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Autistic traits are associated 
with the functional connectivity of between—
but not within—attention systems 
in the general population
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and Hironobu Fujiwara2,4

Abstract 

Background:  Previous studies have demonstrated that individuals with autism spectrum disorder (ASD) exhibit dys-
function in the three attention systems (i.e., alerting, orienting, and executive control) as well as atypical relationships 
among these systems. Additionally, other studies have reported that individuals with subclinical but high levels of 
autistic traits show similar attentional tendencies to those observed in ASD. Based on these findings, it was hypothe-
sized that autistic traits would affect the functions and relationships of the three attention systems in a general popu-
lation. Resting-state functional magnetic resonance imaging (fMRI) was performed in 119 healthy adults to investigate 
relationships between autistic traits and within- and between-system functional connectivity (FC) among the three 
attention systems. Twenty-six regions of interest that were defined as components of the three attention systems by a 
previous task-based fMRI study were examined in terms of within- and between-system FC. We assessed autistic traits 
using the Autism-Spectrum Quotient.

Results:  Correlational analyses revealed that autistic traits were significantly correlated with between-system FC, but 
not with within-system FC.

Conclusions:  Our results imply that a high autistic trait level, even when subclinical, is associated with the way the 
three attention systems interact.

Keyword:  Attention, Attention network, Autistic traits, Resting-state functional magnetic resonance imaging, 
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Background
When the process of attention is applied to manage 
competing environmental information, the result is bias 
selection and action toward one choice while separat-
ing out interference from the remaining information [3]. 
Thus, attention is a primary component of cognition that 

allows humans to experience the world and that influ-
ences perception, memory, behavior and, possibly, the 
direction of brain development.

Attention is thought to be composed of three anatomi-
cally and functionally independent systems: the alerting 
system (alerting), the orienting system (orienting), and 
the executive control system (EC; for a review, see [54]). 
Alerting is the most elementary aspect of attention and 
is the system responsible for achieving and maintain-
ing a state of sensitivity to incoming information. Ori-
enting is associated with the ability to assign priority to 
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sensory inputs by selecting a location or sensory modal-
ity [49]. EC is a multidimensional and relatively complex 
system that includes mental operations, such as divided 
attention and detecting and resolving conflicts, that are 
responsible for controlling behaviors and thoughts. These 
three systems work more efficiently when interacting 
with each other [13, 24, 67].

Previous studies have reported that individuals with 
autism spectrum disorder (ASD) exhibit attentional dys-
function in all three systems (for a review, see [36]). ASD 
is a neurodevelopmental disorder characterized by defi-
cits in social interaction and the presence of repetitive 
and restricted behaviors [2]. From early childhood, indi-
viduals with ASD have pervasive abnormalities in atten-
tion [1] that could influence the development of the two 
aforementioned diagnostic features of ASD. In particular, 
impairments in orienting have been consistently reported 
in behavioral and imaging studies [6, 36, 37].

Furthermore, other behavioral and imaging studies 
have reported that the relationships among the three 
attention systems in individuals with ASD are differ-
ent to those in neurotypical individuals. For example, a 
behavioral study found that the pattern of the relation-
ship between alerting and EC in adolescents with ASD 
differs from that in typically developing adolescents [35]. 
Similarly, a resting-state fMRI study revealed differences 
in the temporal dynamics from orienting to EC between 
ASD and typically developing individuals [10].

It is also possible that the presence of autistic traits 
in people in the general population may affect atten-
tion, including functional relationships among the three 
attention systems in which there are strong individual 
differences (e.g., [22]). Autistic traits are continuously 
distributed throughout the general population and range 
from individuals with almost no autistic traits to severely 
impaired and diagnosed individuals (e.g., [14]). Several 
behavioral studies have reported that individuals with 
subclinical but high levels of autistic traits exhibit atten-
tional tendencies that are similar to those observed in 
ASD when compared to individuals with fewer autistic 
features (e.g., [47, 69]).

Additionally, imaging studies have demonstrated that 
autistic traits are dimensionally related to functional 
connectivity (FC) in neurotypical individuals. For exam-
ple, FC of the social processing network is negatively 
related to autistic traits in typically developing adults 
[18]. Another study found that whole-brain FC is high-
est in controls, intermediate in the unaffected siblings of 
individuals with ASD, and lowest in individuals with ASD 
[44]. Taken together, these findings indicate that autistic 
traits in the general population might be associated with 
FC between regions that are responsible for the same (i.e., 
within-system) or two different (i.e., between-system) 

attention systems. However, to the best of our knowl-
edge, no studies have examined these relationships in the 
general population.

Thus, the primary aim of the present study was to 
investigate the relationship between autistic traits in a 
general population and within-and between-system FC 
among brain areas that have been reported as compo-
nents of the alerting, orienting, and EC networks [23].

Results
Psychological data
The mean ± standard deviation (SD) of the Autism-
Spectrum Quotient (AQ) scores in the present study was 
18.4 ± 8.0, which was identical to the value observed in a 
study of the general population assessed using the Japa-
nese version of the AQ [64]. Kolmogorov–Smirnov tests 
revealed that the AQ scores had normal distributions 
(p = 0.20; Fig. 1).

Relationships between AQ scores and FC
Correlation analyses revealed significant relationships 
between the AQ scores and the between-system FC val-
ues (Table  1 and Fig.  2). In contrast, there were no sig-
nificant associations between the AQ scores and the 
within-system FC values. To investigate gender differ-
ences in the relationships between autistic traits and the 
FC values, we assessed possible correlations between the 
AQ scores and the within- and between FC values with 
age as the only covariate. The results were essentially the 
same as those obtained after using both age and gender 
as covariates (Additional file 1: Table S1).

Discussion
The primary goal of the present study was to examine 
whether autistic traits in a general population would 
be associated with within- and/or between-system FC 
among the three attentional systems, i.e., the alerting, 
orienting, and EC systems. There were significant asso-
ciations between AQ scores and between-system FC 
values but not between AQ scores and within-system 
FC values; the AQ scores had positive relationships with 
FC between the regions responsible for alerting and ori-
enting and with FC between the regions responsible for 
orienting and EC, but a negative relationship with FC 
between the regions responsible for alerting and EC.

In the present study, a greater degree of autistic ten-
dencies was related to stronger FC between the thala-
mus, which is the center of alerting, and the fusiform 
gyrus responsible for orienting (i.e., the fusiform face 
area [FFA]). Previous studies have consistently reported 
that orienting is impaired in individuals with ASD (for a 
review, see [36]) and that this function is weaker in indi-
viduals with a high level of autistic traits from a general 
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population [47, 69]. Alerting, or the function of achieving 
and maintaining a state of sensitivity to incoming infor-
mation, promotes orienting [13, 28, 59]. Thus, the pre-
sent findings that there was stronger FC between alerting 
and orienting in individuals with higher levels of autistic 
traits suggest that the weaker function in orienting might 
be compensated for by alerting.

Based on evidence showing that the FFA is an impor-
tant factor in those with ASD and asymptomatic indi-
viduals with higher levels of autistic traits, the notion 
that this region presents a weaker function in orienting 
is reasonable. The FFA is known to be specialized for 
face perception (e.g., [34]). Individuals with ASD exhibit 
impairments in face perception (for a review, see [65]) 
and a functionally and structurally atypical FFA [20, 50, 
57, 63]. Additionally, a positron emission tomography 
(PET) scan study revealed that cholinergic deficits in 
the fusiform gyrus, which are related to impairments in 
social interaction, are evident in subjects with ASD [60]. 
Because the orienting system, but not the other atten-
tion systems, is cholinergic [49], these findings suggest 

that orienting deficits in individuals with ASD might be 
partly due to differences in the FFA and that higher levels 
of autistic traits might be associated with more deficient 
orienting. Because individuals with subclinical but high 
levels of autistic traits also exhibit diminished activation 
in the fusiform gyrus during a face recognition task [16], 
people with higher levels of autistic traits might have a 
weaker orienting function that is related to alterations in 
the FFA.

The weaker orienting function, associated with autis-
tic traits, could also have impacted FC between orienting 
and EC. The present results revealed that a greater degree 
of autistic tendencies was related to stronger connectivity 
between the precentral gyrus (orienting) and the inferior 
frontal gyrus (IFG; EC). The function of the precentral 
gyrus in orienting is thought to be similar to that of the 
frontal eye field [23], which implements eye movements 
such as saccades. Saccades are the phenomenon of initi-
ating rapid ballistic shifts in eye gaze that are needed for 
attentional shifts during the orienting process [5]. Sev-
eral studies have reported that saccades are impaired in 
individuals with ASD (for a review, see [43]). Moreover, 

Fig. 1  Distribution of the AQ scores

Table 1  The two ROIs that  exhibited significant 
relationships between AQ scores and FC values

L = Left; R = Right; AQ = Autism-spectrum quotient; ROI = Regions of interests

T-value FDR 
adjusted 
p-value

r

Alerting-Orienting

 L. thalamus-R. fusiform gyrus 3.42 0.021 0.30

Alerting-Executive control

 Cerebeller vermis-L. fusiform gyrus − 3.37 0.026 0.30

 Cerebeller vermis-R. inferior frontal gyrus − 3.48 0.013 0.31

Orienting-Executive control

 L. precentral gyrus-L. inferior frontal gyrus 3.46 0.019 0.31

Fig. 2  Brain regions showing significant associations between the 
AQ score and FC value. Tha = Thalamus; Cer = Cerebellar vermis; 
FG = Fusiform gyrus; Pr = Precentral gyrus; IF = Inferior frontal gyrus; 
L = left; R = right
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because saccades are also impaired in unaffected first-
degree relatives of individuals with ASD [42], those with 
a greater degree of autistic traits might have weaker sac-
cade function. On the other hand, Kane et al. [33] found 
that people with higher levels of executive function per-
form better on a saccade task than those with lower levels 
of executive function, which suggests that EC improves 
the function of saccades. Taken together with func-
tions related to the IFG, which involves the selection of 
information to adjust sensory inputs [7, 68], the present 
results suggest that weaker saccade function in individu-
als with higher levels of autistic traits might be compen-
sated for by EC.

In the present study, a greater degree of autistic ten-
dencies was also related to weaker FC between the cer-
ebellar vermis (alerting) and the two EC regions, i.e., the 
fusiform gyrus (as mentioned in the Methods section, 
this region is regarded as a non-face area) and the IFG. 
This finding may indicate that there is a delayed develop-
ment of the alerting-EC relationship in individuals with a 
greater degree of autistic tendencies. In general, relative 
to alerting and orienting, EC follows a protracted devel-
opment period that can persist through adolescence (for 
reviews, see [11, 19]). During that developmental course, 
while functional interactions among the attentional sys-
tems (except the alerting and EC interactions) are char-
acterized in childhood and persist into adulthood, the 
direction of the alerting-EC interaction is generally 
reversed by 12 years of age such that the positive associa-
tion in childhood changes into a negative one during ado-
lescence [45, 53]. On the other hand, a behavioral study 
examining the interactions among the attention systems 
found that there is a positive association between alert-
ing and EC in adolescents with ASD [35] whereas typi-
cally developing adolescents have a negative association 
[27] or lack an association [35]. Considering that adults 
with ASD do not exhibit an alerting-EC association [25] 
and that EC skills mature at a slower pace in ASD indi-
viduals than typically developing people (for a review, see 
[17]), the findings in previous behavioral studies suggest 
that the functional reversal of the alerting-EC association 
may be delayed in ASD and that the development of this 
association in adults with ASD may be in a stage equiv-
alent to that observed in typically developing adoles-
cents. Moreover, together with the idea that age-related 
changes in the interactions of attentional behaviors are 
associated with changes in FC [55] and findings about 
age being an important factor to consider when assessing 
FC alterations in ASD [32, 46], it is likely that individu-
als with ASD show delayed or different patterns of devel-
opmental changes in FC between alerting and EC. The 
present results showing that higher levels of autistic ten-
dencies were related to weaker FC between alerting and 

EC may indicate that this type of atypical development 
also occurs in non-clinical individuals with high levels of 
autistic traits.

The present findings also have clinical implications 
regarding the mental health of non-clinical individuals 
with higher levels of autistic traits. A considerable num-
ber of studies have documented higher rates of psychi-
atric problems, such as anxiety and depression, in this 
non-clinical population (e.g., [41, 51, 66]); these issues 
could be derived, at least in part, from orienting dys-
function. In other words, these disorders could be due 
to attention biases, such as reduced attention to positive 
information, excessive attention to negative information, 
and local processing biases; such kinds of biases could 
induce a distressed mood [4, 12, 29, 58]. Because this type 
of orienting dysfunction has been reported in non-clini-
cal individuals with higher levels of autistic traits [39, 56], 
it may be a cause of the elevated rates of other psychi-
atric conditions in this population. Moreover, if alerting 
and EC compensate for orienting in this population, as 
suggested by the present findings, then training alerting 
and EC functions might result in maintenance of mental 
health through functional improvements in orienting. 
The function of attention networks, especially that of EC, 
can be improved by changes in brain states induced by 
exercise [21, 31] or meditation [61]. Thus, investigations 
on the association between training attentional functions 
(through these activities) and mental health in this popu-
lation would likely to provide interesting results.

The present study has several limitations that should 
be noted. First, the present findings are limited by the 
age of the participants. As described above, it is pos-
sible that the directions of the interactions among the 
attention systems might be partly reversed with increas-
ing age. Future research using elderly populations will 
clarify whether this functional reverse might happen 
and/or when it does. Second, the relationships between 
actual attentional functions and the between-system FC 
of attention networks were not assessed in the present 
study. Although resting-state brain networks resemble 
task-evoked networks [62], the relationships among the 
three attention systems (i.e., between-system FC) might 
change during active attention. Therefore, task-depend-
ent FC should be studied using a combination of imag-
ing and behavioral data to reveal possible changes in the 
relationships among active attention systems and in rela-
tion to the presence of compensatory mechanisms. Third, 
future investigations should consider within-system FC. 
In the present study, autistic traits were not associated 
with within-system FC whereas stronger and weaker FC 
within orienting have been reported in individuals with 
ASD [26, 37]. It is possible that the present results were 
influenced by the non-clinical nature of the participants 
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or the relatively small sample size. Thus, studies with 
larger sample sizes should be conducted to determine 
whether autistic traits in the general population are asso-
ciated with within-system FC.

Conclusion
This study demonstrated that autistic traits in the gen-
eral population were associated with between-system 
FC among the neural substrates of the three attention 
systems. These results suggest that autistic traits affect 
relationships among the three systems and could possibly 
induce changes in the efficiency of attention. Although 
further research is necessary, the present study provided 
novel insights into the individual differences associated 
with attentional functions.

Methods
Participants
This study was conducted as part of a project investi-
gating the association between personalized values and 
lifestyle habits. The participants included 119 healthy 
volunteers (45 females, mean age ± SD: 36.2 ± 14.3 years) 
who were confirmed as right-handed using the Edinburgh 
Handedness Inventory [48]. Interviews conducted by two 
well-trained psychiatrists confirmed that none of the 
participants had any type of psychiatric disorder, severe 
medical or neurological illness, or severe head injury. The 
IQ scores of the participants were estimated with the Jap-
anese version of the Adult Reading Test (JART; [40]); all 
participants fell within the normal range (full-scale IQ, 
M = 109.5, SD = 6.4; verbal IQ, M = 111.0, SD = 7.4; and 
performance IQ, M = 106.3, SD = 4.9). After having the 
experimental procedures fully explained, all participants 
provided written informed consent prior to participation 
in the study.

Psychological questionnaire
The AQ is a self-report and one of the most commonly 
used questionnaires assessing the degree of autistic traits 
in an individual [8]. Its reliability and validity have been 
tested and confirmed in many studies from various coun-
tries (e.g., [8, 38, 64]). The measure consists of 50 items 
that are each scored as 1 point if the respondent records 
mild or strong abnormal or autistic-like behaviors; thus, a 
higher AQ score is indicative of a higher degree of autis-
tic traits. We used the Japanese version of the AQ [64] in 
this study.

MRI acquisition
Image scanning was conducted with a single-shot gradi-
ent echo planar imaging (EPI) pulse sequence on a 3-T 

MRI unit (Tim-Trio, Siemens, Erlangen, Germany) with 
a 40-mT/m gradient, a receiver-only 32-channel phased-
array head coil, and small elastic pads placed on both 
sides of the head to minimize head motion. Structural 
MRI data were acquired using three-dimensional mag-
netization-prepared rapid gradient echo (3D-MPRAGE) 
sequences with the following parameters: repetition time 
(TR), 2000  ms; echo time (TE), 3.4  ms; inversion time, 
990 ms; field of view (FOV), 225 × 240 mm; matrix size, 
240 × 256; resolution, 0.9375 × 0.9375 × 1.0  mm3; and 
208 total axial sections without intersection gaps. We 
instructed the participants to visually concentrate on 
a fixation cross in the center of the screen and to avoid 
thinking about anything specific. Functional images were 
obtained during a single 10-min session, while the sub-
jects kept their eyes open, and using a sequence with the 
following characteristics: TR, 2500  ms; TE, 30  ms; flip 
angle, 80°; FOV, 212 × 212 mm; matrix size, 64 × 64; in-
plane spatial resolution, 3.3125 × 3.3125  mm2; 40 total 
axial slices; and slice thickness, 3.2 mm with 0.8 mm gaps 
in ascending order. A dual-echo gradient echo dataset for 
B0 field mapping was also acquired for distortion cor-
rection purposes. After the scanning, the subjects were 
asked questions about sleepiness during data acquisition. 
We recorded only answers denying sleep (no “fell asleep” 
or “was almost asleep” replies).

Image processing
The resting state-fMRI dataset was corrected for EPI 
distortions in the FSL software package (FMRIB’s soft-
ware library ver. 5.0.9; http://www.fmrib​.ox.ac.uk/fsl) 
using FMRIB’s Utility for Geometrically Unwarping EPIs 
(FUGUE), which unwarps EPI images based on fieldmap 
data. Subsequently, artifact components and motion-
related fluctuations were removed from the images 
using FMRIB’s independent component analysis-based 
X-noiseifier [30].

We performed all imaging and statistical analyses 
using the CONN-fMRI Functional Connectivity toolbox 
(ver.17e; www.nitrc​.org/proje​cts/conn) with the statisti-
cal parametric mapping package (SPM12; http://www.
fil.ion.ucl.ac.uk/spm). First, all functional images were 
realigned and unwarped, slice-timing corrected, co-reg-
istered with structural data, spatially normalized into the 
standard MNI space (Montreal Neurological Institute, 
Montreal, QC, Canada), outlier-detected (ART-based 
scrubbing), and smoothed using a Gaussian kernel of 
8 mm full width at half maximum.

All preprocessing steps were performed using a default 
preprocessing pipeline for volume-based analysis (to 
MNI space). We segmented structural data into gray 
matter, white matter, and cerebrospinal fluid (CSF), and 
then normalized them in the same default preprocessing 

http://www.fmrib.ox.ac.uk/fsl
http://www.nitrc.org/projects/conn
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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pipeline. The principal components of the signals from 
white matter and CSF and the translational and rota-
tional movement parameters (with six other parameters 
representing their first-order temporal derivatives) were 
removed with a covariate regression analysis conducted 
using CONN. Using the implemented CompCor strategy 
[9], we reduced the effects of nuisance covariates, includ-
ing fluctuations in resting-state fMRI signals from white 
matter, CSF, and their derivatives as well as realignment 
parameter noise. As recommended, band-pass filter-
ing was performed with a frequency window of 0.008–
0.09 Hz,this preprocessing step was found to increase the 
retest reliability.

FC analysis
We conducted a region of interest (ROI)-to-ROI FC 
analysis in the present study. We specified 26 spherical 
clusters with 10-mm diameters and peak coordinates, 
as described in Fan et al. [23]. These authors conducted 
a task-based fMRI study that identified these regions 
as components of the three attention systems. Table  2 
shows the ROIs in each system (coordinates are quoted 
in the Talairach space). Although each of the three sys-
tems includes the fusiform gyrus, the regions responsible 
for orienting were distinguished as the FFA and were dif-
ferentiated from the regions responsible for alerting and 
EC. The alerting and EC regions were located outside of 
the boundary of the FFA: the right FFA had an average 
size of 1 cm3 and was located at the Talairach coordinates 
40x, − 55y, and − 10z; the left FFA had an average size 
of 0.5 cm3 and was located at the Talairach coordinates 
− 35x, − 63y, and − 10z [34].

The regions responsible for alerting included the thala-
mus, parietal regions (e.g., temporoparietal junction), and 
the mid-frontal gyrus. The regions responsible for orient-
ing included the superior parietal cortex and the frontal 
eye field. The orienting regions are roughly equivalent 
to the dorsal attention network in large-scale brain net-
works [15]. The EC regions included the anterior cingu-
late cortex and the dorsolateral prefrontal cortex, which 
overlaps with the front-parietal network and with the 
salience network in large-scale brain networks [52].

Statistical analysis
We assessed the associations between the AQ scores and 
the within-and between-system FC values of the two 
ROIs using t-statistics by CONN with age and gender 
as covariates; we considered all false discovery rate-cor-
rected p-values < 0.05 as statistically significant.
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