed at the University of Wisconsin Biotechnology Center's Next Generation Sequencing Facility [25, 28] using the Illumina[®] HiSeq 2000 high-throughput sequencing system (Illumina Inc., San Diego, CA, USA). The Illumina RiboZero Plus Kit (Cat. 20,040,526) with rRNA and globin reduction was used to remove cytoplasmic and mitochondrial rRNA and a sequencing library was generated. Libraries were quantified using Qubit DNA HS kit, diluted 1:100, and assayed on an Agilent DNA1000 chip. Adaptor sequences, contamination and low-quality reads were removed. Reads were mapped to the annotated Rattus norvegicus genome in Ensembl. As reviewed in Kelm-Nelson and Gammie, 2020, the technical quality was determined using multiple parameters [25].

Gene expression analyses

Gene analysis was performed with the glm using the EdgeR Bioconductor Package, v. 3.9. The *P*-value cutoff was set to 0.05 for significance. All raw data were uploaded to the Gene Expression Omnibus (https:// www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21 3543; GSE213543). The RSEM approach for normalizing RNA seq data was used. EdgeRglm data are provided in Additional file 4: Table S1. Statistically significant differentially expressed genes (DEG) were ranked according to *P*-value, FDR, and sorted by up- or downregulation, GO function, biological process, and component (Additional file 5: Table S2).

EnrichR pathway gene enrichment analysis (KEGG analysis) was used to determine gene enrichment on the DEG list and WikiPathway 2021 and GO Biological process was used on the top 1000 up- and 1000 down-regulated genes, respectively (Additional file 6: Table S3). Additionally, the top overall 1000 genes were entered into STRINGdp (v 2.0; Search Tool for the Retrieval of Interacting Genes/Proteins, http://string.embl.de/) to identify protein–protein interactions [54, 55]. The top connected genes were replotted with enrichment.

Weighted gene co-expression network analysis (WGCNA) and behavior

A WGCNA was used to construct co-expression networks and modules from the whole blood gene expression dataset as well as the open field, cylinder, and USV acoustical dataset, previously published in 2021 [29]. Data were $\log_2(x+1)$ transformed, low expression genes were removed and WGCNA was run (13,360 number of genes) using R Statistical Software [56]. Correlations were raised to a soft thresholding power β of 12, unsupervised hierarchical clustering for WGCNA used the default setting as well as the following: the minimum module size of 30 genes, the signed TOMType, the deepSplit parameter set to 2, and the mergeCutHeight parameter set to 0.25. Searchable networks were created.

Abbreviations

AD	Alzheimer disease
ALS	Amyotrophic lateral sclerosis
CNS	Central nervous system
CSF	Cerebrospinal fluid
DEG	Differentially expressed gene
GO	Gene Ontology
IFN	Interferon
NF-kB	Nuclear factor kappa-light-chain-enhancer of activated B cells
PD	Parkinson disease
PINK1	PTEN-induced kinase 1
Pink1 ^{-/-}	Pink1 Homozygous knockout
RBP	RNA binding protein
RNA	Ribonucleic acid
STRING	Search tool for the retrieval of interacting genes/proteins
TA	Thyroarytenoid muscle
TNF-a	Tumor necrosis factor α
USV	Ultrasonic vocalization
WGCNA	Weighted gene co-expression network analysis
WT	Wild-type

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s12868-024-00857-0.

Additional file 1: File S1. File containing significant WikiPathways and GO biological processes for both up and downregulated differentially expressed genes, respectively. P-value, combined score, and list of genes in each pathway are included.

Additional file 2: File S2. String.

Additional file 3: File S3. Files containing sortable WGCNA results, P-values, correlations, and genes in the top modules. Enrichment for GO biological process on each of the significant modules (ME red, midnightblue, purple, and yellow).

Additional file 4: Table S1. Results of a differential gene expression. Analysis of RNA-Seq data using EdgeR. A negative logFC.

Additional file 5: Table S2. Results of a differential gene expression (DEG; protein coding genes) in the whole blood of male rats.

Additional file 6: Table S3. Gene list for the Top 1000 up and downregulated genes.

Acknowledgements

The authors thank the University of Wisconsin-Madison Biotechnology Center Gene Expression Center & DNA Sequencing Facility for providing library preparation and next-generation sequencing services. We would like to acknowledge the UW Bioinformatics Resource Center for their assistance with data analysis. We thank the University of Wisconsin Translational Research Initiatives in Pathology laboratory (TRIP), supported by the UW Department of Pathology and Laboratory Medicine, UWCCC (P30 CA014520), and the Office of The Director—NIH (S10 OD023526) for use of its facilities and services.

Author contributions

SL collected, analyzed, and interpreted the data and was a major contributor in writing the manuscript. DGSB analyzed and interpreted the data and was a major contributor in writing the manuscript. SG performed the statistical analysis and was a contributor in writing the manuscript. CKN obtained funding, designed, analyzed, and interpreted the data. All authors read and approved the final manuscript.

Funding

This work was supported by the National Institutes of Health R01NS117469 (Kelm-Nelson). The datasets generated and/or analyzed during the current study are available in the NCBI GEO Data repository [GSE213543]. https://www.ncbi.nlm.nih.gov/geo/guery/acc.cgi?acc=GSE213543.

Data availability

The datasets generated and/or analyzed during the current study are available in the NCBI GEO Data repository or available through the corresponding author.

Declarations

Ethics approval and consent to participate

All procedures were approved by the University of Wisconsin-Madison Animal Care and Use Committee (IACUC) and were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory animals.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no financial or non-financial competing interests.

Received: 16 August 2023 Accepted: 20 February 2024 Published online: 04 March 2024

References

- Dorsey ER, Bloem BR. The Parkinson pandemic—a call to action. JAMA Neurol. 2018;75(1):9–10. https://doi.org/10.1001/jamaneurol.2017.3299.
- Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24(2):197–211. https://doi.org/10.1007/s00441-004-0956-9.
- Braak RH, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 2004;318:121–34. https://doi.org/10.1007/s00441-004-0956-9.
- Hawkes CH, Del Tredici K, Braak H. A timeline for Parkinson's disease. Parkinsonism Relat Disord. 2010;16(2):79–84. https://doi.org/10.1016/j. parkreldis.2009.08.007.
- Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18(7):435–50. https://doi.org/10.1038/ nrn.2017.62.
- Valentine MNZ, Hashimoto K, Fukuhara T, Saiki S, Ishikawa K-i, Hattori N, Carninci P. Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson's Disease. Sci Data. 2019;6(1):20. https://doi.org/10.1038/s41597-019-0022-9.
- Craig DW, Hutchins E, Violich I, Alsop E, Gibbs JR, Levy S, Robison M, Prasad N, Foroud T, Crawford KL, Toga AW, Whitsett TG, Kim S, Casey B, Reimer A, Hutten SJ, Frasier M, Kern F, Fehlman T, Keller A, Cookson MR, Van Keuren-Jensen K, Hutten S, Van Keuren-Jensen K, Parkinson Progression Marker I. RNA sequencing of whole blood reveals early alterations in immune cells and gene expression in Parkinson's disease. Nat Aging. 2021;1(8):734–47. https://doi.org/10.1038/s43587-021-00088-6.
- Scherzer CR, Eklund AC, Morse L, Liao Z, Locascio JJ, Fefer D, Schwarzschild MA, Schlossmacher MG, Hauser MA, Vance JM, Sudarsky LR, Standaert DG, Growdon JH, Jensen RV, Gullans SR. Molecular markers of early Parkinson's disease based on gene expression in blood. Proc Natl Acad Sci. 2007;104(3):955–60. https://doi.org/10.1073/pnas.0610204104.
- Foulds PG, Mitchell JD, Parker A, Turner R, Green G, Diggle P, Hasegawa M, Taylor M, Mann D, Allsop D. Phosphorylated α-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson's disease. FASEB J. 2011;25(12):4127–37. https://doi.org/10.1096/fj.10-179192.

- Chahine LM, Stern MB, Chen-Plotkin A. Blood-based biomarkers for Parkinson's disease. Parkinsonism Relat Disord. 2014;20:S99–103. https:// doi.org/10.1016/S1353-8020(13)70025-7.
- 11. Bonifati V, Rohé CF, Breedveld GJ, Fabrizio E, De Mari M, Tassorelli C, Tavella A, Marconi R, Nicholl DJ, Chien HF, Fincati E, Abbruzzese G, Marini P, De Gaetano A, Horstink MW, Maat-Kievit JA, Sampaio C, Antonini A, Stocchi F, Montagna P, Toni V, Guidi M, Libera AD, Tinazzi M, De Pandis F, Fabbrini G, Goldwurm S, de Klein A, Barbosa E, Lopiano L, Martignoni E, Lamberti P, Vanacore N, Meco G, Oostra BA, Network TIPG. Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology. 2005;65(1):87–95. https://doi.org/10.1212/01.wnl.0000167546. 39375.82.
- Chai C, Lim K-L. Genetic insights into sporadic Parkinson's disease pathogenesis. Curr Genomics. 2013;14(8):486–501. https://doi.org/10.2174/ 1389202914666131210195808.
- Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 2004;304(5674):1158–60. https://doi.org/10.1126/science.1096284.
- 14. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R, Ikram MA, Ioannidis JPA, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K. Hardy JA. Heutink P. Chen H. Wood NW. Houlden H. Pavami H. Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB, International Parkinson's Disease Genomics C, Parkinson's Study Group Parkinson's Research: The Organized GI, and Me, GenePd, NeuroGenetics Research C, Hussman Institute of Human G, The Ashkenazi Jewish Dataset I, Cohorts for H, Aging Research in Genetic E, North American Brain Expression C, United Kingdom Brain Expression C, Greek Parkinson's Disease C, Alzheimer Genetic Analysis G. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genetics. 2014;46(9):989-93. https://doi.org/10.1038/ng. 3043.
- Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun. 2020;8(1):189. https://doi.org/10.1186/s40478-020-01062-w.
- Magnusen AF, Hatton SL, Rani R, Pandey MK. Genetic defects and pro-inflammatory cytokines in Parkinson's disease. Front Neurol. 2021;12:636139. https://doi.org/10.3389/fneur.2021.636139.
- Matsui H, Ito J, Matsui N, Uechi T, Onodera O, Kakita A. Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson's disease. Nat Commun. 2021;12(1):3101. https://doi.org/10.1038/s41467-021-23452-x.
- Cenci MA, Whishaw IQ, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci. 2002;3(7):574–9. https://doi. org/10.1038/nrn877.
- Krasko MN, Hoffmeister JD, Schaen-Heacock NE, Welsch JM, Kelm-Nelson CA, Ciucci MR. Rat models of vocal deficits in Parkinson's disease. Brain Sci. 2021;11(7):925. https://doi.org/10.3390/brainsci11070925.
- Kelm-Nelson CA, Lechner SA, Lettenberger SE, Kaldenberg TAR, Pahapill NK, Regenbaum A, Ciucci MR. Pink1(^{-/-}) rats are a useful tool to study early Parkinson disease. Brain Commun. 2021;3(2):fcab077. https://doi. org/10.1093/braincomms/fcab077.
- Cullen KP, Grant LM, Kelm-Nelson CA, Brauer AFL, Bickelhaupt LB, Russell JA, Ciucci MR. Pink1^{-/-} rats show early-onset swallowing deficits and correlative brainstem pathology. Dysphagia. 2018. https://doi.org/10.1007/ s00455-018-9896-5.
- Grant LM, Kelm-Nelson CK, Hilby BL, Blue KV, Rajamanickam ESP, Pultorak J, Fleming SM, Ciucci MR. Evidence for early and progressive ultrasonic vocalization and oromotor deficits in a PINK1 knockout rat model of Parkinson disease. J Neurosci Res. 2015;93(11):1713–27. https://doi.org/ 10.1002/jnr.23625.
- Hoffmeister JD, Kelm-Nelson CA, Ciucci MR. Quantification of brainstem norepinephrine relative to vocal impairment and anxiety in the Pink1^{-/-} rat model of Parkinson disease. Behav Brain Res. 2021;414: 113514. https://doi.org/10.1016/j.bbr.2021.113514.

- Johnson RA, Kelm-Nelson CA, Ciucci MR. Changes to ventilation, vocalization, and thermal nociception in the Pink1^{-/-} rat model of Parkinson's disease. J Parkinsons Dis. 2020;10(2):489–504. https://doi.org/10.3233/ jpd-191853.
- Kelm-Nelson CA, Gammie S. Gene expression within the periaqueductal gray is linked to vocal behavior and early-onset parkinsonism in Pink1 knockout rats. BMC Genomics. 2020;21(1):625. https://doi.org/10.1186/ s12864-020-07037-4.
- Kelm-Nelson CA, Stevenson SA, Ciucci MR. Atp13a2 expression in the periaqueductal gray is decreased in the Pink1^{-/-} rat model of Parkinson disease. Neurosci Lett. 2016;621:75–82. https://doi.org/10.1016/j.neulet. 2016.04.003.
- Kelm-Nelson CA, Trevino MA, Ciucci MR. Quantitative analysis of catecholamines in the Pink1^{-/-} rat model of early-onset Parkinson's disease. Neuroscience. 2018;379:126–41. https://doi.org/10.1016/j.neuroscience. 2018.02.027.
- Lechner SA, Kletzien H, Gammie SC, Kelm-Nelson CA. Thyroarytenoid muscle gene expression in a rat model of early-onset Parkinson's disease. Laryngoscope. 2021;131(12):E2874–9. https://doi.org/10.1002/lary.29661.
- Lechner SA, Welsch JM, Pahapill NK, Kaldenberg TAR, Regenbaum A, Kelm-Nelson CA. Predictors of prodromal Parkinson's disease in young adult Pink1^{-/-} rats. Front Behav Neurosci. 2022;16:867958. https://doi. org/10.3389/fnbeh.2022.867958.
- Pultorak JD, Kelm-Nelson CA, Holt LR, Blue KV, Ciucci MR, Johnson AM. Decreased approach behavior and nucleus accumbens immediate early gene expression in response to Parkinsonian ultrasonic vocalizations in rats. Soc Neurosci. 2016;11(4):365–79. https://doi.org/10.1080/17470919. 2015.1086434.
- Riede T, Borgard HL, Pasch B. Laryngeal airway reconstruction indicates that rodent ultrasonic vocalizations are produced by an edge-tone mechanism. Roy Soc Open Sci. 2017;4(11): 170976. https://doi.org/10. 1098/rsos.170976.
- Kelm-Nelson CA, Lenell C, Johnson AM, Ciucci MR. Chapter 4—laryngeal activity for production of ultrasonic vocalizations in rats. In: Brudzynski SM, editor. Handbook of behavioral neuroscience. Amsterdam: Elsevier; 2018. p. 37–43.
- Barnett DGS, Lechner SA, Gammie SC, Kelm-Nelson CA. Thyroarytenoid oxidative metabolism and synaptic signaling dysregulation in the female Pink1^{-/-} rat. Laryngoscope. 2023. https://doi.org/10.1002/lary.30768.
- Jo S, Park KW, Hwang YS, Lee SH, Ryu H-S, Chung SJ. Microarray genotyping identifies new loci associated with dementia in Parkinson's disease. Genes (Basel). 2021;12(12):1975. https://doi.org/10.3390/genes12121975.
- Martin I, Kim JW, Lee BD, Kang HC, Xu JC, Jia H, Stankowski J, Kim MS, Zhong J, Kumar M, Andrabi SA, Xiong Y, Dickson DW, Wszolek ZK, Pandey A, Dawson TM, Dawson VL. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell. 2014;157(2):472–85. https://doi.org/10.1016/j.cell.2014.01.064.
- Cookson MR. RNA-binding proteins implicated in neurodegenerative diseases. Wiley Interdiscip Rev RNA. 2017;8(1): e1397. https://doi.org/10. 1002/wrna.1397.
- Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-binding proteins and microRNAs in neurodegenerative diseases. Int J Mol Sci. 2021;22(10):5292. https://doi.org/10.3390/ijms22105292.
- Ishizuka A, Hasegawa Y, Ishida K, Yanaka K, Nakagawa S. Formation of nuclear bodies by the IncRNA Gomafu-associating proteins Celf3 and SF1. Genes Cells. 2014;19(9):704–21. https://doi.org/10.1111/gtc.12169.
- Main BS, Zhang M, Brody KM, Ayton S, Frugier T, Steer D, Finkelstein D, Crack PJ, Taylor JM. Type-1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson's disease. Glia. 2016;64(9):1590–604. https://doi.org/10.1002/ glia.23028.
- Main BS, Zhang M, Brody KM, Kirby FJ, Crack PJ, Taylor JM. Type-I interferons mediate the neuroinflammatory response and neurotoxicity induced by rotenone. J Neurochem. 2017;141(1):75–85. https://doi.org/10.1111/ jnc.13940.
- Ejlerskov P, Hultberg JG, Wang J, Carlsson R, Ambjørn M, Kuss M, Liu Y, Porcu G, Kolkova K, Friis Rundsten C, Ruscher K, Pakkenberg B, Goldmann T, Loreth D, Prinz M, Rubinsztein DC, Issazadeh-Navikas S. Lack of neuronal IFN-β-IFNAR causes Lewy body- and Parkinson's disease-like dementia. Cell. 2015;163(2):324–39. https://doi.org/10.1016/j.cell.2015.08.069.

- 42. Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M. Peripheral cytokines profile in Parkinson's disease. Brain Behav Immun. 2009;23(1):55–63. https://doi.org/10.1016/j.bbi.2008.07.003.
- Brodacki B, Staszewski J, Toczyłowska B, Kozłowska E, Drela N, Chalimoniuk M, Stepien A. Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett. 2008;441(2):158–62. https://doi. org/10.1016/j.neulet.2008.06.040.
- Vascellari S, Manzin A. Parkinson's disease: a prionopathy? Int J Mol Sci. 2021;22(15):8022. https://doi.org/10.3390/ijms22158022.
- Wang V, Chuang TC, Soong BW, Shan DE, Kao MC. Octarepeat changes of prion protein in Parkinson's disease. Parkinsonism Relat Disord. 2009;15(1):53–8. https://doi.org/10.1016/j.parkreldis.2008.03.003.
- Watts JC. Calling α-synuclein a prion is scientifically justifiable. Acta Neuropathol. 2019;138(4):505–8. https://doi.org/10.1007/ s00401-019-02058-0.
- Brundin P, Melki R. Prying into the prion hypothesis for Parkinson's disease. J Neurosci. 2017;37(41):9808–18. https://doi.org/10.1523/jneurosci. 1788-16.2017.
- Visanji NP, Brooks PL, Hazrati L-N, Lang AE. The prion hypothesis in Parkinson's disease: braak to the future. Acta Neuropathol Commun. 2013;1(1):2. https://doi.org/10.1186/2051-5960-1-2.
- Li J, Lai M, Zhang X, Li Z, Yang D, Zhao M, Wang D, Sun Z, Ehsan S, Li W, Gao H, Zhao D, Yang L. PINK1-parkin-mediated neuronal mitophagy deficiency in prion disease. Cell Death Dis. 2022;13(2):162. https://doi.org/ 10.1038/s41419-022-04613-2.
- Lee RG, Sedghi M, Salari M, Shearwood A-MJ, Stentenbach M, Kariminejad A, Goullee H, Rackham O, Laing NG, Tajsharghi H. Early-onset Parkinson disease caused by a mutation in CHCHD2 and mitochondrial dysfunction. Neurol Genetics. 2018. https://doi.org/10.1212/NXG.00000 0000000276.
- de Haas R, Heltzel L, Tax D, van den Broek P, Steenbreker H, Verheij MMM, Russel FGM, Orr AL, Nakamura K, Smeitink JAM. To be or not to be pink(1): contradictory findings in an animal model for Parkinson's disease. Brain Commun. 2019;1(1):16. https://doi.org/10.1093/braincomms/fcz016.
- Chatterjee P, Roy D. Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson's disease. Biochem Biophys Res Commun. 2017;484(3):557–64. https://doi.org/10.1016/j.bbrc.2017.01.121.
- 53. Li J, Liu C. Coding or noncoding, the converging concepts of RNAs. Front Genet. 2019;10:496. https://doi.org/10.3389/fgene.2019.00496.
- Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12. https://doi.org/10.1093/nar/gkaa1074.
- von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258–61. https://doi.org/10.1093/nar/gkg034.
- Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10. 1186/1471-2105-9-559.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.