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Machine learning and EEG can classify 
passive viewing of discrete categories of visual 
stimuli but not the observation of pain
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Abstract 

Previous studies have demonstrated the potential of machine learning (ML) in classifying physical pain from non-
pain states using electroencephalographic (EEG) data. However, the application of ML to EEG data to categorise 
the observation of pain versus non-pain images of human facial expressions or scenes depicting pain being inflicted 
has not been explored. The present study aimed to address this by training Random Forest (RF) models on cortical 
event-related potentials (ERPs) recorded while participants passively viewed faces displaying either pain or neutral 
expressions, as well as action scenes depicting pain or matched non-pain (neutral) scenarios. Ninety-one participants 
were recruited across three samples, which included a model development group (n = 40) and a cross-subject valida-
tion group (n = 51). Additionally, 25 participants from the model development group completed a second experi-
mental session, providing a within-subject temporal validation sample. The analysis of ERPs revealed an enhanced 
N170 component in response to faces compared to action scenes. Moreover, an increased late positive potential 
(LPP) was observed during the viewing of pain scenes compared to neutral scenes. Additionally, an enhanced P3 
response was found when participants viewed faces displaying pain expressions compared to neutral expressions. 
Subsequently, three RF models were developed to classify images into faces and scenes, neutral and pain scenes, 
and neutral and pain expressions. The RF model achieved classification accuracies of 75%, 64%, and 69% for cross-
validation, cross-subject, and within-subject classifications, respectively, along with reasonably calibrated predictions 
for the classification of face versus scene images. However, the RF model was unable to classify pain versus neutral 
stimuli above chance levels when presented with subsequent tasks involving images from either category. These 
results expand upon previous findings by externally validating the use of ML in classifying ERPs related to different 
categories of visual images, namely faces and scenes. The results also indicate the limitations of ML in distinguishing 
pain and non-pain connotations using ERP responses to the passive viewing of visually similar images.
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Introduction
Machine learning (ML) and EEG have demonstrated 
promise for predicting discrete categories of visual 
stimuli (e.g., objects, scenes, faces etc.) [1–7], subjec-
tive pain intensity in response to physical pain [8–10], 
and response to pharmaceutical intervention [11–13], 
to name but a few. Research from our group previously 
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demonstrated that high and low pain stimuli can be pre-
dicted with approximately 70% accuracy using time–fre-
quency analysis of EEG features distributed across the 
scalp [9]. However, the effectiveness of ML and EEG 
for the classification of human facial expressions and 
scenes depicting pain and non-pain conditions has yet 
to be explored. This is despite a wealth of research dem-
onstrating the importance of neurobiological empathic 
responses to observed pain, which has particular rel-
evance to clinical, physiological, and societal domains 
[14–17]. For example, elucidating the neurobiology of 
empathy is important for understanding the development 
of empathy and for clinical conditions where empathy is 
reduced or absent (e.g., autism) [18–20]. Moreover, from 
a societal perspective, understanding the neurobiology of 
empathy may support areas such as medical education 
[21]. Therefore, this study aimed to address this gap by 
developing ML models using single-trial EEG responses 
during the passive observation of both facial expres-
sions and action scenes depicting neutral and painful 
conditions.

Traditional ERP research studies exploring empathic 
responses to the observation of pain demonstrate differ-
ences in ERP amplitudes, which may enable accurate ML 
classification at the single-trial level. A meta-analysis of 
up to 36 studies demonstrated an enhanced P3 and late 
positive potential (LPP) during pain observation, with 
the maximal effect observed at central-parietal sites [22]. 
Previous research by our lab demonstrated that images 
depicting pain scenes elicited an enhanced LPP over 
central-parietal regions compared to situation-matched 
neutral images in both healthy people and a chronic pain 
population [23]. Therefore, single-trial EEG responses 
over central-parietal electrode sites may be an important 
candidate feature for the ML algorithm.

In addition to classifying EEG responses to images 
depicting neutral and pain conditions, we also aimed 
to externally validate ML for the classification of 
single-trial neural responses to broad categories of 
visual stimuli (faces versus scenes) regardless of the 
pain component, which to the best of our knowledge 
has yet to be attempted. Here, the N170 component 
may be the most informative feature for classification. 
The N170 component is an early negative waveform 
deflection which is maximally observed over occipito-
temporal regions between 140 and 200 ms after stimu-
lus onset, peaking at approximately 170  ms, which is 
enhanced during the observation of faces [24, 25]. The 
N170 is maximal when viewing faces and is attenuated 
or missing in response to other stimulus categories 
[25, 26]. The N170 has been reliably reproduced in sta-
tionary and mobile EEG experiments [24–30]. Addi-
tionally, the vertex positive potential (VPP), which is 

a large positive potential across frontal-central regions 
peaking between 140 and 180 ms, is observed after the 
presentation of a face stimulus [24, 31, 32]. Given the 
similarity in the characteristics of the N170 and VPP, 
the evidence suggests that both components originate 
from the same neural dipole [33, 34]. Therefore, neu-
ral responses located over occipitotemporal and fron-
tal-central regions may enable accurate classification 
of face versus scene images.

Indeed, previous research has successfully combined 
EEG and ML to classify neural responses to visual 
stimuli including faces, objects, and scenes. A support 
vector machine (SVM) trained on EEG components 
over occipital electrodes has successfully classified 
the presence of visual objects in 7 subjects; achieving 
a cross-validated accuracy and AUC of 87% and 0.7, 
respectively [1]. Additionally, research has demon-
strated that neural networks could successfully clas-
sify 40 image classes from the ImageNet database (e.g., 
animals, objects, food) with an average accuracy of 
90.16% using EEG recorded from 6 subjects [2]. Fur-
ther research exhibits comparable results in decod-
ing neural responses to objects, scenes, human and 
animal bodies and faces [3–6]. Finally, an attention-
based convolutional bidirectional long short-term 
memory network has been developed to classify EEG 
responses to familiar and unfamiliar faces [7]. Using 
time–frequency features from pre-frontal, frontal, 
and temporal regions, the authors classified famil-
iar and unfamiliar faces with an accuracy of 91.34%. 
Therefore, the literature suggests that EEG and ML 
can potentially be used to successfully decode brain 
responses to categories of visual stimuli.

Despite promising results, the field is not without 
significant limitations. ML research is often insuffi-
ciently validated, with only internal validation meth-
ods used to evaluate models. This potentially leads to 
inflated performance estimates, overfitting and un-
generalisable models [35–37]. Therefore, ML models 
should be evaluated using data independent of model 
development [38]. One such approach is external vali-
dation, whereby ML performance is assessed using 
novel data obtained from other cohorts, facilities, 
and repositories or collected from a different location 
(geographical), time (temporal) or experimental para-
digm [37, 39]. Research has demonstrated reduced 
performance on external validation datasets [9, 40, 
41]. Due to the omission of external validation, it is 
challenging to reasonably interpret the generalisabil-
ity of existing research, as the results are potentially 
inflated.

The present study aimed to externally validate ML 
and EEG for visual stimuli decoding both across and 
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within subjects for the first time. Firstly, we trained a 
Random Forest (RF) model on EEG features to clas-
sify data into either faces or scenes. Moreover, we 
developed two further RF models to classify EEG data 
into either neutral or pain classes for both scenes and 
faces respectively. All models were externally vali-
dated using two separate samples: cross-subject which 
consisted of a new cohort, and within-subject which 
consisted of participants from the model development 
sample who were recruited for a second experimen-
tal session at a later time (temporal validation). We 
hypothesised that the RF model would classify visual 
stimuli with an accuracy significantly greater than the 
chance level (≈ 50%) for each classification task: (1) 
faces—scenes, (2) scenes: neutral—pain, and (3) faces: 
neutral—pain for both external validation samples.

Methods
Participants
A total of three samples, consisting of 116 EEG ses-
sions, were collected for this study. Forty participants 
(22 female; 7 left-handed) aged between 18 and 52 
(Mean = 27.70  years, standard deviation {SD} = 7.43) 
years were recruited for sample one (model development 
sample/cross-validation). Sample two (cross-subject 
validation) consisted of 51 participants (34 female; 6 left-
handed) aged between 19 and 60 (Mean = 27.63  years, 
SD = 9.65), whilst sample three consisted of 25 partici-
pants aged between 21 and 53 (14 female; 4 left-handed; 
Mean = 28.96  years, SD = 8.01). Twenty-five participants 
from sample one completed a second experimental ses-
sion a minimum of 12  weeks after their first session 
(Mean = 108.68  days, SD = 10.92). This cohort repre-
sented a temporal within-subject validation sample (sam-
ple three) for the ML analysis. We aimed to recruit a 
large sample, particularly for external validation, to pro-
vide robust estimates of model generalisability, as small 
external validation datasets can also provide imprecise 
estimates of model discrimination and calibration [42]. 
Participants provided written informed consent before 
participation and all methods were conducted in compli-
ance with the Declaration of Helsinki. The study received 
ethical approval from the University of Liverpool Health 
and Life Sciences Research Ethics Committee. Eligi-
bility criteria included: at least 18  years old, normal, or 
corrected-to-normal vision, no acute pain at the time of 
participating, no history of chronic pain, and no neuro-
logical conditions. Participants were compensated with a 
total of £40 for time and travel expenses. The raw data is 
available on reasonable request.

Materials
Pain faces
In the present study, we employed a passive viewing 
paradigm where participants were required to observe a 
series of visual stimuli but were not required to respond. 
This differs from a free viewing task, as participants were 
requested to pay attention to the image, which imposes 
a task and is arguably not truly free viewing [43]. Here, a 
2 × 2 factorial design was used in this study: faces (expres-
sions) and scenes, each with two levels, namely neutral 
and pain. The neutral and pain faces were selected from 
the Delaware Pain Database [44]. The Delaware Pain 
Database is an image database that contains photographs 
of the faces of individuals who are displaying a painful 
expression (e.g., grimacing) and matched neutral con-
trols. We selected a total of 56 faces (28 painful and 28 
matched neutral images). The faces were selected using 
several criteria. Firstly, we aimed to broadly recreate the 
ethnicity and gender distribution of the UK to provide 
representative stimuli. A total of 22 white subjects (80%) 
consisting of 11 males and females, 3 Asian subjects 
(10%) including 2 males and 1 female and 3 black subjects 
(10%) consisting of 1 male and 2 females were selected, 
which broadly matched the racial distribution of the UK 
[45]. Within the individual categories (e.g., white males) 
the images with the highest pain rating were selected, 
providing pain was listed as the dominant emotion. The 
28 neutral images were selected as the matched version 
(e.g., same subject) of the pain expressions. Face images 
were approximately 1382 × 925 in size. Figure 1A demon-
strates an example of neutral and pain expressions.

Fig. 1 A Example of neutral and pain face stimuli from the Delaware 
Pain Database [44]. B Example neutral and pain scene stimuli
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Pain scenes
Additionally, still, photograph images of action scenes 
depicting pain or matched non-pain scenarios (hereinaf-
ter referred to as neutral or pain scenes) were employed 
in the present study. The pain scene images consisted 
of 28 images depicting either hands or feet in scenarios 
that elicit pain. For example, images of a knife cutting 
through bread in a way that would endanger the finger 
(e.g., placed under the knife). Twenty-eight matched neu-
tral scenes, which replicate the scene but did not dem-
onstrate pain, were also used. For example, the image 
depicted a knife cutting through bread without endan-
gering the finger (e.g., the finger not placed under the 
knife). The same distribution of ethnicities implemented 
in the facial expression images was applied to the pain 
scene images. The images were selected from a larger 
internal pool of photographs depending on their pain rat-
ing. A small pilot study was conducted (n = 5) to rate each 
of the images in terms of pain intensity. The images that 
elicited the highest average pain rating in the pilot study 
were selected for the final experiment. The images used 
in this study are similar to previous research [23, 46–49]. 
Pain scene images were 774 × 518 in size. Figure 1B dem-
onstrates examples of neutral and pain scene images used 
in this study.

Procedure
Participants attended the EEG laboratory at the Univer-
sity of Liverpool between June and October 2022. Follow-
ing the fitting of the EEG cap, participants were seated 
inside a Faraday cage 1  m away from a 23-inch 1080p 
LCD monitor. The experimenter verbally explained the 
passive viewing task and the participants’ questions were 
answered. During this time, participants were requested 
to pay attention to the images and minimise movement 
during trials. The experiment consisted of a total of 336 
trials, split into three blocks of 112 stimuli. Within each 
block, 28 stimuli for each of the four conditions were 
presented. Each block lasted 6 min and was separated by 
approximately 15-min periods. During the block inter-
vals, electrode impedances were checked, and additional 
saline solution was applied as required.

Each trial was initiated with a 2-s rest interval, where 
participants were shown a blank grey screen. Following 
the rest period, a colour photograph, that was randomly 
selected, was displayed for 1  s. Subsequently, the image 
disappeared, and the 2-s rest interval occurred before the 
presentation of the next image. This was repeated until all 
112 images had been presented.

Following the completion of all blocks, the EEG cap was 
removed, and a subjective rating block was completed. 
Here, participants were informed that they were required 
to rate their perceived pain intensity of the images on 

a 0–100 scale with 0 reflecting no pain and 100 reflect-
ing extreme pain. The rating scale included vertical bars 
denoting increments of 10. During the rating period, par-
ticipants were presented with an image positioned above 
the rating scale and were required to rate the image by 
clicking the scale with the mouse in their right hand. The 
presentation of the images was randomised, and for each 
image, an infinite response time was employed. Once the 
participant had successfully rated the image, the screen 
was cleared, and the next image and scale were presented 
100  ms later. Following this, participants completed the 
pain catastrophizing scale (PCS) [50] and were subse-
quently debriefed and compensated for their time and 
expenses.

EEG acquisition
Continuous EEG recordings were acquired using a 
129-channel EGI System (Electrical Geodesic Inc., EGI, 
now Magstim EGI, Eugene, Oregon, USA) and a sponge-
based Geodesic sensor net. The net was positioned with 
respect to three anatomical landmarks: two pre-auricular 
points and the nasion. Throughout the experiment, elec-
trode-to-skin impedances were maintained below 50 kΩ. 
A recording bandpass filter was applied between 0.001 
and 200 Hz and the sampling rate was set at 1000 Hz. Cz 
was used as the reference electrode.

EEG data analysis
The data were pre-processed using the Harvard Auto-
mated Processing Pipeline for Electroencephalography 
(HAPPE version 3) [51]. Firstly, low-pass and high-pass 
filters were applied to the data at 45 and 0.1 Hz, respec-
tively. Secondly, the data were downsampled to 500  Hz 
and re-referenced using the common average approach 
[52]. Moreover, bad channel detection and interpolation 
were performed, and data contaminated by artefacts (e.g., 
oculographic) underwent wavelet thresholding (soft mar-
gin) to separate artefact and neural data. The data were 
then segmented into epochs of − 200 ms to 800 ms rela-
tive to stimulus onset (500 total time points) and baseline 
corrected (− 200 ms to 0 ms). Automated epoch rejection 
was then performed based on segment amplitude and 
similarity criteria. The thresholds were set at minimum 
and maximum segment amplitude of −  150 and 150, 
respectively in line with HAPPE recommendations [51]. 
The number of trials (mean ± SD) retained after auto-
mated trial rejection was 60.18 ± 8.44 (72% of total tri-
als) for neutral scenes, 61.23 ± 6.19 (73%) for pain scenes, 
62.93 ± 7.87 (75%) for neutral faces, and 62.15 ± 6.90 
(74%) for pain faces, in sample one. In sample two, the 
mean number of trials remaining was 61.88 ± 5.14 (74%) 
for neutral scenes, 61.78 ± 6.22 (74%) for pain scenes, 
62.63 ± 4.81 (75%) for neutral faces, and 62.27 ± 5.19 
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(74%) for pain faces. Finally, for sample three, the remain-
ing number of trials was 62.76 ± 6.36 (75%) for neutral 
scenes, 60.20 ± 5.89 (72%) for pain scenes, 63.80 ± 5.97 
(76%) for neutral faces, and 64.08 ± 6.49 (76%) for pain 
faces. Following pre-processing, the ERPs were analysed 
in MATLAB 2020b (The MathWorks, Inc., Natick, Mas-
sachusetts, USA) and EEGLAB 2021.1 [53]. Multiple 
comparisons were accounted for using the false discov-
ery rate (FDR) method. A minimum window width of 
10 ms was implemented to assess significant differences 
between the ERP waveforms.

Machine learning procedure
Following EEG pre-processing, the data were prepared 
for ML analysis. Each of the datasets (model devel-
opment, cross-subject, and within-subject validation 
sample) were processed independently to prevent data 
leakage which could bias the external validation proce-
dure [54]. Candidate features were calculated from sin-
gle-trial ERP waveforms. A total of 18 candidate features, 
which primarily represented descriptive statistics of the 
ERP waveform, were calculated for each trial between 0 
and 800 ms relative to stimulus onset. The features con-
sisted of the mean, mode, median, minimum, maximum, 
standard deviation, root mean squared, variance, skew-
ness, kurtosis, absolute mean, Shannon entropy, log 
energy entropy, range, mean squared, number of peaks, 
number of troughs, and the ratio between peaks and 
troughs. The features calculated in this study are compa-
rable to previous research, both by our lab and external 
groups [9, 55–58]. The 18 features were calculated using 
MATLAB functions, where possible, and were computed 
for each of the 129 electrodes, resulting in 2322 candidate 
features.

Single-trial EEG is significantly impacted by noise and 
variability [59–61]. In line with our previous research, 
outlier feature values, defined as values beyond three 
median absolute deviations, were linearly interpolated. 
The interpolated values were calculated from neighbour-
ing non-outlier data points for each condition using the 
MATLAB function filloutliers and were implemented as 
outliers impair the ML performance [62]. Interpolation 
was selected over data removal to maximise the dataset, 
as smaller datasets are more prone to overfitting [36]. A 
total of 4.77 ± 0.49%, 5.16 ± 0.31%, and 4.74 ± 0.15% of the 
data were interpolated for the model development sam-
ple, cross-subject validation sample, and within-subject 
validation sample, respectively.

After outlier interpolation in MATLAB, all ML pro-
cessing and analysis were conducted using Python and 
Scikit-learn [63]. Here, the random seed was set to 123 
for all ML analyses. The features for each dataset were 
scaled to between 0 and 1 and univariate feature selection 

was conducted. All candidate features were ranked in 
terms of importance using F-tests and a custom sequen-
tial feature selection was implemented. Here, a baseline 
RF model, with no hyperparameter tuning, was devel-
oped with one feature initially. Features were sequentially 
added, up to a maximum of 100 features (to limit com-
putational complexity), to identify the optimal feature 
configuration. The optimal number of features for each 
classification task (scenes—faces; scenes: neutral—pain; 
and faces: neutral—pain) was defined as the baseline 
model that achieved the best cross-validation accuracy. 
Stratified k-fold validation (k = 10) was used as the cross-
validation procedure.

Following the identification of the optimal features, 
the final ML model was developed for each task. Here, a 
RF model was trained on the model development data-
set. Hyperparameter optimisation was achieved using 
random search, which searches within a range of upper 
and lower bounds for the optimal hyperparameter values 
for a user-specified number of iterations [64–66]. The 
external validation datasets did not inform model devel-
opment as this can lead to overfitting. Therefore, hyper-
parameter optimisation was only performed in relation 
to cross-validation performance. For training and cross-
validation, we evaluated model performance using strati-
fied k-fold validation (k = 10) with accuracy as the scoring 
function. A maximum of 5000 iterations was specified for 
hyperparameter tuning. Once the optimal hyperparam-
eters were identified, the model was refitted to the entire 
training dataset. This resulted in the final model that was 
evaluated using the external validation datasets.

Model evaluation: discrimination and calibration
The predictive capability of each model was assessed 
using several performance metrics for each of the vali-
dation sets (cross-validation and two external valida-
tion datasets). The primary discrimination metrics in 
this study were the model accuracy and area under the 
receiver operating characteristics curve (AUC). In addi-
tion, we also assessed model performance using alter-
native metrics including the Brier score, F1 score, 
precision, and recall. Overviews of these metrics have 
been reported elsewhere [8, 9, 67–69]. For the external 
validation datasets, we calculated model performance 
for each subject and averaged across the entire sam-
ple to achieve both individual subject and whole sample 
accuracies.

In addition to model discrimination performance, we 
also assessed calibration for models that exceed chance 
discrimination performance. Prediction algorithms can 
be subject to bias even when the models demonstrate 
excellent discrimination performance [70]. Consequently, 
model calibration, which evaluates the agreement 
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between the model’s predicted probability of an event 
compared to the reference or observed value, should be 
assessed [54, 69, 70]. We assessed model calibration using 
calibration curves for both the cross-subject and within-
subject validation sets, segmenting each dataset into 20 
bins (see [70]). Calibration curves display the predicted 
probability on the x-axis and the true probability on the 
y-axis. Perfect calibration is represented by a 45° line, 
whereby the predicted and observed probabilities are 
identical [9]. Calibration has been extensively reviewed 
elsewhere [70, 71]. Calibration assessment is only neces-
sary when the ML models demonstrate good discrimi-
nation ability, as models with poor performance do not 
require additional calibration assessment [69].

Statistical thresholding
Theoretically, the chance level for a binary classification 
task with infinite sample size is 50%. However, sample 
sizes are not infinite and are often small in neuroscience, 
resulting in variable chance levels. To quantitatively eval-
uate whether the ML model significantly outperformed 
the chance level for each subject, we implemented a 
statistical thresholding approach based on a binomial 
cumulative distribution method proposed by Combris-
son and Jerbi (2015). The statistical threshold to exceed 
the chance level can be calculated using the following 
approach that applies the binoinv MATLAB function:

where α is the significance level, n is the number of trials 
per participant, and c is the number of classes.

For a given participant with n = 200 and c = 2, the 
model accuracy must be above 56%, 58%, and 61% to be 
significant at the 0.05, 0.01, and 0.001 levels, respectively 
[72]. If the model accuracy exceeds the given threshold, 
the performance is significantly greater than the chance 
level. A minimum of 100 data samples is required to 
achieve comparable results to permutation testing [72]. 
For all classification attempts, all subjects had more 
than 100 trials meaning that the use of binomial testing 
is acceptable. In all classifications, we use a threshold 
of p = 0.05. The average chance level for cross-subject 

Statistical Threshold = binoinv

(

1− α, n,
1

c

)

∗

100

n

and within-subject predictions was 55.20 ± 0.20% and 
55.26 ± 0.24%, 57.34 ± 0.37% and 57.41 ± 0.39%, and 
57.39 ± 0.36% and 57.24 ± 0.38%, for faces—scenes, 
scenes: neutral—pain, and faces: neutral—pain classi-
fications, respectively. Finally, to test whether the aver-
age sample performance exceeded the average chance 
threshold for each sample and classification attempt, 
the individual subject accuracies and chance levels were 
compared using paired samples t-tests.

Results
Self‑report ratings
Descriptive statistics of the average self-report pain rat-
ings for each of the four image types across the three 
samples are presented in Table 1. A 2 × 2 repeated meas-
ures ANOVA was conducted using IBM SPSS 27 (IBM 
Corp., Armonk, New York, USA) to assess the differences 
between participant pain ratings for the different condi-
tions. The data from samples one (model development) 
and two (cross-subject validation) were combined for the 
analysis. There was a significant main effect of image type 
on the participant’s perceived pain intensity ratings (F 
(1,90) = 19.89, p < 0.001, ηp

2 = 0.18), with the action scene 
images being rated as more painful than faces. Moreo-
ver, there was a significant main effect of pain condition 
(F (1,90) = 1568.26, p < 0.001, ηp

2 = 0.95). Here, the pain 
condition images received significantly higher pain rat-
ings than the neutral condition images. Additionally, 
there was a significant interaction between image type 
and pain condition (F (1,90) = 22.10, p < 0.001, ηp

2 = 0.20). 
Post hoc paired samples t-tests demonstrated that pain 
ratings were significantly higher in the pain scenes con-
dition when compared to the pain faces condition (t 
(90) = 4.89, p < 0.001, d = 0.51). There was no significant 
difference between pain ratings for the neutral faces or 
scenes conditions (t (90) = 0.68, p = 0.497, d = 0.07). Fur-
thermore, the pain scene images had significantly higher 
pain ratings when compared to the neutral scene images 
(t (90) = 38.72, p < 0.001, d = 4.06). Finally, the pain face 
images received significantly higher pain ratings when 
compared to the neutral face images (t (90) = 31.09, 
p < 0.001, d = 3.26).

Table 1 Mean ± SD of perceived pain intensity for each condition and sample

Sample Neutral scenes Neutral faces Pain scenes Pain faces

Development Sample 5.96 ± 8.32 4.87 ± 8.35 61.74 ± 14.04 52.63 ± 18.19

Cross-subject Validation Sample 3.80 ± 3.98 3.93 ± 5.10 63.55 ± 14.49 57.28 ± 14.80

Within-subject Validation Sample 4.87 ± 8.31 4.56 ± 8.91 61.59 ± 10.69 58.38 ± 14.84
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ERP analyses
Figure  2A–C show the averaged ERP waveform from 
select electrodes and the scalp isopotential maps for 
each condition and comparison (scenes—faces, scenes: 
neutral—pain, faces: neutral—pain). A significantly 
stronger negative deflection in response to face images 
compared to scene images was observed over bilateral 
occipital-temporal electrodes during the N170 time win-
dow (142–214 ms; peak 170 ms; p < 0.00001). Regarding 
neutral and pain scene images, a significantly stronger 
positive deflection was observed in a cluster of central-
parietal electrodes during the LPP (524–796 ms; p < 0.05), 
peaking at 578 ms. Similarly, for neutral and pain faces, 

a significantly enhanced P3 potential (270–348 ms; peak 
318  ms; p < 0.05) was observed over central-parietal 
electrodes in the pain condition relative to the neutral 
condition.

Machine learning analyses
Following ERP analyses, the ML analysis was conducted 
for each of the three classification attempts. From the fea-
ture selection procedure, a total of 89, 94, and 90 features 
were deemed optimal for each classification task, respec-
tively. The scalp locations of the optimal features for each 
of the different classification paradigms are presented in 
Fig.  3. Additionally, the number of trials/observations 

Fig. 2 Average ERP waveforms and scalp isopotential maps for each comparison from the unique 91 subjects within samples one and two. A Brain 
responses to scene and face images. Left: Average ERP waveforms from electrodes 58 (P7) and 96 (P8) for each condition. Right: Average scalp 
potential for each condition between 150 and 190 ms. B Brain responses to neutral and pain scenes. Left: Average ERP waveforms from electrodes 
Cz, 55, and 62 (Pz). Right: Average scalp potential between 524 and 674 ms for each condition. (C) Brain responses to neutral and pain face images. 
Left: Average ERP waveforms at electrodes Cz, 55, and 62 (Pz). Right: Average scalp potential between 270 and 348 ms for each condition. White 
circles indicate electrode locations of the average ERP waveforms. Light grey bars denote significant differences at p < .05. Dark grey bars represent 
significant differences at p < .00001
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used in the ML analysis for each condition and each sam-
ple is presented in Table 2.

Faces—scenes classification
The average of each sample’s classification performance 
metrics and optimal hyperparameters for the classifi-
cation of face versus scene photographs are reported in 
Table  3. Additionally, Fig.  4 shows the accuracies and 
chance thresholds for individual subjects in the cross-
subject and within-subject validation samples. The 
average sample results demonstrate that the RF model 

achieved an accuracy (± SD) of 0.7456 (0.0459), 0.6415 
(0.0634), and 0.6880 (0.0792) on the cross-validation 
and two external validation sets, respectively. Moreover, 
the model achieved an average AUC of 0.8189 (0.0406) 
on cross-validation, 0.7088 (0.0753) on cross-subject 
validation, and 0.7558 (0.0922) on within-subject vali-
dation. Paired samples t-tests demonstrated that the 
average sample accuracy was significantly greater than 
chance levels for the cross-subject sample (t (50) = 10.08, 
p < 0.001, d = 1.41) and the within-subject sample (t 
(24) = 8.46, p < 0.001, d = 1.69).

Regarding the individual subject classification per-
formance, the results demonstrate that the model accu-
racy for 47 of 51 subjects was significantly greater than 
the chance level (p < 0.05) for the cross-subject valida-
tion sample. Moreover, for all participants (25/25) in the 
within-subject sample, the model achieved accuracies 
significantly greater than the chance levels.

Finally, we also assessed model calibration for the two 
external validation datasets. The calibration curves for 
both validation stages are presented in Fig.  5. To inter-
pret the plots, if the model line falls above the reference 
line it is indicative of underestimating the probability of 
the outcome, whilst a line below the reference suggests 

Fig. 3 Scalp locations of the important features determined during feature selection and model development for each classification task: scenes—
faces (A), scenes: neutral—pain (B), and faces: neutral—pain (C)

Table 2 The number of observations/trials per condition and 
sample used in the ML analysis

Sample Scenes Faces

Neutral Pain Neutral Pain Total

Development/Cross-
validation (n = 40)

2407 2449 2517 2486 9859

Cross-subject (n = 51) 3156 3151 3194 3176 12,677

Within-subject (n = 25) 1569 1505 1595 1602 6271

Total 7132 7105 7306 7264 28,807

Table 3 Mean sample performance metrics for scenes—faces classification

Optimal hyperparameters: Number of estimators = 766, Maximum depth = 53, Minimum samples to split = 9, Minimum samples at leaf = 2, Maximum features = sqrt, 
Bootstrap = False

Metric Cross validation Cross‑subject validation Within‑subject validation

Mean SD Mean SD Mean SD

Accuracy 0.7456 0.0459 0.6415 0.0634 0.6880 0.0792

AUC 0.8189 0.0406 0.7088 0.0753 0.7558 0.0922

Brier Score 0.1707 0.0164 0.2152 0.0253 0.1970 0.0358

F1 Score 0.7854 0.0299 0.6972 0.0460 0.7388 0.0557

Precision 0.6924 0.0495 0.6129 0.0583 0.6597 0.0959

Recall 0.9111 0.0240 0.8207 0.0890 0.8560 0.0802
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the model is overestimating the probability of the event 
[9, 70]. The RF model for the faces versus scenes classifi-
cation task generally demonstrates reasonable calibration 
for both cross-subject and within-subject datasets. The 
calibration curves follow the expected trend. Overall, the 
model is reasonably well-calibrated for both cross-sub-
ject and within-subject predictions.

Scenes: neutral—pain classification
The average classification performance and optimal 
hyperparameters for the neutral versus pain scenes clas-
sification are reported in Table  4. The average accuracy 
(SD) was 0.8038 (0.0208), 0.2837 (0.0358), and 0.5065 
(0.0504) for cross-validation, cross-subject validation, 
and within-subject validation, respectively. The AUCs 

Fig. 4 Accuracies for each individual participant for the scenes—faces classification. (A) Cross-subject validation dataset. (B) Within-subject 
validation dataset. The black lines denote the significance threshold for chance classification performance at p = .05
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produced a similar trend, with the evaluation proce-
dure demonstrating an AUC of 0.8348 (0.0234), 0.2747 
(0.0361), and 0.5123 (0.0518) for the three validation 
stages. Paired samples t-tests demonstrate that both 
the cross-subject (t (50) = 57.15, p < 0.001, d = 8.00) and 
within-subject (t (24) = 6.67, p < 0.001, d = 1.33) perfor-
mance is significantly lower than the chance threshold. 
Regarding individual subject performance, the classifi-
cation accuracy was less than the chance level for all 51 
participants of the cross-subject sample. For the within-
subject sample, only 2 of the 25 subjects recorded an 
accuracy significantly greater than the chance level. The 
results for individual subjects are reported in Fig.  6. 
Finally, as the models do not outperform chance levels 
for discrimination, we do not assess calibration.

Faces: neutral—pain classification
Finally, the average classification metrics and hyperpa-
rameters for the neural and pain faces classification are 
reported in Table  5. The results demonstrated that the 
RF model achieved an average accuracy (SD) of 0.6132 
(0.0300), 0.5473 (0.0501), and 0.5076 (0.0383) for the 
cross-validation, cross-subject, and within-subject vali-
dation samples, respectively. In terms of AUC, the cross-
validation AUC was 0.6717 (0.0396), the cross-subject 
AUC was 0.5629 (0.0667), and the within-subject AUC 
was 0.5241 (0.0557). Paired samples t-test indicated that 
the average sample accuracy was significantly lower 
than the chance threshold  for the cross-subject valida-
tion sample (t (50) = 3.82, p < 0.001, d = 0.53) and the 
within-subject sample (t (24) = 8.57, p < 0.001, d = 1.71). 
The individual subject accuracies for both the cross and 
within-subject samples are reported in Fig.  6. Sixteen 
participants from the cross-subject sample and 2 par-
ticipants from the within-subject sample achieved clas-
sification accuracies significantly greater than chance. As 
the model performance did not significantly exceed the 
chance threshold, we do not assess model calibration.

Exploratory analysis
As the RF model was unable to significantly exceed the 
chance thresholds for both neutral and pain scenes and 
faces classification, we performed exploratory analyses 
to assess whether a different number of features could 
improve the classification performance on the external 
validation datasets. To assess this, we developed and 
evaluated 100 RF models for each classification attempt, 
sequentially adding features on each iteration. We ini-
tially trained the model with 1 feature and progressed to 
a maximum of 100 features. The model was then assessed 
on both validation datasets. The RF was trained using the 
same procedure as the other models developed in this 
study, but the number of iterations of hyperparameter 
optimisation was capped at 500 to reduce computation 
complexity. The mean, standard deviation, minimum, 

Fig. 5 Calibration curves for both cross-subject and within-subject 
validation datasets for the scenes—faces classification task. The black 
dotted line (45°) represents perfect calibration

Table 4 Mean sample performance metrics for neutral—pain scenes classification

Optimal hyperparameters: Number of estimators = 735, Maximum depth = 46, Minimum samples to split = 28, Minimum samples at leaf = 17, Maximum 
features = sqrt, Bootstrap = False

Metric Cross validation Cross‑subject validation Within‑subject validation

Mean SD Mean SD Mean SD

Accuracy 0.8038 0.0208 0.2837 0.0358 0.5065 0.0504

AUC 0.8348 0.0234 0.2747 0.0361 0.5123 0.0518

Brier Score 0.1480 0.0093 0.3966 0.0232 0.3044 0.0257

F1 Score 0.8344 0.0151 0.3866 0.0423 0.4798 0.0554

Precision 0.7277 0.0231 0.3379 0.0340 0.4960 0.0473

Recall 0.9788 0.0204 0.4553 0.0635 0.4682 0.0758
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and maximum values for each of the classification tasks 
that did not exceed chance performance (scenes: neu-
tral—pain and faces: neutral—pain) are reported in 
Table  6. The results of the exploratory analysis demon-
strated comparable results to the original models devel-
oped. Minor performance improvements were observed, 
however, the model accuracy for both external validation 
sets remain around the chance classification level.

Discussion
We aimed to externally validate and classify single-trial 
EEG data elicited in response to visual stimuli using ML. 
Our results demonstrated that the RF model could clas-
sify images of scenes and faces with above-chance clas-
sification performance for all samples. However, the ML 
model could not discriminate between neutral and pain 
depictions of faces or scenes, achieving accuracies com-
parable to the chance classification rate, or lower. The 

Fig. 6 Individual subject accuracies for both cross-subject (top panels) and within-subject (bottom panels) for both scenes: neutral—pain (left 
panels) and faces: neutral—pain (right panels). The black lines denote the significance threshold for above chance classification performance 
at p = .05

Table 5 Mean sample performance metrics for neutral—pain faces classification

Optimal hyperparameters: Number of estimators = 161, Maximum depth = 27, Minimum samples to split = 2, Minimum samples at leaf = 4, Maximum features = log2, 
Bootstrap = False

Metric Cross validation Cross‑subject validation Within‑subject validation

Mean SD Mean SD Mean SD

Accuracy 0.6132 0.0300 0.5473 0.0501 0.5076 0.0383

AUC 0.6717 0.0396 0.5629 0.0667 0.5241 0.0557

Brier Score 0.2268 0.0073 0.2523 0.0155 0.2594 0.0108

F1 Score 0.5944 0.0505 0.5046 0.1053 0.3942 0.1003

Precision 0.6216 0.0353 0.5585 0.0720 0.5182 0.0834

Recall 0.5788 0.0930 0.4932 0.1804 0.3355 0.1200
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results support our first hypothesis that the RF model 
would outperform the chance level for the scenes ver-
sus faces classification task. However, the remaining two 
hypotheses that the RF model would outperform chance 
for both cross-subject and within-subject samples on 
both the neutral and pain conditions for face and scene 
images were not supported as the model performance 
was significantly lower than chance on all classification 
attempts. Consequently, the results suggest that large 
broad category differences (e.g., faces—scenes) are suf-
ficient to achieve above-chance classification perfor-
mance using external single-trial EEG data. However, 
more nuanced differences, such as those observed in the 
neutral–pain classifications, cannot be used to accurately 
discriminate classes with novel data using the current 
paradigm.

Our ERP analysis demonstrated an enhanced N170 
over bilateral occipital-temporal electrodes in response 
to face images when compared to scenes, which has been 
reliably demonstrated previously [24–30]. Moreover, an 
increased LPP over a cluster of central-parietal electrodes 
was identified in the pain scene images compared to the 
neutral condition. Finally, an increased P3 over central-
parietal electrodes was observed in response to pain faces 
compared to neutral expressions. The ERPs elicited in 
response to the empathic pain processing are also con-
sistent with previous research [22, 23]. Meta-analyses of 
the ERP components observed during the empathic pro-
cessing of painful stimuli demonstrated a positive shift in 
both the P3 and LPP components during the observation 
of painful stimuli, with the effect maximally observed 
over the central-parietal region [22]. Therefore, our ERP 
analysis validates the data quality and experimental para-
digm and replicates the effects previously reported in a 
comparatively large sample of healthy participants.

The findings from this study are comparable and build 
upon the findings of previous research which demon-
strated that discrete categories of visual stimuli could 
be accurately classified by ML and EEG. We successfully 
classified images into either faces or scenes, using fea-
tures predominately located across frontal-central and 
occipitotemporal regions, which are active during the 
observation of faces (e.g., N170 and VPP) [24, 25, 31, 
32]. Previous research has successfully classified neural 
responses to visual stimuli including faces, objects, and 
scenes [1, 3–7]. The present study extends the previous 
research by externally validating ML and EEG for image 
classification for both cross and within-subject predic-
tion tasks using a large sample size. Much of the existing 
literature consisted of small samples (e.g., ≤ 10 subjects) 
[1–6], which are at higher risk of overfitting, resulting in 
potentially biased results [36, 73]. Furthermore, previous 
research did not rigorously assess model performance 
using external validation, which further increases the risk 
of poor generalisability [74]. Therefore, the performance 
and utility of previous models should be interpreted with 
caution. In addition to generalising to external data, our 
classification of scenes and faces demonstrated well-cal-
ibrated estimates, which provides further evidence of an 
effective prediction model [70, 71]. Calibration is often 
omitted in prediction modelling research, but it is essen-
tial to evaluating model performance [8, 75]. Conse-
quently, our research provides methodologically superior 
estimates of the effectiveness of ML and EEG for classify-
ing visual stimuli during passive viewing. To our knowl-
edge, we are the first to externally validate ML models for 
EEG visual task decoding, providing robust estimates of 
model discrimination and calibration, and allowing for 
the interpretation of model generalisability.

The current study demonstrated that ML and EEG 
were unable to accurately classify neutral or pain faces 
or scenes. We believe that the low signal-to-noise ratio 
of EEG and the use of a passive task may have contrib-
uted to poor classification performance. Firstly, EEG 
has a low signal-to-noise ratio which may have resulted 
in poor discriminative ability for the neutral and pain 
stimuli classifications [76]. The N170 component offers a 
distinguishing characteristic between images of face and 
non-face classes. However, the ERP waveforms for neu-
tral and pain images in either face or scene conditions are 
similar in their spatio-temporal profile, with differences 
mainly implicated as enhanced or augmented component 
fluctuations [22, 23]. Therefore, we can speculate that the 
differences at the single-trial level may be attenuated by 
noise and not detectable. Indeed, ML-EEG research often 
implements spatial filters to improve the signal-to-noise 
ratio and classification performance [77, 78]. However, 

Table 6 Exploratory analysis results (accuracy) for feature 
combinations (1–100)

Classification Sample Mean SD Minimum Maximum

Scenes Cross-valida-
tion

0.7048 0.1155 0.5282 0.8186

Cross-
subject

0.3968 0.1226 0.2689 0.5362

Within-
subject

0.5063 0.0058 0.4889 0.5218

Faces Cross-valida-
tion

0.5978 0.0014 0.5359 0.6128

Cross-
subject

0.5435 0.0063 0.5148 0.5540

Within-
subject

0.5166 0.0068 0.4952 0.5364
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we opted against spatial filtering as it has a high risk of 
overfitting [77, 79]. Alternatively, the improved signal-
to-noise ratio of magnetencephalography may allow for 
improved classification performance [80]. Moreover, the 
use of a passive viewing paradigm may have contributed 
to the classification performance. Research has demon-
strated that passive viewing tasks result in reduced P300 
amplitudes when compared to active viewing [81], whilst 
other component amplitudes (e.g., LPP) are associated 
with, and altered by, attention and engagement [82–84]. 
Therefore, any further attenuation of ERPs arising from 
passive viewing may have hindered the ML algorithm’s 
ability to detect patterns. Consequently, nuanced differ-
ences (such as those elicited due to empathic responses 
to pain) may not enable accurate classification on the 
single-trial level during passive viewing. It is possible 
that active viewing tasks (e.g., requiring image classifica-
tion performed by the viewer) may improve EEG signal 
and consequently ML performance. However, requiring 
input from the subject raises questions about the use-
fulness of such brain decoding tools, which should pref-
erably allow inferences on behaviour without specific 
behavioural requirements. Additionally, active viewing 
may introduce additional confounds, leading to spurious 
results. Research has demonstrated that stimulus proper-
ties could be decoded solely using eye movements in an 
active viewing task, which was not possible during pas-
sive viewing within the same sample [85]. Whilst the 
impact of active viewing on EEG-ML classification sys-
tems should be investigated, it is important to note that, 
for the method to be genuinely useful and offer novel 
insight, it should preferably be able to accurately classify 
responses during passive viewing. Overall, the inability 
of the ML algorithm to classify neutral and pain images 
likely stems from poor signal-to-noise ratio and attenu-
ated ERP responses.

Our results highlight the importance of external valida-
tion in ML research. Without performing robust, external 
validation, the generalisability of the ML model cannot 
be effectively assessed as the results may stem from over-
fitting [35–37]. Our cross-validation analysis of the pain 
scenes classification appears promising, with the model 
achieving an accuracy of approximately 80%. However, by 
implementing external validation, it was evident that the 
model was overfitting, achieving an accuracy below the 
chance level (28%) for the cross-subject dataset and com-
parable to chance (51%) for the within-subject validation. 
Therefore, through the external validation protocol, we 
were able to identify a model with poor generalisability, 
which may have otherwise been reported as an impor-
tant finding. Indeed, we are not the first to demonstrate 
reduced performance when using an external validation 
[9, 40, 41], which is a significant, but often overlooked 

consideration when designing applied ML projects. 
Much of the prediction modelling research (regardless 
of research domain) does not assess model performance 
using external validation (e.g., only 5% of prediction 
modelling articles on PubMed report external valida-
tion in the title or abstract) [86]. Caution is advised when 
reporting or interpreting past ML-EEG results which 
have only been assessed using internal methods such as 
cross-validation, as the models are prone to overfitting, 
resulting in inflated, un-generalisable performance met-
rics [35, 37, 41]. Overall, our study highlights the impor-
tance of robust evaluation procedures when using ML, to 
minimise the risk of a new replication crisis [87].

The present study has several limitations. Firstly, we 
used a passive viewing experimental paradigm, which 
may have resulted in attenuated ERP responses [81]. 
Whilst we observed significant differences in both the 
P3 and LPP components in response to neutral and pain 
images, the differences between the conditions on a sin-
gle trial level may have not been preserved due to the 
reduced neural responses associated with passive view-
ing, the low signal-to-noise ratio, and single-trial variabil-
ity which may have contributed to poor ML performance 
[88]. Additionally, informal feedback from participants 
indicated that the passive viewing task was perceived 
as ‘boring’, which may have reduced attention, further 
impacting the neural responses [82–84]. Therefore, pas-
sive viewing may not be appropriate to elicit adequate 
responses that are detectable using ML at the single 
trial level using the approach outlined in the present 
study. Future research should implement active viewing 
paradigms and assess ML performance to build on our 
findings. For example, a two-alternative forced choice 
paradigm whereby participants are required to determine 
the presence or absence of pain may be more suitable 
for ML classification than passive viewing tasks. Similar 
forced choice tasks within pain empathy research have 
been widely reported [22]. Secondly, whilst the images 
in the study were similar to previous research [23, 46, 48, 
49, 89], they may not be extreme enough to be detect-
able at the single trial level. Future research may wish to 
explore more intense pain imagery, such as those depict-
ing injury [90], which may elicit larger ERP and behav-
ioural responses. Additionally, the two stimuli categories 
used in this study (faces and scenes) were not matched 
for all physical properties (e.g., luminance), which may 
have confounded the EEG and impacted the classifica-
tion. Research has demonstrated that properties such as 
brightness can alter EEG responses [91]. Therefore, we 
cannot entirely rule out the notion that confounds such 
as the physical properties of the image contributed to the 
classification performance. Moreover, we did not record 
the racial background of the participants in this study. 
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Research has shown that neural responses during pain 
observation are attenuated when viewing individuals of 
a different race [92]. Therefore, collecting and reporting 
the racial background of the subjects in this study could 
have provided important additional insight. Finally, the 
current study only recorded neural responses. Future 
research should aim to record composite measures (e.g., 
galvanic skin response) to supplement the EEG, which 
may improve classification performance.

The current study has important significance in the 
research field. Specifically, we provide the most robust 
estimates of EEG-ML visual stimuli decoding due to the 
extensive external validation procedure. We identified 
a potential limit of ML-EEG techniques, as ML models 
were unable to accurately classify pain observation above 
chance levels. However, assuming model performance 
can be improved, developing an empathy classification 
tool has important applications in healthcare, such as a 
supplementary tool for empathy training for healthcare 
workers [93]. However, performance improvements are 
imperative before such applications are considered. Cur-
rently, we can reasonably predict whether an individual 
was observing a face or a scene on external data, which 
represents an important knowledge contribution. How-
ever, the criteria typically applied to clinical contexts 
suggest that models that demonstrate an AUC less than 
or equal to 0.75 are not deemed practically useful [94]. 
Given that most of the AUCs in this study do not exceed 
this threshold, we recommend that improved model 
performance is pursued to increase the practical signifi-
cance of the results, with a particular focus on empathic 
response prediction.

To the best of our knowledge, this is the first study to 
externally validate ML and EEG for the classification of 
various classes of visual stimuli including pain or neutral 
facial expressions and scenes with pain being inflicted on 
another person, or without pain. Our results demonstrate 
that ML and EEG can be used to decode neural responses 
and successfully classify face versus scene images with 
better-than-chance accuracy. However, the ML models 
were unable to discriminate between neutral and painful 
depictions of either face or scene images. Additionally, 
the ML result questions the suitability of passive viewing 
tasks for brain-based decoding algorithms. Overall, the 
study demonstrates promising results for decoding dis-
crete categories of visual stimuli but is unable to identify 
the observation of pain using single-trial ERP responses. 
Finally, our results reiterate the importance of robust, 
external validation procedures to sufficiently evaluate 
ML-EEG performance; without which may lead to a new 
wave of impressive, but not replicable, findings.
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