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Abstract 

Background Female sex is a known risk factor of brain disorders with raised intracranial pressure (ICP) and sex 
hormones have been suggested to alter cerebrospinal fluid (CSF) dynamics, thus impairing ICP regulation in CSF 
disorders such as idiopathic intracranial hypertension (IIH). The choroid plexus (CP) is the tissue producing CSF and it 
has been hypothesized that altered hormonal composition could affect the activity of transporters involved in CSF 
secretion, thus affecting ICP. Therefore, we aimed to investigate if expression of various transporters involved in CSF 
secretion at CP were different between males and females and between females in different estrous cycle states. 
Steroid levels in serum was also investigated.

Methods Female and male rats were used to determine sex‑differences in the genes encoding for the transport‑
ers Aqp1 and 4, NKCC1, NBCe2, NCBE; carbonic anhydrase enzymes II and III (CA), subunits of the  Na+/K+‑ATPase 
including Atp1a1, Atp1b1 and Fxyd1 at CP. The estrous cycle stage metestrus (MET) and estrous (ES) were deter‑
mined before euthanasia. Serum and CP were collected and subjected to RT‑qPCR analysis and western blots. Serum 
was used to measure steroid levels using liquid chromatography tandem mass spectrometry (LC–MS/MS).

Results Significant differences in gene expression and steroid levels between males and ES females were found, 
while no differences were found between male and MET females. During ES, expression of Aqp1 was lower (p < 0.01) 
and NKCC1 was higher in females compared to males. CAII was lower while CAIII was higher in ES females (p < 0.0001). 
Gene expression of Atp1a1 was lower in ES compared to male (p = 0.0008). Several of these choroidal genes were 
also significantly different in MET compared to females in ES. Differences in gene expression during the estrus cycle 
were correlated to serum level of steroid hormones. Protein expression of AQP1 (p = 0.008) and CAII (p = 0.035) 
was reduced in ES females compared to males.

Conclusions This study demonstrates for the first time that expression at CP is sex‑dependent and markedly 
affected by the estrous cycle in female rats. Further, expression was related to hormone levels in serum. This opens 
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a completely new avenue for steroid regulation of the expression of CSF transporters and the close link to the under‑
standing of CSF disorders such as IIH.

Keywords Choroid plexus, Sex‑differences, Transporters, Cerebrospinal fluid, Estrous cycle, Hormones, Idiopathic 
intracranial hypertension

Introduction
Many neurological pathologies are over-represented in 
females including disorders of cerebrospinal fluid (CSF) 
dynamics, in particular idiopathic intracranial hyperten-
sion (IIH) which is characterized by raised CSF pressure 
mainly affecting obese women [1, 2]. Approximately 80% 
of CSF is produced and secreted by the choroid plexus 
(CP), a unique structure consisting of a single layer of 
epithelial cells that reside in the cerebral ventricles [2–4]. 
The formation of CSF is assumed to involve co-transport 
of water by proteins located at CP [5–7]. Water is thought 
to be transported against the osmotic gradient by pro-
teins co-transporting  Cl−,  Na+ and  HCO3

− [3, 8]. This is 
suggested to be mediated by ATP-dependent transport-
ers and ionic gradients, which is highly dependent on the 
 Na+/K+-ATPase (NKA),  Na+/K+/Cl− cotransporter-1 
(NKCC1) and the  Na+/HCO3

− antiporter (NBCe2) at the 
apical membrane facing the ventricles, and possibly also 
the  Na+/HCO3

− cotransporter (NBCn1) at the basolat-
eral membrane [8–11]. Carbonic anhydrases (CA) also 
play an important role in CSF secretion by catalyzing the 
generation of  HCO3

− [9, 12]. Over the years it has been 
demonstrated that cotransporters at CP also contrib-
ute to CSF secretion [6, 13–16]. Changing the activity 
or blocking these transporters and enzymes thus have a 
great influence on CSF secretion [17].

Although CP is a key structure for maintaining nor-
mal brain physiology and may be involved in many CNS 
disorders such as IIH, Alzheimer’s disorder and multiple 
sclerosis, the knowledge regarding sex-specificities of CP 
and how it may be involved in some of the known sex-
dependent CNS disorders is widely unknown. The CP is 
thought to be influenced by circulating sex hormones and 
a number of studies have shown that CP expresses sex 
hormone receptors such as androgen receptors (ARs), 
estrogen receptors (ERs) and progestogen receptors (PR) 
[18–20]. This localization has been hypothesized to be 
due to the involvement in regulating the transcriptome 
of the CP expressing secretory proteins and influence 
the composition of CSF [21–24]. Sex-related differences 
in whole transcriptomes from rat CP have also been 
demonstrated [23]. In contrast, a recent transcriptomic 
profile study in rats showed a highly shared expression 
profile between female and male CP [25]. Although, 
in this study the estrous stage of the female rats was 
not determined. Interestingly, it has been shown that 

expression of Aqp7 and 9 varies during the estrous cycle 
of mice, suggesting that expression of Aqps may be reg-
ulated by various hormonal stimuli and expression pat-
terns is dependent on the estrous cycle stages. However 
this has not been evaluated in other animal models [26]. 
Importantly, expression of the AQPs in different tissues 
have shown to be regulated by hormones [21, 27–29]. It 
has been shown that gonadectomy in male and females 
downregulated AQP1 expression in rat nephron and that 
testosterone was able to upregulate the AQP1 expres-
sion strongly [30]. Further, circulating sex hormones may 
affect CP as it express receptors for these hormones. It 
has also been shown that gonadectomized female and 
male rats have profound differences in CP transcrip-
tome compared to sham-operated rats suggesting sex 
hormones have a central role in CP functions and CSF 
homeostasis [24]. Therefore, the aim of this study was for 
the first time to investigate sex-related differences in CP 
expression of important transporter/channels/enzymes 
involved in CSF secretion between male and female rats 
during two different stages of the estrous cycle. In female 
rats, the estrous cycle has four phases, proestrus (PRO), 
estrus (ES), metestrus (MET) and diestrus (DI) and lasts 
for 4 to 5 days. PRO is associated with a rise in circulating 
estradiol concentrations which leads to increase in luti-
nizing hormone (LH) and follicle stimulating hormone 
(FSH) release, similar to the human follicular stage [31]. 
In ES there is a peak in FSH concentration with an asso-
ciated rapid decline in estradiol levels corresponding to 
ovulation. During MET and DI progesterone levels are 
high, being homologous to human early and late secre-
tory stages of the reproductive cycle [31]. As the serum 
sex steroid levels varies significantly over the course of 
the estrous cycle [32], we also aimed to relate the expres-
sion of these genes to serum level of steroid hormones in 
the same rats in order to examine if circulating sex hor-
mones may be related to the transcription of CSF secre-
tory genes at CP.

Methods
Animals
20 (10 in MET and 10 in ES) female and 10 male Sprague–
Dawley rats (Taconic, Denmark) at the age 10–12 weeks 
were used, housed in animal facility at Glostrup Research 
Institute, Denmark. Rats were left 2  weeks to acclima-
tize prior to all procedures. The rats were fed a standard 
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rodent chow diet (Altromin, Germany) and had access 
to food and water ad  libitum. In the facility, rats were 
housed at 22 ℃ in a 12:12 h light dark cycle. All experi-
ment were approved by the Danish Animal Experiments 
Inspectorate (license number 2019-15-0201-00365).

Vaginal smears‑ determination of estrous cycle
The estrous cycle stage of each rat was monitored daily 
by collection of vaginal smears for cytological charac-
terization following a standard protocol [33]. Prior to 
euthanasia, all rats were allowed to undergo a complete 
estrus cycle. Euthanasia was performed within a 14-day 
timeframe, with tissue extraction conducted between 9 
and 12 am. Rats in MET and ES were euthanized by 70% 
 CO2 followed by decapitation within 30  min after cycle 
stage determination. ES and MET are easy to distinguish 
between by the cell type. In ES, cornified epithelial cells 
are the dominant cell type where MET is characterized 
by an even distribution of leucocytes, cornified epithelial 
cells and nucleated cells (see Additional file 1: Figure S2). 
The rational for choosing ES was that the hormonal con-
centrations are high in proestrus (the phase just before 
estrus). Since there is a delay in transcription of genes 
and proestrus is relatively short (~ 14 h) we would expect 
to see a difference in the two estrous stages despite the 
hormonal concentration of progesterone and estradiol 
are relatively similar (lower concentration in estrus and 
rising concentrations in metestrus).

Tissue and serum collection
After the rats were decapitated under  CO2 sedation, 
brains were removed quickly and placed in ice cold PBS. 
The CP from the lateral and fourth ventricles were dis-
sected from the brain and snap frozen on dry ice. The 
tissue samples were stored at – 80 ℃ until used for subse-
quent analysis. The blood was collected following decapi-
tation. Whole blood was allowed to clot by leaving it at 
room temperature for 20 min followed by centrifugation 
at 2000 × g for 10 min at 4 ℃. The supernatant was then 
immediately transferred and the serum samples were 
stored at – 80 ℃ until later analysis.

mRNA expression
The CP were used for mRNA expression experiments. 
Change in gene expression of Aqp1 and 4, Slc12a2 
(NKCC1), Slc4a10 (NCBE), Slc4a5 (NBCe2), Car2 (CaII) 
and Car3 (CaIII) and subunits of the  Na+/K+-ATPase 
(Atp1a1, Atp1b1, Fxyd1) were compared between male 
and female during two different estrous phases, MET 
and ES.  Trizol™ was used for isolation of total RNA. Each 
sample was homogenized in 1  mL TRIzol  (Invitrogen™, 
Waltham, MA, USA), whereafter RNA was precipi-
tated in isopropanol. The purified RNA samples were 

diluted in nuclease-free water (QIAGEN) and after-
wards concentrations and quality were measured by UV 
spectrophotometry on NanoDrop (Thermo Scientific). 
RNA was converted to cDNA according to the manu-
facture’s description with Applied Biosystems High-
Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems, Waltham, MA). To access gene expres-
sion each sample was ran in single-plex 9  ng cDNA 
reactions using the Taqman Gene Expression Master 
Mix (Applied  Biosystems™) combined with a TaqMan 
primer/probe set for each of the following targets (all 
from Applied Biosystems): Aqp1 (Rn_00562834_m1), 
Aqp4 (Rn_01401327_s1), Slc12a2 (Rn_00582505_m1), 
Slc4a5 (Rn_01420902_m1), Slc4a10 (Rn_00710136_m1), 
Car2 (Rn_01462065_m1), Car3 (Rn_01461970_m1), 
Atp1a1 (Rn_01533986_m1), Atp1b1 (Rn_00565405_m1), 
Fxyd1 (Rn_00581299_m1). The reactions were run on 
 QuantStudio™ 6 Pro Real-Time PCR System, 384-well 
(Applied  Biosystems™). Each gene was ran in tripli-
cate for each sample. Expression of the target gene was 
normalized to expression of housekeeping gene Actb 
(Rn_00667869_m1), ΔCT = CT (target gene) − CT (refer-
ence gene). ΔCT was converted into arbitrary units (AU), 
AU = 2

−�Ct.

Western blot
Protein was obtained by the Trizol reagent (Invitro-
gen) method after RNA extraction in each sample. Pro-
tein was extracted, precipitated and washed accordingly 
to the manufactures protocol (BioRad, Hercules, CA, 
USA). The protein was solubilized in lysis buffer with 1% 
sodium dodecyl sulfate. β-mercaptoethanol was added 
as a reducing agent making up 5% of the solution. Pro-
tein concentration was determined in triplicates on Nan-
oDrop Spectrophotometer (NanoDrop 2000c, Thermo 
Scientific, Waltham, MA). 25  µg protein was diluted 
and mixed with LDS sample buffer (Thermo Fisher sci-
entific) and sample reducing agent (Thermo Fisher sci-
entific) followed by separation on a bolt 4–12% bis–tris 
plus gel (Invitrogen) under gel electrophoresis. Pro-
teins were transferred to a polyvinylidene difluoride 
membrane by an iblot machine (Invitrogen). The mem-
branes were blocked with blocking buffer (5% non-fat 
milk in Tris-buffered saline 0,1% Tween 20 (TBST)) and 
incubated overnight with primary antibodies; 1:1000 
Aqp1 (ab168387, Abcam, Cambridge, UK), 1:1000 Car2 
(ab124687), 1:500 Atp1a1 (3060S, cell signalling), 1:500 
Lamin-B1 (ab65986, Abcam). The membranes were 
washed with TBST and incubated with secondary anti-
body 1:10,000 (goat-anti-rabbit (P0448). Bands were 
detected using chemiluminescent (Amersham ECL, GE 
Healthcare, Chicago, IL). The reaction was captured on 
luminescent image analyzer (LAS-4000 Luminescent 
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Image Analyzer, Fujifilm, Tokyo, Japan). Protein bands 
were quantified using ImageJ (NIH, USA). Gels and sam-
ples were ran in parallel and membrane cut according to 
molecular weight prior to incubation with antibodies. 
Protein was normalized to the male level, set as 1. Due 
to protein limit or lack of suitable commercial antibod-
ies, the protein expression of NKCC1 could not be deter-
mined. Moreover, numbers are uneven across groups due 
to protein availability. Raw and annotated blots can be 
found in Additional file 1: Figure S3.

Liguid chromatography—mass spectrometry
Prior to quantification of steroid hormones, purification 
and extraction were performed using solid phase extrac-
tion (SPE) followed by LC–MS/MS analysis. A modified 
version of the method described by Weisser et  al. was 
applied [34]. The data processing from the LC–MS/MS 
analysis were carried out in MultiQuant v 3.0 software 
(AB SCIEX). The chromatographic peak was manually 
integrated for each steroid. Individual datapoints were 
excluded if the chromatographic peaks were of bad qual-
ity or if the peaks were below limit of detection and limit 
of quantitation. Calculations and graphs were conducted 
using Microsoft excel 2010 and GraphPad.

Statistics
The relative gene expression (AU) and correlation to 
serum hormone level was analyzed using GraphPad 
Prism (V9.1, Graphpad Software Inc, San Diego, CA). 
The normality of the data was assessed by Shapiro–Wilk 
normality test where p < 0.05 was considered signifi-
cant. For normally distributed genes we did a one-way 
ANOVA with multiple comparisons (Tukey’s multiple 
comparisons test). Here we compared both Male vs. 
MET, Male vs. ES and MET vs. ES. We used Brown-
Forsyth and Welch ANOVA where the SD were signifi-
cantly different: Test performed on Car2, Aqp1, ATP1a1, 
ATP1b1. Non-normal distributed data differences in 
gene expression were assessed by Kruskal–Wallis test 
combined with a post hoc Dunn’s multiple comparisons 
test: test performed on Slc4a, Car3, FXYd1.

Pearson’s r was used for the correlation analysis for par-
ametric data and Spearmans r was used for non-paramet-
ric data. Gene expression data is presented as mean ± SD 
and correlation data is presented as p-value (p), correla-
tion coefficient (r). Genes that were significantly differ-
ent expressed were correlated to all the analyzed steroid 
hormones in the serum. We did not correct for multiple 
comparisons for the correlation analysis because this 
would have increased the likelihood of type II statistical 
errors.

Results
Gene expression at CP
Males compared to females
We found significant changes in gene expression at CP 
when comparing males to females in ES. Specifically, we 
found that females in ES had lower Aqp1 expression by 
0.47-fold (226 ± 29 vs 106 ± 6 AU, p = 0.03, Fig. 1A) com-
pared to males. There was no difference in expression 
of Aqp4 between the groups (Fig.  1B). Further, a pro-
nounced difference was observed in expression of Slc2a12 
(NKCC1), where females in ES had higher expression by 
threefold (250 ± 36 vs 747 ± 38 AU, p < 0.0001, Fig.  1C) 
compared to males. No differences were found between 
male and females in ES in expression of Slc4a10 (NCBE) 
and Slc4a5 (NBCe2) (Fig. 1D, E). The carbonic anhydrase 
isozyme Car2 (CaII) expression was also different when 
comparing males to ES females where Car2 was lower by 
0.6-fold (1879 ± 90 vs 1167 ± 26 AU, p < 0.0001, Fig.  1F). 
In contrast, expression of Car3 was higher by 1.6-fold 
in ES females (1.7 ± 0.4 vs 2.7 ± 0.5 AU, p = 0.04, Fig. 1G). 
The catalytic subunit of NKA, ATP1a1, showed lower 
expression in ES females compared to males by 0.5-fold 
(0.76 ± 0.03 vs 0.36 ± 0.07 AU, p = 0.0008, Fig.  1H). No 
change was observed in expression of ATP1b1 or FXYD1 
(Fig.  1I, J). No differences were found when comparing 
gene expression of the markers between male and female 
rats during MET.

MET females compared to ES females
When comparing females in MET to females in ES, 
expression of Aqp1 was lower in ES females, although not 
significant (221 ± 54 vs 106 ± 17 AU, p = 0.06, Fig. 1A). No 
difference was found in expression of Aqp4 (Fig.  1B). A 
profound difference was found in expression of Slc2a12 
(NKCC1), between MET females and ES females by 4.5-
fold (189 ± 34 vs 747 ± 38 AU, p < 0.0001, Fig.  1C). Fur-
ther, difference in one of two bicarbonate transporters 
was found when comparing ES female and MET females. 
ES females had a 0.8-fold lower expression of Slc4a5 
(NBCe2) (1021 ± 200 vs 778 ± 84, AU, p = 0.04, Fig.  1E). 
Further, both CA isozymes were different when compar-
ing MET females to ES females where Car2 was lower by 
0.6-fold (1954 ± 76 vs 1167 ± 26 AU p ≤ 0.0001, Fig.  1F) 
while Car3 was higher by 2.2-fold during ES (1.3 ± 0.1 
vs 2.7 ± 0.5 AU, p = 0.03, Fig.  1G). The α-subunit of the 
NKA, ATP1a1, showed lower expression in ES females 
compared to MET females by 0.5-fold (0.76 ± 0.12 vs 
0.36 ± 0.075 AU, p = 0.04, Fig. 1H).

Western blots
Given that we identified differences in gene expression at 
the RT-qPCR level, we performed western blots to iden-
tify if the changes translate to the protein level (Fig. 2A). 
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It was found that total AQP1 was decreased in both MET 
(1.09 ± 0.68, p = 0.043) and ES (0.79 ± 0.30, p = 0.0082) 
females compared to males (2.00 ± 0.96) (Fig.  2B). We 
also identified that non-glycosylated AQP1 was reduced 
in MET (0.60 ± 0.33, p = 0.042) and ES (0.36 ± 0.12, 
p = 0.0013) females compared to males (1.00 ± 0.39) 
(Fig. 2C). In contrast, glycosylated AQP1 only decreased 
in ES (0.43 ± 0.17, p = 0.03) females compared to males 
(1.00 ± 0.59) (Fig.  2D). MET females (2.03 ± 1.03, 
p = 0.0007) had an increased non-glycosylated AQP1/
glycosylated AQP1 ratio compared to ES females 
(0.96 ± 0.16) (Fig. 2E). In addition, we found a reduction 
in CAII expression ES females (0.44 ± 0.38, p = 0.03) com-
pared to males (1.00 ± 0.58) (Fig. 2F). No significant dif-
ference in ATP1a1 expression was found. However, there 
was a trend to decrease of ATP1a1 expression between 
ES females (0.38 ± 0.32, p = 0.08) and males (1.00 ± 0.62) 
(Fig. 2G).

Correlation analysis
Serum hormone levels and gene expression
Gene expression and serum hormone analysis were 
performed in the same rats thereby allowing for cor-
relation analysis (Fig.  3). The females were analyzed 

as one group for the correlation analysis. Serum hor-
mone concentrations was assessed for: pregnenolone, 
progesterone, 11-deoxycorticosterone, corticosterone, 
17OH-pregnenolone, 17OH-progesterone, cortisone, 
dehydroepiandrosterone (DHEA), dihydrotestosterone 
(DHT), androstenedione, testosterone and 17ß-estra-
diol (Additional file  1: Figure S1). We performed tar-
geted correlation analysis on those genes that we found 
statistical difference between to all steroids analyzed 
(Fig.  1). In female rats gene expression of Car2 was 
positively correlated to serum level of progesterone 
(p = 0.02, r = 0.53, Fig. 3A) and the expression was also 
positively correlated to serum level of androstenedi-
one (p = 0.0015, r = 0.69, Fig.  3E). Gene expression of 
Slc12a2 (NKCC1) showed a moderate negative cor-
relation with serum level of progesterone (p = 0.015, 
r = -0.58, Fig.  3B). Further, gene expression of Slc4a5 
(NBCe2) was positively correlated to serum level 
of progesterone (p = 0.001, r = 0.69, Fig.  3C). Lastly, 
Atp1a1 was positively correlated to serum level of pro-
gesterone (p = 0.004, r = 0.64, Fig.  3D) and also posi-
tively correlated to the serum level of androstenedione 
in female rats (p = 0.005, r = 0.63, Fig. 3F). We found no 
significance with the other steroids assessed.

Fig. 1 Gene expression at choroid plexus. Gene expression in rat CP from males, metestrus (MET) females and estrus (ES) females. The gene 
expression includes, Aqp1, Aqp4, Slc4a5, Slc4a10, Slc12a2, Car2 and Car3, Atp1a1, Atp1b1, Fxyd1 and was determined by RT‑qPCR. The data is presented 
as AU, mean ± SD. For A, H and I Brown‑Forsyth and Welch ANOVA with post‑hoc Dunnets were performed. For B, C, D and F One‑way ANOVA awith 
post‑hoc Tukey’s test were performed. For E, G and J Kruskal–Wallis test with post‑hoc Dunnet’s was performed. The statistics were done on the AU 
values. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (n = 8–10)
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Discussion
Little is known about sex-specificities of CP which is the 
main tissue producing CSF. Therefore, this study aimed 
at resolving sex-differences in the expression of impor-
tant choroidal transport proteins. The current study 
demonstrated that there are sex-dependent differences 

in expression at CP in important transporters, channels 
and enzymes involved in CSF secretion when comparing 
male rats to age matched female rats during two different 
estrous cycle stages. Here we showed for the first-time 
significant differences in expression of Aqp1, Slc12a2 
(NKCC1), Car2, Car3 and α-subunit of NKA, Atp1a1, 

Fig. 2 Protein expression at choroid plexus. Western blots on rat CP from males, MET and ES females (A), where membranes are cut by molecular 
weight and the resultant images cropped to show representative bands. ATP1a1, lamin and AQP1 columns represent 1 set of gels ran in parallel 
and the same well number on each membrane. Lamin and CAII represent another set of gels ran in parallel and the same well number 
on a membrane. Expression of total AQP1 (B), non‑glycosylated AQP1 (C), glycosylated AQP1 (D), non‑glycosylated/glycosylated ratio (E), carbonic 
anhydrase 2 (CAII) (F) and ATP1a1 (G). One‑way ANOVA with post‑hoc Holm‑Sidak’s test for B, C and D. Kruskal–Wallis test with post‑hoc Dunn’s test 
for E, F and G. Data presented as mean ± SD. N = 8–10. *p < 0.05, **p < 0.01 and ***p < 0.001
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when comparing male rats to females in ES. The gene 
expression data of AQP1 and CAII was also confirmed by 
protein data. All these choroidal proteins are implicated 
in CSF secretion and highly expressed at CP. Further, 
we found that gene expression of some of CSF proteins 
investigated in this study were correlated to serum lev-
els of the steroids progesterone or androstenedione in the 
female rats, suggesting that hormonal levels may influ-
ence CP function and dynamics.

A growing body of research has shown sex differences 
in the prevalence and symptomatology of many CNS dis-
orders including CSF pathologies such as IIH. Although 
IIH is overrepresented in women, it has not been fully 
determined, whether IIH patients have increased CSF 
secretion, reduced CSF drainage or a combination of 
those. However, as IIH patients are mainly females of 
childbearing age, it is possible that steroid hormones have 
a pathogenic role in IIH. Therefore, it is of great impor-
tance to identify sex-related differences in order to under-
stand how this may contribute to disease presentation. In 

this study we selected to examine the gene expression in 
female rats during MET and ES. A limitation of the study 
is that pituitary drivers of sex hormones, LH or FSH were 
not assessed. We found no differences in gene expres-
sion between female rats in MET and males. Interest-
ingly, extensive differences in gene expression were found 
in ES female rats both compared to male but also MET 
females. In the expression of water channels involved in 
CSF secretion, we found lower expression of Aqp1 but 
not of Aqp4 in females during ES compared to males. 
The difference in gene expression of Aqp1 was confirmed 
by protein expression where the protein level of AQP1 
was lower in female ES compared to male. In support, it 
has been shown that there is gender specific expression 
of AQP1 in the rat nephron, where AQP1 protein and 
mRNA expression was higher in adult males compared 
to females [30]. We also compared ES females to MET 
females, where ES females had a tendency of lower AQP1 
in gene expression. Further, in another study it has been 
shown that expression and staining pattern of AQP7 and 

Fig. 3 Gene expression in correlation to hormones in the serum. Correlations between steroid hormones in rat serum and gene expression in rat 
CP. A correlation between Car2 and progesterone, B Slc12a2 and progesterone, C: Slc4a5 and progesterone, D Atp1a1 and progesterone, E Car2 
and androstenedione, F Atp1a1 and androstenedione. Spearman’s correlation coefficient for A, B, C, E and F. D was Pearson’s correlations
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9 are different during stages of mouse estrus cycle which 
emphasizes the importance of taken the estrous cycle in 
account as performed in the current study [25]. In con-
trast to these results, no differences in expression of 
AQP1, 2 and 4 in mice CP were identified between male 
and females in different stages of the estrous cycle [35]. 
However, the limitation of that study was that the protein 
levels were only evaluated by immunohistochemistry, 
which is not an optimal quantification method.

Over the recent years is has been demonstrated that 
co-transporters such as NKCC1 at CP contribute more to 
CSF secretion than the AQPs [13, 14]. Here we describe 
differences in gene expression in some of these impor-
tant ion-transporters involved in the CSF formation 
in female rats during ES compared to male and female 
rats in MET. NKCC1 is robustly expressed at the CP 
and localized in the luminal membrane facing the ven-
tricles, where it is thought to have an outward directed 
transport, and therefore acts as a key contributor to CSF 
secretion, as previously described in mice, rats and dogs 
[5, 17, 36, 37]. We found that NKCC1 displayed the high-
est degree of change by threefold increase in ES females 
compared to males. This suggests that female rats may 
have increased CSF secretion during ES however more 
research is needed to explore this. The observed differ-
ences of NKCC1 in this study needs to be evaluated by 
protein level and protein activity in future studies. For 
the other exchangers, we found that expression of NCBE 
was not different in any of the groups while the expres-
sion of NBCe2 was lower in ES females compared to 
MET females. Further, in expression of the three subunits 
of NKA we found that Atp1a1 expression was lower in ES 
females compared to males and MET females. The effect 
of the observed changes of the CP transporters needs to 
be further examined in order to understand how this will 
impact CSF and ICP dynamics. CA is an enzyme highly 
expressed at CP and involved in the regulation of CSF 
secretion by indirectly reducing cerebral water trans-
port. Therefore, CA inhibitors such as acetazolamide are 
used as first line pharmacological treatment for elevated 
ICP [38]. Here we demonstrated that gene and pro-
tein expression of Car2 was profoundly decreased while 
gene expression of Car3 was higher in ES compared to 
male and females in MET. It remains to be determined 
whether the expression of these transport proteins with 
different expression levels may be functionally different 
and physiologically relevant during disease stage. Further, 
the protein data revealed no differences in expression of 
these proteins between ES and MET females as observed 
in the gene expression data. This may be due difference 
cycle lengths (ES 24–48  h, MET 6-8  h) and the latency 
for protein turnover.

Altogether, the current work shows clear sex-differ-
ences in expression of choroidal proteins involved in 
CSF secretion dependent on the estrous cycle stage. Sex-
related specificities of CP has been suggested by cDNA 
microarrays studies with differences in CP transcriptome 
between female and male rats in pathways related to cir-
cadian rhythm signalling, metabolism, neurogenesis and 
stem cell differentiation [23]. In support, sex-related dif-
ferences in CSF protein composition have been shown 
[24]. However, a more recent transcriptomic study did 
not show any sex-related differences in all genes or for 
transporters/channels involved in CSF secretion [25] 
although with the limitation that the estrous cycle of the 
female rats were not determined which may explain the 
high overlay of genes in female and male rats. Further, 
gene expression may not mirror the quantitative expres-
sion at protein level or protein activity and a limitation 
with these studies is that protein expression was not 
assessed. Nevertheless, in the current study, we dem-
onstrated that there are sex-differences in expression 
of these transporters when taking the estrous cycle in 
account. This has been lacking in previous studies which 
demonstrated RNA transcripts at CP. Although the cur-
rent study demonstrated profound differences of several 
membrane transport proteins suggested to be involved in 
CSF secretion, their individual function or net effect on 
CSF secretion levels were not assessed. Our data reveals 
differences in various ion transporters and exchangers in 
the CP during the female cycle, however the impact on 
the CSF secretion rate cannot be determined. Thereby, it 
can only be speculated that female rats may have changed 
CSF secretion during ES however more research is 
needed to explore this. In support of this theory, a recent 
study demonstrated the CSF production in young female 
mice was 30% higher compared to young male mice 
[39]. Further, obese female rats have also been found to 
present with elevated CSF secretion compared to obese 
male rats [40]. Taken these data together with our study, 
we suggest that expression of certain CSF secretion 
transporters at CP is sex and cycle-dependent and may 
thereby affect CSF homeostasis. Future work on assessing 
the role of how CSF and ICP may vary with the female 
cycle is warranted.

It is not known how the expression of the sex steroid 
receptors vary with the cycle. In order to understand if 
circulating sex hormones may be correlated to the gene 
expression at CP, we measured the serum level of ster-
oid hormones in the same rats by LC–MS/MS. By this 
we found that expression of Car2 was positively corre-
lated to both progesterone and androstenedione levels. 
Androstenedione is an androgen, but with a much lower 
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affinity for the androgen receptor compared to testoster-
one. However, androstenedione can easily and rapidly be 
transformed into testosterone in a single enzymatic step 
by the 17β-hydroxysteroid dehydrogenase, which the 
female rat CP expresses [41]. Expression of NKCC1 in 
female rats during MET and ES was moderately inversely 
correlated to serum level of progesterone. Little is known 
about hormonal regulation of NKCC1 expression or 
activity. To our knowledge the correlation between pro-
gesterone and NKCC1 has not been showed before and 
the hormonal regulation on expression and activity is 
thereby unknown. Further, we found that progesterone 
also positively correlated to gene expression of NBCe2 
and Atp1a1. One older study showed that exposing rabbit 
CP to progesterone in combination with 17-β-estradiol 
reduced the activity of  Na+/K+-ATPase and other 
ATPases [42]. The subunit Atp1a1 also positively cor-
related to the serum level of androstenedione. Interest-
ingly, testosterone has been associated with an increased 
activity of NKA in cultured CP cells which associated 
with increased CAII and CAIII expression [43]. The data 
in the present study is based on correlation analysis and 
therefore the direct evidence of change in mRNA expres-
sion at CP cannot be concluded. Although this study 
supports the hypothesis that level of sex hormones may 
impact expression of various transporters at CP, futures 
studies investigating the direct impact of each hormone 
needs to be performed.

Although this works focus was on sex steroids, other 
steroids namely the corticosteroids have their receptors 
expressed at the CP [44, 45]. To assess the effects of glu-
cocorticoids and mineralocorticoids and their cognate 
receptors on the expression of genes at the CP, future 
chronotyping studies will be required due to the diurnal 
variation of corticosteroids.

Conclusions
Sex-related differences in brain pathophysiology involv-
ing CSF and CP still pose many unanswered questions 
complicating the understanding of pathophysiology 
and the treatment strategies. The current study demon-
strated profound sex-related differences in expression 
of key transporters/channels/enzymes involved in CSF 
secretion that were dependent on the estrous cycle. 
This study proposes for a hormonal regulation of the 
expression of CSF transporters which may have great 
importance in the understanding of CSF disorders. 
Further, the study suggests that future studies on CP 
physiology and related pathology should take the cycle 
determination of female rats in consideration.
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