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Abstract 

Background:  Frontotemporal dementia (FTD) is the second leading cause of early onset dementia following Alzhei-
mer’s disease. It involves atrophy of the frontal and temporal regions of the brain affecting language, memory, and 
behavior. Transactive response DNA-binding protein 43 (TDP-43) pathology is found in most FTD and ALS cases. It 
plays a role in transcription, translation and serves as a shuttle between the nucleus and cytoplasm. Prior to its aggre-
gation, TDP-43 exists as polyubiquitinated, hyperphosphorylated C-terminal fragments that correlate well with FTD 
disease progression. Because of the importance of TDP-43 in these diseases, reagents that can selectively recognize 
specific toxic TDP variants associated with onset and progression of FTD can be effective diagnostic and therapeutic 
tools.

Results:  We utilized a novel atomic force microscopy (AFM) based biopanning protocol to isolate single chain vari-
able fragments (scFvs) from a phage display library that selectively bind TDP variants present in human FTD but not 
cognitively normal age matched brain tissue. We then used the scFvs (FTD-TDP1 through 5) to probe post-mortem 
brain tissue and sera samples for the presence of FTD related TDP variants. The scFvs readily selected the FTD tissue 
and sera samples over age matched controls. The scFvs were used in immunohistochemical analysis of FTD and con-
trol brain slices where the reagents showed strong staining with TDP in FTD brain tissue slice. FTD-TDP1, FTD-TDP2, 
FTD-TDP4 and FTD-TDP5 all protected neuronal cells against FTD TDP induced toxicity suggesting potential therapeu-
tic value.

Conclusions:  These results show existence of different disease specific TDP variants in FTD individuals. We have iden-
tified a panel of scFvs capable of recognizing these disease specific TDP variants in postmortem FTD tissue and sera 
samples over age matched controls and can thus serve as a biomarker tool.
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Background
Frontotemporal dementia (FTD) is the second lead-
ing cause of early onset dementia following Alzheimer’s 
disease [1]. FTD is diverse and involves atrophy of the 

frontal and temporal regions of the brain affecting lan-
guage, memory and personality [2]. Based on prominent 
pathological protein inclusions of TDP-43, tau or Fused 
in Sarcoma (FUS), FTD is classified as either FTD-TDP, 
FTD-tau or FTD-FUS [3]. Studies have shown that these 
subtypes have overlapping molecular pathology, mak-
ing diagnosis difficult [4–6], despite progress in imaging 
techniques and CSF biomarkers.

There are currently several imaging techniques like dif-
fusion tensor imaging, fMRI (voxel based changes) and 
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PET scan that have shown promise in FTD diagnosis [7–
9]. These techniques have been demonstrated on a small 
scale and are focused on measuring anatomical similari-
ties within FTD and assessing differences between FTD 
and other dementias. Relying only on imaging for diag-
nosis has limited potential since FTD falls under a spec-
trum with a wide range of anatomical representations.

Apart from imaging, current CSF based biomarkers 
for FTD focus on measuring p-tau, tau and Aβ42 which 
is similar in certain FTD subtypes compared to AD [10]. 
While a fraction of FTD cases demonstrate AD pathol-
ogy [11–14], over 50% of Alzheimer’s cases present with 
TDP pathology [15–18] rendering AD based biomark-
ers (p-tau and Aβ) unreliable. Therefore, there is a need 
for biomarkers that can differentiate FTD from other 
diseases.

Although there is a familial component to FTD with 
mutations identified in MAPT, chromosome 9 open 
reading frame 72 (C9orf72) and GRN, extensive TDP-
43 pathology has been observed in both familial and 
sporadic cases of FTD [19–21]. TDP-43 is a TAR DNA 
binding nuclear protein, 414 amino acids in length coded 
by the TARDBP gene. TDP-43 is a common molecular 
pathology in the FTD-ALS spectrum and is observed in 
more than 50% of FTD cases [22]. It plays a key role in 
transcription and translation processes and is involved 
in alternate splicing, mRNA transport and serves as 
a shuttle between the nucleus and cytoplasm [23]. In 
FTD, TDP-43 is translocated to the cytoplasm [24] and 
the location and type of aggregates present [25] differ in 
clinical subtypes of FTD [5]. Elevated levels of TDP 43 
are found in circulating CSF of FTD and ALS patients 
[24, 26]. Although the pathogenic mechanisms is not 

known, several studies indicate that TDP-43 can spread 
in a prion like fashion from neuron to neuron through 
the axonal pathway [27–31]. TDP-43 is also implicated in 
ALS, where different strains of TDP-43 have been shown 
to spread at different rates in in vitro models, indicating 
presence of multiple toxic TDP variants [27, 32]. Differ-
ent TDP-43 conformations with different levels of toxic-
ity resulting in different pathologies (TDP type A-D) and 
disease phenotype have been identified [33]. These TDP-
43 variants exist due to post-translational modifications 
such as hyperphosphorylation, polyubiquitination and 
truncation leading to C-terminal fragments that are toxic 
[24, 34–38]. Currently, there is a lack of accurate blood-
based biomarkers for FTD irrespective of familial or spo-
radic origin. We hypothesize that FTD specific TDP-43 
variants can be used as unique biomarkers in early ante-
mortem diagnosis distinguishing FTD from other neuro-
degenerative diseases. We have identified a unique panel 
of scFvs capable of recognizing TDP variants that are 
present in human FTD patients but not in age-matched 
cognitively normal controls.

Results
Phage and scFv purification
After serial rounds of subtractive panning were per-
formed to remove phage that bound off target antigens 
including BSA, homogenate from healthy human brain 
tissue and TDP-43 immunoprecipitated from pooled 
ALS brain tissue homogenates, a single round of posi-
tive selection was performed using immunoprecipitated 
TDP-43 from pooled FTD brain tissue (Fig.  1). Eighty 
phage clones were recovered from the positive panning 
step and were verified for sequence integrity by DNA 

Before negative panning with BSA After negative panning with healthy tissue Positive panning with FTD-TDP

a b c

Fig. 1  AFM panning images. Atomic Force Microscopy images of (a) phage binding to BSA prior to subtractive panning to get rid of non-specific 
binders, (b) no phage binding is observed after multiple rounds of subtractive panning with healthy control tissue, (c) phage binding with FTD-TDP 
IP after positive selection
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sequencing. The reactivity of 17 phage clones were fur-
ther tested to verify that they bound human FTD brain 
tissue, but not ALS or healthy brain tissue homogenates 
using pooled tissue homogenates. All 17 phage prepara-
tions showed high reactivity to the FTD sample with very 
little or no reactivity to the ALS sample (Fig. 2a).

Based on the initial ELISA screening, we selected eight 
phage clones with the highest reactivity with pooled FTD 
but no reactivity with pooled ALS and pooled healthy 
control tissue homogenates for further testing with indi-
vidual FTD (n = 6) and age-matched cognitively normal 
(n = 2) brain homogenates (Fig.  2b). The 8 phage sam-
ples reacted with each of the FTD brain tissue homogen-
ates, however each phage had a different binding pattern 
among the FTD patients suggesting that they bind differ-
ent TDP variants.

The five phage clones that showed the strongest reac-
tivity toward the individual FTD tissue samples and 
lowest reactivity towards the control samples were 
expressed as scFvs and used to determine if the TDP 
variants could also be detected in sera samples. The five 
scFvs (FTD-TDP1, FTD-TDP2, FTD-TDP3, FTD-TDP4 
and FTD-TDP5) were used to assay sera samples from 
FTD-TDP (n = 12), FTD-tau (n = 12), AD sera (n = 11) 
and controls (n = 10) (Fig. 3). Four of the scFvs (FTD-
TDP1, FTD-TDP2, FTD-TDP3 and FTD-TDP4) have 
significantly higher reactivity to FTD-TDP and FTD-
tau sera samples compared to AD sera samples, while 
the fifth scFv (FTD-TDP5) had high reactivity with all 
the FTD and AD samples. None of the scFvs studied 
here discriminated between FTD-TDP and FTD-tau 
sera samples, though four of them did discriminate 
between FTD and AD samples suggesting that some 
TDP variants are unique to FTD, while others are 

involved in both FTD and AD. The sensitivity and spec-
ificity of each of the five anti-TDP scFvs for FTD-TDP 
and FTD-tau are shown (Table  1). All the scFvs have 
area under curve (AUC) > 0.84 implying high sensitivity 
and specificity of the scFvs in selecting FTD sera over 
healthy controls.

Western blot analysis
We assume that the FTD selective scFvs bind confor-
mational epitopes of TDP-43 that are involved in FTD 
since the scFvs did not bind TDP variants present in 
healthy age-matched control tissue. To verify that the 
scFvs were binding a conformational epitope, we ana-
lyzed PAGE gels under denaturing (Additional file 1: Fig. 
S1) and native conditions by probing with a commercial 
anti-TDP antibody and the FTD-TDP2 scFv (Fig. 4, Addi-
tional file 1: Fig. S2). Under native conditions, FTD-TDP2 
scFv recognizes a disease variant of TDP-43 present in 
FTD (~ 70 kDa) but not in healthy control tissue or TDP-
43 immunoprecipitated from healthy control tissue.

Competition ELISA
To determine if the five different scFvs against the FTD 
related TDP variants were binding different epitopes, we 
performed a competition ELISA where each scFv was 
tested with FTD sera (no competition) or FTD sera pre-
incubated with one of the other 4 scFvs (competition) 
(Fig. 5). If any two scFvs recognize the same epitope, we 
expect a significant reduction in ELISA signal. One-way 
ANOVA analysis indicated there was not any difference 
between the control samples and those with added scFv 
indicating that the scFvs bind unique epitopes.
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Fig. 2  Screening of anti-TDP phage with pooled and individual FTD and control brain tissue homogenates. Phage obtained after positive selection 
against human FTD brain derived TDP variants were screened with (a) pooled human FTD brain tissue samples (n = 3), pooled ALS brain tissue 
samples (n = 3) and healthy controls (n = 2), (b) Selected 8 phages were further screened with individual FTD brain tissue homogenates (n = 6) and 
healthy controls. Error bars based on SEM
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Fig. 3  Anti-TDP scFvs characterization with FTD and control sera. Reactivity of anti-TDP scFvs with FTD and AD sera were assessed using sandwich 
ELISA. 4 of the 5 anti-TDP scFvs selectively bind to both FTD-TDP (n = 12) and FTD-tau (n = 12) sera and has relatively little to no binding to AD sera 
(n = 11). FTDP-TDP5 was the only scFv that had reactivity with FTD-TDP, FTD-Tau and AD sera over cognitively normal healthy controls. Error bars 
based on SEM

Table 1  Sensitivity and specificity of five anti-TDP FTD scFvs based on reactivity with FTD-TDP (n = 12), FTD-tau (n = 12) 
and control sera (n = 8)

Sensitivity and specificity were calculated for FTD-TDP, FTD-tau and both FTD subtypes–AUC values greater than 0.95 are highlighted

scFv FTD-TDP FTD-Tau Total

Sensitivity (%) Specificity (%) AUC​ Sensitivity (%) Specificity (%) AUC​ Sensitivity (%) Specificity (%) AUC​

FTD-TDP1 91.66 100 0.99 75 75 0.85 75 87.5 0.92

FTD-TDP2 75 100 0.87 75 100 0.82 75 100 0.84

FTD-TDP3 100 87.5 0.99 91.66 87.5 0.96 95.83 100 0.99

FTD-TDP4 100 83.3 0.97 75 75 0.79 75 87.5 0.88

FTD-TDP5 100 100 1 100 100 1 100 100 1

Fig. 4  Western Blot Analysis. Reactivity against healthy control tissue and TDP-43 immunoprecipitated from healthy controls and FTD was assessed 
under non-reducing and non-denaturing conditions with (a) Commercial TDP antibody identifying TDP variants in FTD and healthy controls, and (b) 
FTD-TDP2 scFv which recognizes disease variant of TDP (~ 70 kDa) present in FTD and not healthy controls
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Immunohistochemistry
Two anti-TDP scFvs were further studied using IHC anal-
ysis of human postmortem FTD and control brain tissue 
sections. The FTD-TDP2 and FTD-TDP3 scFvs were 
utilized for the IHC analyses since they had high expres-
sion levels and high reactivity with FTD over cognitively 
normal controls in tissue and sera analyses. Fluores-
cence tagged secondary antibodies were used to visual-
ize the microtubule associated protein (MAP2) (red) and 
the bound scFvs (green) (Fig. 6). Although MAP2 stain-
ing is present in both FTD and control cases, there is no 
anti-TDP scFv staining with the control case. In the FTD 
case, there is extensive anti-TDP scFv staining indicating 
that the FTD-TDP scFvs recognize disease specific TDP 
variants. Both the anti-TDP scFvs have similar staining 
surrounding the nucleus (blue) in FTD tissue indicating 
presence of intraneuronal TDP variants in the cytoplasm.

Toxicity assay
When incubated with neuronal cells, the TDP-43 sam-
ple immunoprecipitated from human post-mortem 
FTD brain tissue induced significantly increased toxic-
ity toward cultured SH-SY5Y cells compared to TDP-43 
immunoprecipitated from cognitively normal human 
brain tissue (Fig. 7). Five anti-TDP scFvs with high selec-
tivity for FTD sera over the controls (FTD-TDP1, FTD-
TDP2, FTD-TDP4 and FTD-TDP5) and a commercial 
antibody against TDP-43 were separately co-incubated 

with the cells at a concentration of 1  µg/mL to block 
TDP variants from interacting with the cells. Three of the 
scFvs, FTD-TDP1, FTD-TDP2 and FTD-TDP5 signifi-
cantly reduced toxicity of the TPD-43 while the commer-
cial anti-TDP-43 antibody did not reduce toxicity and the 
FTD-TDP4 scFv only slightly decreased toxicity at the 
concentration studied. These results indicate that FTD 
related TDP variants are toxic to neuronal cells, and that 
selectively targeting the TDP variants may be an effective 
therapeutic for treating FTD and potentially other related 
neurodegenerative disease.

Discussion
TDP-43 pathology is commonly observed in a vast num-
ber of FTD cases and TDP-43 variants are observed in 
CSF and sera making it an ideal candidate for antemor-
tem FTD diagnosis [26, 39–42]. We generated a panel 
of scFvs that selectively bind FTD specific TDP-43 vari-
ants using an AFM-based biopanning protocol [43]. Five 
scFvs that had high reactivity with individual FTD brain 
tissue over control tissue (FTD-TDP1, FTD-TDP2, FTD-
TDP4 and FTD-TDP5) were further analyzed using sera 
samples from FTD-TDP, FTD-tau, AD, and control cases 
(Figs. 1, 2, 3). Four of the five scFvs tested showed high 
reactivity with FTD sera but not AD or cognitively nor-
mal controls, while one scFv showed high reactivity with 
the FTD and AD sera cases (Fig. 3). Even though around 
50% of AD cases have prominent TDP pathology [15, 16], 
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Fig. 5  Competition ELISA of anti-TDP scFvs. X-axis represents each scFv and Y-Axis resents ratio to age matched controls. Each scFv was tested with 
FTD sera (1 FTD-TDP +1 FTD-tau) (no competition) or FTD sera pre-incubated with each of the other four scFvs (competition). One-way ANOVA 
analysis indicate no significant difference between the no competition and competing scFvs. Error bars based on SEM
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it is apparent that TDP pathology in FTD cases has some 
distinct differences from that in AD cases. Although FTD 
sera has been classified as FTD-TDP and FTD-tau based 
on postmortem pathology reports, studies have shown 
that there is an overlap of tau and TDP-43 pathology in 
FTD cases [44]. Here we also observed that TDP pathol-
ogy between the FTD-TDP and FTD-tau cases are quite 
similar (Figs. 2, 3).

TDP-43 undergoes several post-translational modifi-
cations and occurs as C-terminal fragments of varying 

lengths [37, 45]. Previous studies have indicated that a 
70 kDa species is present in FTD brain tissue studies [38]. 
Here, we show that FTD-TDP2 scFv recognizes a confor-
mation specific 70 kDa species present in FTD and not in 
cognitively normal healthy control tissue samples (Fig. 4) 
and that this variant is localized in the cytoplasm of neu-
rons in FTD brain tissue but not healthy controls (Fig. 6). 
Other neurodegenerative diseases like motor neuron dis-
ease, AD, dementia with Lewy bodies and Huntington’s 
disease also exhibit TDP pathology [46–48]. We also 
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Fig. 6  Immunohistochemistry with anti-TDP scFvs. Tissue sections were incubated with (a) FTD-TDP2, or (b) FTD-TDP3 (1:100) on a shaking stage 
overnight at 4 °C. Primary antibodies against c-myc region of scFv (Sigma, 1:1000, rabbit) and MAP2 (Covance, 1:400, mouse) were applied followed 
by goat anti-rabbit IgG (green) and goat anti-mouse IgG (red) with fluorescence. The sections were observed and imaged with Leica SP5. Scale bar 
represent 50 µm
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showed that the TDP variants present in FTD brain are 
toxic to neuronal cells (Fig.  7), and that selectively tar-
geting the toxic variants may be an effective therapeutic 
option for treating FTD and other TDP related diseases. 
Investigating overlap in TDP pathology in these different 
diseases and further investigating therapeutic potential of 
these reagents will be the focus of future studies.

Conclusion
We have generated a panel of scFvs that selectively bind 
TDP-43 protein variants present in postmortem FTD 
brain tissue and sera samples but not age matched, 
healthy controls. These results indicate the diagnos-
tic potential of these scFvs in distinguishing FTD from 
healthy controls and other TDP-43 pathologies.

Methods
Human specimens
Human brain tissue homogenates from motor cortex of 
FTD (n = 3), ALS (n = 3) and healthy controls (n = 2) and 
immunoprecipitated TDP-43 from these pathologically 
validated cases were provided from Georgetown Brain 
Bank (Georgetown University Medical Center). These 
samples were used in the initial AFM based screening. 
Human postmortem brain tissue sections from the supe-
rior frontal cortex and sera samples from FTD and con-
trol were provided by Dr. Thomas Beach, director of the 
Brain and Body Donation Program at Banner Sun Health 
Research Institute (BBDP) [49, 50]. The brain sections 

were used for immunohistochemistry studies and sera 
samples (FTD-TDP (n = 12), FTD-Tau (n = 12), AD 
(n = 11)) used in ELISA characterization studies.

Panning using immunoprecipitated TDP‑43
Frozen brain tissue samples were briefly homogenized as 
described previously [51]. Briefly tissue was sonicated in 
cold lysis buffer: 25 mM HEPES NaOH (pH 7.9), 150 mM 
NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5% Triton-X-100, 
1  mM dithiothreitol, protease inhibitor cocktail. The 
homogenized sample was centrifuged, and the superna-
tant was frozen in − 80 °C.

TDP-43 protein was immunoprecipitated from brain 
tissue homogenates which were pooled (3 FTD samples 
and 2 healthy controls) using a commercial polyclonal 
antibody against TDP-43 protein (ProteinTech Inc, Chi-
cago, IL; Catalog # 10782-2-AP) as validated in [52]. The 
immunoprecipitated samples were probed with 1:1000 
dilution of commercially available anti-TDP antibody 
(ProteinTech Inc, Chicago, IL; Catalog # 10782-2-AP) to 
verify the presence of TDP-43.

A combination of commercially available phage dis-
play libraries–Sheets, Tomlinson I and Tomlinson J with 
a variability of 108 and concentration of 1012 pfu/m were 
used for the panning [53, 54]. We utilized an AFM based 
selection process that uses exhaustive subtractive pan-
ning steps to remove non-specific phage binding clones 
as well as clones binding to off-target antigens including 
antibody fragments that bound to TDP-43 forms from 
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healthy individuals and from ALS patients as described 
previously [43]. Atomic force microscopy (AFM) imaging 
was performed after every subtractive panning step to 
ensure removal of all antibody fragments binding these 
off-target antigens. Phage that did not bind to any of the 
off-target antigens was used for the final positive selec-
tion round performed against TDP immunoprecipitated 
from pooled FTD brain tissue samples. For this positive 
panning step, the TDP IP preparation was deposited on 
mica since only nanogram quantities of the antigen are 
needed and the process can be monitored via AFM imag-
ing. Phage were eluted using trypsin and TEA and grown 
on LB–Amp plates overnight at 37 °C.

Phage and scFv purification
Phage obtained after the positive selection were 
sequenced to ensure that they encoded complete scFv 
sequences. After sequence validation, phage were ampli-
fied as described [54]. Phage titers were performed to 
verify the concentration of phage (~ 109 pfu/mL). Soluble 
scFv were also prepared by transforming the plasmids 
from each phage into E. Coli strain HB2151. An over-
night culture was used for growing scFv in 2xYT media 
at 37  °C for 3–4  h. The scFvs were grown and purified 
using a protein A Sepharose affinity column (GE Health-
care) as described [43, 55]. Molecular size of the scFvs 
were checked in both the supernatant and lysate frac-
tion via western blot with 1:2000 dilution of anti-c-myc 
9e10 primary antibody (SantaCruz; Catalog # sc-40) fol-
lowed by 1:2000 dilution of secondary antibody goat anti-
mouse HRP (SantaCruz; Catalog # sc-2005). The DNA 
sequences of the scFvs were also validated using MAFFT, 
a multiple sequence alignment software.

TDP phage biotinylation
An aliquot of the remaining phage pool that was recov-
ered after exhaustive subtractive panning with BSA, and 
aggregated α-synuclein and TDP-43 immunoprecipitated 
from healthy control tissue was used to select a detection 
phage for sandwich ELISA [43]. A phage expressing an 
scFv that binds to all forms of TDP-43 contained in both 
FTD and ALS samples was selected to increase signal to 
noise ratio in ELISA. This phage was biotinylated using 
the EZ-Link Pentylamine-Biotinylation kit (Thermo Sci-
entific, USA) as described [56]. The detection phage 
binds TDP variants present in both FTD and ALS sam-
ples and does not compete for the same binding sites as 
the capture scFv in sandwich ELISA.

FTD tissue and sera analysis
Brain tissue homogenates from FTD (n = 3), ALS (n = 3) 
and healthy individuals (n = 2) were pooled together 
and used for the initial screening assay as described 

previously [56]. The pooled brain tissue homogenate was 
used to coat the plates and tested for reactivity with each 
of the phages. This assay was used to evaluate binding 
specificity of all the phage clones for FTD over ALS and 
cognitively normal control samples.

Soluble antibody fragments (scFv) (FTD-TDP1, FTD-
TDP2, FTD-TDP3, FTD-TDP4 and FTD-TDP-5) were 
produced for each of the phages that had a high signal 
with the FTD brain tissue homogenates in the indirect 
ELISA. The scFvs were used as the capture antibody in 
a sandwich ELISA to test reactivity with sera samples 
(12 FTD-TDP, 12 FTD-tau and 10 healthy controls) as 
described [43, 56, 57]. The bound species was detected 
using biotinylated TDP phage to amplify the signal to 
noise ratio. Signal ratios were determined by comparing 
the signal obtained for each scFv with the FTD sera to 
healthy controls and plotted as described [43].

Western blot analysis
A 15% non-denaturing PAGE gel was used to analyze the 
molecular weight of TDP species recognized by the FTD-
TDP2 scFv. The resolving and stacking gels were pre-
pared without SDS. 5X-Running buffer (15 g Tris + 72 g 
Glycine in 1L) and 2X-loading buffer (62.5  mM Tris–
HCl, pH 6.8, 25% glycerol, 1% Bromophenol Blue) were 
also prepared without SDS detergent.

Protein samples were diluted in loading buffer and 
this mixture was loaded directly onto the gels without 
heat denaturation. Samples including two healthy con-
trol tissue samples, TDP-43 immunoprecipitated from 
two healthy controls and three different FTD individu-
als were analyzed. The gel apparatus was set at 70 V for 
30 min followed by 100 V for approximately 3 h until the 
marker was well separated. A nitrocellulose membrane 
was used to transfer the separated bands from the gel 
using standard western protocol [58]. The blot was incu-
bated at RT with 2% milk powder in 1X PBS followed by 
incubation with FTD-TDP2 scFv supernatant overnight 
at 4 °C. The blot was then washed with 1X PBS thrice fol-
lowed by incubation with anti-c-myc (9e10) primary anti-
body (1:2000 dilution) for 2 h at RT. The blot was further 
washed with 1X PBS followed by incubation with goat 
anti-mouse HRP (1:1000 dilution) at RT for 45 min. After 
a final wash with 1X PBS, a colorimetric DAB substrate 
was added, and the blot was developed as per manufac-
turer’s protocol.

Competition ELISA
To determine if the five FTD-TDP scFvs were binding to 
similar or different epitopes, a competition ELISA was 
performed as described [56, 59]. Each of the five FTD-
TDP scFvs were pre-incubated with FTD sera at 37 °C for 
1 h. During the addition of antigen, 1:100 dilution of FTD 
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sera or FTD sera pre-incubated with FTD-TDP scFvs 
were used.

Immunohistochemistry
Human postmortem tissue sections from superior frontal 
cortex were incubated with FTD-TDP2 and FTD-TDP3 
scFvs respectively (1:100) on a shaking stage overnight 
at 4 °C. Primary antibodies against c-myc region of scFv 
(Sigma, 1:1000, rabbit) and MAP2 (Covance, 1:400, 
mouse) were applied to the tissue sections for 3 h at room 
temperature. Goat anti-rabbit IgG (green) and goat anti-
mouse IgG (red) with fluorescence at the concentration 
of 1:1000 was used respectively as secondary antibodies 
for 1 h at room temperature. The sections were washed 
with PBS 3 times and the non-specific background was 
blocked with 0.03% Sudan black for 5 min. The sections 
were observed and imaged with Leica SP5. Commercial 
MAP2 antibody is visualized in red, anti-TDP scFv in 
green and DAPI, which stains the nucleus, in blue.

Toxicity assay
TDP-43 for the toxicity assay was immunoprecipitated 
from human postmortem FTD and control brain tissue 
using four commercial antibodies–A16583 (cell signal-
ing), ab190963 (Abcam), 10782-2-AP and 12892-1-AP 
(ProteinTech). The human neuroblastoma cell line, SH-
SY5Y was used for toxicity studies. Cells were grown in 
serum free media on 6 well plates and once they reached 
confluence, toxicity was induced by incubating the cells 
with 1  µg/mL of TDP-43 IP from FTD or control. The 
cells were then incubated with commercial anti-TDP 
antibody ab190963 (Abcam, 1 µg/mL), or one of the anti-
TDP scFvs–FTD-TDP1, FTD-TDP2, FTD-TDP3, FTD-
TDP4 and FTD-TDP5. After 12 h of incubation, toxicity 
was measured using a lactate dehydrogenase assay kit 
[60].

Statistical analysis
Luminescence signals obtained on the ELISAs were plot-
ted as a ratio with respect to either background or healthy 
controls. Reactivity of each test sample was obtained rel-
ative to the average signal of the control group. Any sam-
ple with a ratio greater than 1 was considered a positive 
signal. Statistical significance was assessed using SPSS 
software (version 24) and one-way ANOVA with post 
hoc analyses was performed with p < 0.05. To determine 
the accuracy of the anti-TDP scFvs in detecting FTD 
over healthy controls, Receiver Operating Characteris-
tic curves (ROC) and Area Under the Curve (AUC) were 
computed based on the reactivity of the five FTD-TDP 
scFvs with FTD-TDP, FTD-Tau and healthy control sera. 
Sensitivity and specificity of the FTD-TDP scFvs were 
also obtained by setting the cutoff as the average value 

of the healthy controls. 0.8 value for AUC is considered 
good while 0.5 (straight line) means it does not differenti-
ate between FTD and control and is not a good diagnos-
tic test.
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