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Abstract 

Background The multicomponent drug Neurexan (Nx4) was shown to reduce the neural stress network activation. 
We now investigated its effects on stress‑induced resting state functional connectivity (RSFC) in dependence of trait 
anxiety (TA), an acknowledged vulnerability factor for stress‑induced psychopathologies.

Methods Nx4 was tested in a randomized placebo‑controlled crossover trial. Resting state fMRI scans were per‑
formed before and after a psychosocial stress task and exploratively analyzed for amygdala centered RSFC. Effects of 
Nx4 on stress‑induced RSFC changes were evaluated and correlated to TA levels. A subgroup analysis based on TA 
scores was performed.

Results Multiple linear regression analysis revealed a significant correlation between TA and Nx4 effect on stress‑
induced RSFC changes between right amygdala and pregenual anterior cingulate cortex (pgACC) and ventro‑medial 
prefrontal cortex (vmPFC). For participants with above average TA, a significant amelioration of the stress‑induced 
RSFC changes was observed.

Conclusions The data add evidence to the hypothesis that Nx4’s clinical efficacy is based on a dampened activation 
of the neural stress network, with a greater neural response in subjects with anxious personality traits. Further studies 
assessing clinically relevant outcome measures in parallel to fMRI are encouraged to evaluate the real‑world benefit of 
Nx4.
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Background
Trait anxiety shapes the stress response
Psychosocial stress can generate temporary discomfort 
and long-term health consequences [1, 2]. The subjective 
experience of stress, as well as the response to stress is 
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different in every individual. Several studies have inves-
tigated personality traits as important components that 
determine how individuals approach and cope with stress 
and as important vulnerability factors for stress-induced 
psychopathologies [3–6]. Trait Anxiety (TA), defined as 
the tendency of individuals to experience frequent and 
high-intensity anxiety and worry in the face of stress-
ful situations [7], is one of the most relevant personality 
traits that shape the response to a wide variety of stress-
ors [8]. TA plays a significant role in interindividual dif-
ferences in stress vulnerability. Particularly, high TA 
favors a more reactive physiological stress response [9] 
instead of actively coping with stress. A strong relation-
ship between TA and day-to-day stress responsiveness in 
terms of subjective, cognitive, behavioral, and physiologi-
cal responses to social stress has recently been postulated 
[10].

The amygdala plays an important role in psychosocial 
stress and anxiety
For the neural basis of stress and anxiety, it has been 
demonstrated extensively that specific areas in the brain 
are involved in both stress and anxiety processes, includ-
ing the amygdala, prefrontal cortex, cingulate cortex, 
hypothalamus and brainstem nuclei [11–13]. It is well 
known that the amygdala and its widespread cortical and 
subcortical connections play an important role in psy-
chosocial stress and anxiety. The amygdala is associated 
with emotional and social processing [14–16], and with 
the initiation of physiological responses to fear and stress, 
including activation of the sympathetic nervous system 
and the hypothalamic–pituitary–adrenal (HPA) axis [17–
19]. Several studies in healthy cohorts have demonstrated 
a relationship between high TA and amygdala dysregula-
tion during the processing of aversive and neutral stimuli 
or negative emotion processing (angry faces), indicating 
an increased amygdala activation in anxiety-prone sub-
jects [20–23].

Stress induces changes in resting state functional 
connectivity of the amygdala
Even in the resting state (RS) of the brain, in the absence 
of an externally prompted task, previously perceived 
stress and anxiety affect the intrinsic activity of the amyg-
dala and its functional connectivity (FC). Studies that 
investigated spontaneous brain activity at rest, imme-
diately after experimental stress induction, found that 
the organization of the amygdala’s FC network at rest is 
perturbed by acute stress and during affective recovery 
[13, 24–27]. Similarly, aberrant amygdala resting-state 
functional connectivity (RSFC) was found in patients 
with Generalized Anxiety Disorder [28], and other stress-
related psychiatric conditions like Major Depressive 

Disorder [29–31], Post-Traumatic Stress Disorder [32–
35] and anxiety disorders [33, 36].

Nx4 showed stress‑relieving effects on a behavioral 
and on a neural level
Nx4 (Neurexan; Heel GmbH, Baden-Baden, Germany) is 
a natural medicinal product composed of herbal extracts 
of oat, coffee, passionflower, and a mineral salt at low, 
ponderable concentrations. Stress-relieving effects of 
Nx4 were observed in two observational studies for the 
stress-related conditions insomnia [37] and nervous rest-
lessness [38]. In a randomized controlled trial in healthy 
subjects, Nx4 modulated the peripheral physiological 
stress response to an acute laboratory stress task, par-
ticularly by reducing salivary cortisol and plasma adrena-
line release [39]. Recent analyses of the NEURIM study 
revealed that Nx4 ameliorated stress induced changes of 
heart rate variability and alpha and theta electroencepha-
lography (EEG) oscillations [40], reduced the suscepti-
bility to distraction in attention modulation task [41], 
reduced the amygdala activation in response to negative 
emotional stimuli [42], attenuated the activation of the 
anterior cingulate cortex in response to psychosocial 
stress induction [43], modulated task free RSFC of amyg-
dala [44], and improved vigilance regulation in RS after 
stress induction [45].

Objective of this study: effect of Nx4 on amygdala RSFC 
after stress induction is a function of TA
The NEURIM trial exploratively assessed the effect of 
Nx4 on the stress response by various outcome measures, 
i.e. functional magnetic resonance imaging (fMRI), EEG, 
blood and saliva stress biomarkers, and patient-reported 
outcomes. In the analysis described in this manuscript, 
we investigated the effect of TA on the functional net-
work of the amygdala at rest after a single dose of Nx4 fol-
lowed by stress induction. Given the previously described 
effects of Nx4, the central role of the amygdala in stress 
response, and the role of TA as a vulnerability factor for 
stress related symptoms, we hypothesized that the effect 
of Nx4 on stress-induced changes of the amygdala RSFC 
is correlated on the individual TA scores of the study 
participants. Based on this correlation, we hypothesized 
further that Nx4 significantly reduces stress-induced 
changes of the amygdala RSFC in a subgroup of patients 
with an above average TA.

Methods
Overall trial design
Neuronal correlates of Nx4 were evaluated in an explora-
tory clinical trial (NEURIM; ClinicalTrials.gov identi-
fier: NCT02602275; registered 28/10/2015) whose first 
primary endpoint has been published previously [42]. 
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In this randomized, placebo-controlled, double-blind, 
two-period, two-treatment crossover trial with 1:1 rand-
omization of the two treatment sequences, Nx4-Placebo 
and Placebo-Nx4, a total of 40 participants were included 
at a single site at the Clinical Affective Neuroimaging 
Laboratory (CANLAB), Magdeburg, Germany. Study 
participants were healthy males, aged 31 to 59 years, 
with mild to moderate chronic stress defined by a Trier 
Inventory for Chronic Stress (Short Screening Scale for 
Chronic Stress; TICS-SCSS) between ≥ 9 and ≤ 36 , as 
well as a Perceived Stress Scale (PSS) of > 9 . Participants 
received a single dose of three tablets Nx4 or placebo 
on each of the two study days (Day 1 and Day 2) with a 
washout period of 7 to 35 days in between. On each of 
the two study days, several EEG, fMRI and psychosocial 
tests were performed as given in Fig.  1. This publica-
tion describes the analysis of the RS-fMRI data acquired 
shortly after dosing (RS1) and after a psychosocial stress 
induction (RS2). To minimize any confounding effects 
of circadian rhythm, the RS-fMRI measurements were 
performed at almost the same time of the day, in the 
afternoon.

Safety and numbers of participants analyzed
As described previously, the single dose treatment with 
three tablets of Nx4 was considered safe and well toler-
ated [42]. From the 53 screened participants, a total 
number of 40 healthy males were eligible and included. 
Twenty participants were randomly assigned to each of 
the two treatment sequences, placebo first or Nx4 first 
(Fig.  2). Participants were in the age range of 31 to 59 
years and had a mild to moderate level of stress. One 
participant of the placebo first sequence dropped out 
of the trial due to an incidental baseline MRI finding 
before drug administration. Out of the 39 participants 
completing the trial, 33 were included in the RSFC anal-
ysis (17 participants receiving Nx4 first and 16 partici-
pants receiving placebo first). Six participants (3 in each 
sequence) were excluded due to motion artifacts. From 

the 33 participants in the RSFC analysis (Age: 43.19.7, 
TA: 36.17.4), 17 were included in the above average TA 
subgroup (Age: 40.69.4, TA: 41.16.5), defined by a base-
line TA ≥ 35 . Six were in the Nx4 first, 11 in the placebo 
first sequence. Number of participants, age, TA, TICS, 
and PSS scores are given in table 1. 
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Fig. 1 Study flow of the NEURIM trial. On each of the two study days, a structural MRI scan and a resting state (RS) measurement were conducted 
during a simultaneous EEG/fMRI scan session. After administering a single dose (three tablets) of Nx4 or placebo, two computerized tests, the 
Attention Modulation by Salience Task (AMST) and an auditory oddball task, were performed while EEG data were acquired. A second EEG/
fMRI scan session was conducted, starting 40 to 60 minutes after dosing, including an initial RS session (RS1) followed by the Hariri emotional 
face‑matching task, an expectancy task, and the ScanSTRESS paradigm as well as another resting‑state session (RS2). This publication focuses on the 
fMRI data from RS1 (pre‑stress) and RS2 (post‑stress) marked in green

Fig. 2 Patient Flow. Number of participants in the two sequences, 
placebo first and Nx4 first, analyzed for stress‑induced changes in 
resting state functional connectivity (RSFC) from pre‑stress RS1 to 
post‑stress RS2. The final sample in the whole group analysis was 
33 and in the above average trait anxiety (TA) subgroup analysis 17 
participants
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Anxiety assessment
The German version of the State-Trait-Anxiety Inven-
tory [46] was used to assess TA. TA characteristics can 
be defined as feelings of stress, worry, discomfort, etc. 
that one experiences on a day-to-day basis [47]. Answers 
to the 20 items questionnaire are given in a 4-point rat-
ing scale ranging from 1 = “almost never” to 4 = “almost 
always”. Some TA questions relate to the absence of 
anxiety and are reversely coded. Score range is 20–80 
and higher scores indicate a higher anxiety. The TA was 
assessed once, at the screening visit, approximately three 
to seven days before Day 1.

Psychosocial stress induction
In this publication, we focused on the effects of the psy-
chosocial stress induction, elicited by the ScanSTRESS 
task [42, 48], present in the post-stress RS2 compared to 
pre-stress RS1. The ScanSTRESS paradigm is an fMRI 
compatible adaptation of the Trier Social Stress Test, and 
applies several dimensions of stress, including pressure 
to perform, time pressure, forced failure, social-evalua-
tive threat, uncontrollability and unpredictability [48]. 
It was composed of two runs, with alternating blocks of 
control and stress conditions of serial subtraction tasks 
and mental rotations. Control blocks did not contain 
any social evaluative feedback, time pressure or difficult 
questions whereas during stress blocks, participants were 
pushed for time, and two experimenters in professional 
attire explicitly showed their dissatisfaction with the 
correctness and speed of the answers via video stream. 
Task speed and difficulty were automatically adapted to 
the individual performance, ensuring that the partici-
pants were unable to meet the expectations. Between the 
two runs of the task, participants were interrupted and 
given extensive, disapproving verbal feedback (see also 
Additional file 1: Fig S1). The effects of the stress task in 
this trial on stress network activation during the task as 
well as on vigilance state and heart rate variability at rest 
after the task are described elsewhere [40, 42, 45]. In this 
manuscript, we assessed stress task induced changes in 

amygdala RSFC from RS1 to RS2 and their relation to TA 
Additional file 2: Fig S2.

fMRI data acquisition
A Philips 3T scanner was used for fMRI data acquisition. 
Structural T1-weighted images for spatial normalization 
were measured using a turbo field echo sequence with 
the following parameters: 274 sagittal slices covering the 
whole brain, flip angle = 8°, 256 × 256 matrix, voxel size 
0.7 × 0.7 × 0.7   mm3. For the resting state scans before 
and after stress induction (RS1 and RS2), 355 volumes of 
T2*-weighted echo-planar images were acquired for each 
session with the following parameters: 34 axial slices cov-
ering the whole brain, repetition time = 2000  ms, echo 
time = 30 ms, flip angle = 90°, 9696  matrix, field of view 
= 240240  mm2, voxel size = 2.5 × 2.5 × 3  mm3.

RS fMRI preprocessing
RS fMRI data were preprocessed and denoised in the 
CONN Functional Connectivity Toolbox v.18.a [49], a 
toolbox built upon the Statistical Parametric Mapping 
package (SPM12, Wellcome Centre for Human Neuro-
imaging) in MATLAB 2018 (The MathWorks, Inc.). The 
initial five volumes were removed from the data for T1 
equilibration. The functional images were corrected for 
acquisition time differences between slices, then rea-
ligned to the first volume to correct for motion between 
volumes and resampled to 3  mm isotropic voxels. The 
anatomical images were resampled to match the func-
tional images, then segmented into grey matter, white 
matter (WM), and cerebrospinal fluid (CSF). The co-reg-
istered functional images were normalized to Montréal 
Neurological Institute (MNI) space. Physiological noise 
was reduced by (1) regressing out five principal compo-
nents of WM and CSF signal, and the 12 rigid body rea-
lignment parameters with CompCor, and (2) removing 
a first-order polynomial trend before bandpass-filtering 
the data to 0.01–0.1  Hz. Importantly, we did not per-
form global signal regression to avoid falsely increasing 
the anti-correlation between time series [50]. To account 
for head motion, outliers were identified using the imple-
mented Artifact Detection Tools (ART) at an interme-
diate threshold. ART’s outlier detection is based on the 
calculation of three rigid body parameters in x, y, and z 
direction. A volume is labeled as an outlier if it contains 
0.5 mm more motion than the previous volume or if the 
global mean signal intensity of the frame exceeds the 
mean intensity across all functional scans of a participant 
by three standard deviations. Participants/conditions 
were excluded whose sequence contained 30% or more 
outlier volumes or if any of the head motion parameters 
exceeded 3 mm in one of the four sessions (Nx4 RS1, Nx4 
RS2, placebo RS1 and placebo RS2).

Table 1 Demographics. Summary statistics for number of 
participants (N), Age in years, Trait Anxiety (TA), Trier Inventory for 
Chronic Stress (TICS) and perceived stress scale (PSS) are shown 
for the whole group as well as high and low anxiety subgroups

The low and high anxiety subgroups are defined based on the median of the TA 
score

N Age TA TICS PSS

Whole group 33 43.1 ± 9.7 36.1 ± 7.4 15.7 ± 5.7 14.7 ± 3.7

High anxiety 17 40.6 ± 9.4 41.1 ± 6.5 17.1 ± 6.3 15.3 ± 4.6

Low anxiety 16 44.2 ± 10.2 30.7 ± 3.7 14.1 ± 4.6 14.0 ± 2.3
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Amygdala RSFC
Bilateral seeds were defined for the amygdala, accord-
ing to probabilistic cytoarchitectonic maps defined by 
the Automated Anatomical Labeling (AAL) atlas [51]. To 
determine distinct seed regions with a high probability 
for the respective subregions, these maps were thresh-
olded at > 80% probability for the corresponding subre-
gion [44]. The time course of the average preprocessed 
blood-oxygen-level-dependent (BOLD) signal within 
each region of interest (ROI) (left or right amygdala) was 
then correlated with signals in each voxel in the whole 
brain. Pearson correlation coefficients were then z-trans-
formed (Fisher’s z), resulting in a matrix representing 
the voxel-wise strength of FC between the seed (left or 
right amygdala) and every voxel in the brain (zFC map). 
Finally, the zFC maps were smoothed using an 8 mm Full 
Width Half Maximum (FWHM) kernel before statistical 
analysis.

Statistical analysis
To assess whether the effect of Nx4 on stress-induced 
Amygdala RSFC changes is modulated by trait anxi-
ety levels, we first calculated a Nx4 efficacy measure as 
Nx4(RSFC2–RSFC1)—Placebo(RSFC2–RSFC1) for FC 
of left and right amygdala as seeds to every voxel in the 
brain. Next, we used voxel-wise multiple regression anal-
ysis, performed in SPM12, where correlations between 
Nx4 efficacy in the whole brain and anxiety level were 
calculated by adding TA as a covariate. Covariates to con-
trol for age and treatment sequence were added as well. 
Significant results from regression analysis were fur-
ther examined: A linear mixed effects regression model 
(LMER) was built, explaining FC from the seed to the 
given resultant cluster based on treatment (placebo/Nx4) 
and session (RS1/RS2), with subject as a random inter-
cept. Statistical analysis was performed using the lme4 
package [52] in R. Post-hoc tests were applied with the 
emmeans package with Benjamini-Hochberg false dis-
covery rate (FDR) method for correction of multiple 
comparisons [53]. Since changes due to stress induction 
are more evident in a sample with higher TA, we defined 
an “above average TA” subgroup based on a normative 

value of TA for working male adults (age range 19 to 69 
years) which is suggested to be 34.9 [47]. Data from study 
participants with a TA score ≥ 35 were reanalyzed for an 
Nx4 effect on stress-induced RSFC change as described 
above. We examined the RSFC changes after the psy-
chosocial stress task in this above average TA subgroup 
and the Nx4 effect on these changes by LMER. Addition-
ally, stress-induced changes of amygdala RSFC (contrast 
RS2 > RS1 ) in placebo versus Nx4 conditions were com-
pared by a paired t-test (RSFC2–RSFC1).

Results
Nx4 effect on stress‑induced amygdala‑prefrontal RSFC 
correlates with TA
Multiple linear regression analysis revealed that TA cor-
relates with the Nx4 effect on stress-induced changes 
of amygdala RSFC. A significant cluster (peak t-value = 
4.25; p = 0.002 cluster-level Family-Wise Error (FWE) 
corrected) was found for the right amygdala seed in the 
prefrontal cortex at MNI coordinates x = 0, y = 51, z = 
−  15 (Table 2). The region was identified as part of the 
pregenual anterior cingulate cortex (pgACC) and ven-
tromedial prefrontal cortex (vmPFC) as shown in Fig. 3A 
and B. The resultant negative contrast of this association 
suggests that a higher TA score corresponds to a damp-
ened stress-induced change of RSFC in the Nx4 com-
pared to placebo condition, indicating a stronger Nx4 
effect on stress response amelioration (Fig. 3C). For the 
left amygdala, no effect by TA level on the Nx4 effect was 
observed.

TA correlates with stress‑induced changes 
of amygdala‑prefrontal RSFC
In order to better understand the association of TA and 
Nx4 effect shown in the previous section, we conducted 
two analyses: First, TA scores were correlated to the 
stress-induced RSFC changes (stress contrast RS2 > RS1 
for the FC between amygdala and pgACC/vmPFC in the 
placebo condition only. For the placebo condition, we 
observed a significant positive correlation (R = 0.440; p = 
0.010) between TA and the stress-induced RSFC changes 
from right amygdala to pgACC/vmPFC (Fig.  4B). This 

Table 2 Significant cluster with an correlation between Nx4 effect on stress‑induced changes of functional connectivity to the right 
amygdala associated with trait anxiety scores

MNI Montréal Neurological Institute, pgACC  pregenual anterior cingulate cortex, vmPFC ventro‑medial prefrontal cortex, FDR-corr False Discovery Rate corrected

Region Cluster‑level Peak‑level MNI coordinates

Size FDR‑corr t‑value x y z

pgACC/vmPFC 65413 0.005 4.25 0 51 − 15

4.18 6 39 3

3.84 − 6 45 − 9
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shows that participants with higher TA are more affected 
by the psychosocial stress induction for this particular 
stress response and show a greater increase in the right 
amygdala—pgACC/vmPFC FC after stress. Notably, in 
the Nx4 condition, the positive correlation between TA 
and RSFC changes was lost and we found a negative cor-
relation between TA and stress-induced RSFC changes of 
right amygdala—pgACC/vmPFC in the Nx4 condition (R 
= − 0.539; p = 0.001, Fig. 4B) meaning that participants 
with higher TA show more pronounced RSFC decrease 
after treatment with Nx4. 

In a second analysis, we only looked into pre- and post-
stress RSFC between right amygdala and pgACC/vmPFC 

in placebo and Nx4 conditions separately (not includ-
ing TA scores). We observed that this RSFC increased 
from RS1 (pre-stress) to RS2 (post-stress) for the placebo 
condition whereas it decreased under Nx4 (see Fig. 4A). 
However, none of these stress-induced RSFC changes 
reached a level of significance and no significant drug x 
time interaction effect was found (p = 0.268).

Nx4 significantly reduced the amygdala‑prefrontal RSFC 
in people with higher TA
The negative correlation between TA and Nx4 efficacy on 
stress-induced RSFC changes hints toward the fact that 
the efficacy of Nx4 on the stress-induced RSFC changes is 

Fig. 3 Trait anxiety (TA) correlates with Nx4 efficacy. On stress‑induced changes in amygdala‑centered resting state functional connectivity (RSFC). 
A Correlation of TA with Nx4 efficacy on RSFC changes from right amygdala showed a significant cluster in right amygdala and pregenual anterior 
cingulate cortex (pgACC)/ventro‑medial prefrontal cortex (vmPFC) (p = 0.002; Family‑Wise Error (FWE) corrected on cluster level). B Left and right 
amygdala seeds used to calculate amygdala functional network. C TA negatively correlated with Nx4 effects on stress‑induced RSFC changes 
(contrast post‑stress resting state (RS2) versus pre‑stress resting state (RS1); RS2 > RS1 ) from right amygdala to pgACC/vmPFC. The Nx4 effect takes 
placebo into account and is calculated as Nx4(RSFC2–RSFC1)—Placebo(RSFC2–RSFC1). Each dot in the scatter plot represents data from one 
participant. Normative average TA for the study population is indicated as a horizontal dashed line



Page 7 of 12Nanni‑Zepeda et al. BMC Neuroscience (2022) 23:68
 

greater for participants with higher TA. To demonstrate 
the Nx4 efficacy in a subgroup with more pronounced 
TA, we defined an above average TA subgroup based on 
normative values of TA for the study population [47]. For 
this above average TA subgroup, LMER model showed a 
significant Treatment x Time interaction (beta = − 1.15; 

95% CI [− 1.85, − 0.46], p = 0.001), (Fig. 5A). Post hoc 
pairwise comparisons showed that RSFC between right 
amygdala and pgACC/vmPFC is increased significantly 
after stress for placebo (beta = − 0.02 [95% CI − 0.04 
to − 0.004]; p = 0.01) whereas it decreased significantly 
in Nx4 condition (beta = 0.01 [95% CI 0.001 to 0.03];  

Fig. 4 RSFC and TA correlate. Resting state functional connectivity(RSFC) between right amygdala and pregenual anterior cingulate cortex 
(pgACC)/ventro‑medial prefrontal cortex (vmPFC) and its correlation with trait anxiety (TA) for placebo (red) and Nx4 (blue) condition for all 33 
participants. A No significant differences were observed between pre‑stress resting state (RS1) and post‑stress resting state (RS2) for placebo nor 
for Nx4 conditions. Data are given as individual dot blots with meanstandard error of mean. B Stress‑induced RSFC changes (contrast RS2 > RS1 ) 
between right amygdala and pgACC/vmPFC is positively correlated with TA for placebo and negatively correlated with TA for Nx4 condition. Each 
dot in the scatter plot represents data from one participant. Dashed lines indicate 95% confidence interval of the linear model fit. Normative 
average TA for the study population is indicated as a horizontal dashed black line

Fig. 5 RSFC in high TA subgroup. Resting state functional connectivity (RSFC) between right amygdala and pregenual anterior cingulate cortex 
(pgACC)/ventro‑medial prefrontal cortex (vmPFC) in the above average trait anxiety (TA) subgroup ( TA ≥ 35 ; n = 17) for placebo (red) and Nx4 
(blue) condition. A RSFC increased from pre‑stress resting state (RS1) to post‑stress resting state (RS2) in placebo condition and decreased from RS1 
to RS2 in Nx4 condition. B Stress‑induced RSFC change (contrast RS2 > RS1 ) is reduced in Nx4 versus placebo condition. Data are given as individual 
dot blots with meanstandard error of mean. Asterisks indicate significant differences (* p < 0.05 and ** p < 0.01)
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p = 0.03). In addition, we compared stress-induced 
changes (contrast RS2 > RS1 ) in placebo and Nx4 condi-
tions by a paired t-test of the delta RFSC values (RSFC2–
RSFC1). A significant reduction of stress-induced RSFC 
for the Nx4 condition was observed (t = 3.47; p = 0.003; 
Fig 5B). 

Discussion
In the present analysis, we used RS-fMRI before and after 
a stress-induction task to investigate the brain response 
at rest after an acute psychosocial stress induction. The 
effect of a single dose of Nx4 on the stress response, 
measured as amygdala centered RSFC, as well as the 
influence of TA on these neural mechanisms were evalu-
ated. Regression analysis revealed a significant correlation 
between TA scores and Nx4 efficacy on stress-induced 
RSFC changes from right amygdala to prefrontal areas, 
centered in the vmPFC and pgACC. This suggests that 
a higher TA is associated with reduced stress-induced 
changes in Nx4 compared to placebo condition, indi-
cating a stronger Nx4 effect. Additionally, we demon-
strated a significant effect of Nx4 on stress-induced RSFC 
changes between right amygdala and pgACC/vmPFC in 
a subgroup of participants with above average TA levels.

The amygdala‑pgACC/vmPFC RSFC as a top‑down 
inhibitory system
The regression analysis revealed a significant cluster in 
the pgACC/vmPFC for the right amygdala seed empha-
sizing a relevant role of the PFC in amygdala modulation. 
The FC between amygdala and vmPFC can be interpreted 
as a top-down inhibitory system controlled by vmPFC. 
This system is activated in healthy people during stress 
and emotional tasks [54, 55]. Malfunction of this system 
was reported in patients with mood and anxiety disorders 
or brain lesions who had a stronger amygdala response 
due to the lack of inhibitory modulation [23, 56–58]. The 
pgACC is known as a neural indicator of emotional con-
trol [59, 60], especially for regulating the amygdala and 
downstream endocrine responses during psychosocial 
stress [61]. Additionally, a correlation of increased cor-
tisol levels and diminished pgACC-amygdala FC was 
described [62].

Psychosocial stress increased the RSFC between amygdala 
and the pgACC/vmPFC in an above average TA subgroup
We observed an activation of this top-down inhibi-
tory system after psychosocial stress induction, i.e. an 
increased RSFC between amygdala and pgACC/vmPFC 
in the placebo group. Very similarly, [27] showed an 
increased FC between amygdala and prefrontal regions 
in response to stressful stimuli as well. An increase in FC 
between amygdala and PFC was observed for emotion 

regulation after a stressor [63] as well as a positive cor-
relation in FC of these areas with anxiety [64]. Accord-
ingly, we could demonstrate an increase in FC after 
stress in placebo as well as a positive correlation of TA 
and the stress-induced changes in RSFC between amyg-
dala and pgACC/vmPFC for the placebo condition, sug-
gesting that participants with higher TA show a greater 
increase of amygdala-pgACC/vmPFC RSFC after stress. 
The stress-induced changes from RS1 to RS2 reached 
the level of significance only in the above average TA 
subgroup. This suggests a higher susceptibility to stress 
induction in this subgroup.

Nx4 reduced the stress‑induced changes 
in amygdala‑pgACC/vmPFC RSFC
Whereas a positive correlation between stress-induced 
RSFC changes and TA was seen in the placebo condition, 
the intake of Nx4, reversed this relationship (Fig.  4B). 
Additionally, the above average TA subgroup experi-
enced a significant increase of the RSFC from pre-stress 
to post-stress measurement under placebo whereas it 
decreased under Nx4 despite being exposed to the same 
stressful stimulus. In line with our proposition, a relative 
reduction of amygdala-prefrontal RSFC under Nx4 could 
mean that less down regulation of the amygdala by pre-
frontal areas is required under Nx4, as the amygdala is 
less activated by stress after Nx4 intake.

Reduced amygdala down regulation can be well related 
to anxiety. A recent study found a lesser extent of amyg-
dala reactivity in the presence of emotionally negative 
stimuli in groups of people with explicitly low TA, i.e. 
expert meditators, compared to novices [64]. Under Nx4, 
the above average TA subgroup exhibited a response 
similar to what we would expect from a low-anxiety 
cohort. This could lead to the speculation that, firstly, 
Nx4 directly modifies amygdala reactivity and, secondly, 
has a particularly potent calming effect on anxious indi-
viduals. TA-dependent drug efficacy on this amygdala—
PFC inhibitory system represents a plausible mechanistic 
hypothesis that seems worth testing in follow up studies.

Lateralization: correlation of TA and changes in amygdala 
RSFC after stress only for right but not left amygdala
Interestingly, TA could only correlate changes in right 
amygdala RSFC after stress, whereas left amygdala RSFC 
remained non-significant. A similar lateralization effect 
in relation to TA was found for differential activation 
of the right amygdala for unconscious and conscious 
processing of fear [65]. This finding might be in accord-
ance with the “right hemisphere hypothesis” postulating 
that emotions are predominantly processed in the right 
hemisphere [66]. Alternatively, one could hypothesize 
emotions were lateralized depending on their valence. 
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According to the “valence hypothesis” the right hemi-
sphere predominantly processes negative emotions and 
pain, whereas the left hemisphere is dominant for posi-
tive emotions [67, 68]. However, more recent meta-anal-
yses found no support for the lateralization theory and 
rather suggested more left than right amygdala activa-
tion, particularly in response to negative emotional stim-
uli [69, 70].

Since our study only involved male participants, one 
could speculate that the lateralization of stress process-
ing within the amygdala was a sex-specific effect. One of 
the first studies on such sex-effects demonstrated that 
right amygdala activation during encoding was related 
to enhanced emotional memory in men. In women, on 
the other hand, emotional memory could only be pre-
dicted by left amygdala activity [71]. In line with this, 
significant right-lateralization in the amygdala response 
were reported for male adolescents when viewing emo-
tional faces, suggesting a lateralization even for simpler 
emotion recognition tasks [72]. Notably, [65] found a 
lateralization to the right hemisphere in a mixed sample. 
Furthermore, a meta-analysis could not identify any sex-
specific lateralization effect in the amygdala in specific, 
although surrounding areas showed a significant male-
right lateralization [70]. This leaves the possibility of par-
ticular emotional networks being differentially recruited 
in males and females, although there might not be a dif-
ference in amygdala activation per se.

Given that, to the best of our knowledge, no experi-
mental parameter has been identified to predict hemi-
spheric laterality [69, 70], we can only speculate about 
the origin of the right-lateralization found in this study.

Limitations
The regression analysis was planned as an exploratory 
analysis intended for hypothesis generating to confine 
follow up investigations and does not make any confirm-
atory claims. In the regression analysis, the significant 
cluster in the PFC was found for the right amygdala seed 
but not for the left. Different studies report on lateraliza-
tion of stress effects but to the best of our knowledge, no 
experimental parameter has been identified to robustly 
predict a hemispheric laterality. The definition of an 
above average TA subgroup was not contained in the ini-
tial hypothesis but introduced post hoc which compro-
mises the statistical evidence of the outcome. Further, the 
number of participants in the subgroup was low and not 
balanced between placebo first and Nx4 first sequence. 
As described previously, the trial was limited to male 
participants with mild to moderate chronic stress. 
[41–45] and did not include clinically relevant outcome 
measures. Additionally the small sample size limits the 

generalizability of the present findings and results should 
be cautiously interpreted.

Conclusion
We could show that a psychosocial stress task can lead to 
increased FC between the amygdala and the PFC in RS, 
after this task. The effect of the stress task on this RSFC 
is greater in anxiety prone subjects. Our data on Nx4, add 
evidence to the hypothesis that Nx4’s clinical efficacy is 
based on a dampened activation of the neural stress net-
work and subjects with anxious personality traits might 
benefit more from Nx4 in terms of a reduction in their 
neuronal stress response. Further studies assessing clini-
cally relevant outcome measures in parallel to fMRI are 
encouraged where behavioral aspects such as personality 
traits should be taken into consideration.
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Between the two runs of the task, participants were interrupted and given 
extensive, disapproving verbal feedback.

Additional file 2: Figure S2.RSFC in high and low TA subgroup: Resting 
state functional connectivity (RSFC) between right amygdala and pre‑
genual anterior cingulate cortex (pgACC)/ventro‑medial prefrontal cortex 
(vmPFC) in the above average trait anxiety (TA) subgroup (upper row A 
and B) as well as in the below average TA subgroup (lower row C and D) 
for placebo (red) and Nx4 (blue) condition. (A) RSFC increased from pre‑
stress resting state (RS1) to post‑stress resting state (RS2) in placebo condi‑
tion and decreased from RS1 to RS2 in Nx4 condition. (B) Stress‑induced 
RSFC change (contrast RS2>RS1) is reduced in Nx4 versus placebo condi‑
tion. (C) No significant differences between RS1 and RS2 were observed 
for the below average TA subgroup. (D) No difference in Stress‑induced 
RSFC change (contrast RS2>RS1) was observed between placebo and 
Nx4. Data are given as individual dot blots with mean±standard error of 
mean. Asterisks indicate significant differences (*p<0.05 and **p<0.01).
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