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Opposing effects of antibiotics 
and germ‑free status on neuropeptide systems 
involved in social behaviour and pain regulation
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Abstract 

Background:  Recent research has revealed that the community of microorganisms inhabiting the gut affects brain 
development, function and behaviour. In particular, disruption of the gut microbiome during critical developmental 
windows can have lasting effects on host physiology. Both antibiotic exposure and germ-free conditions impact the 
central nervous system and can alter multiple aspects of behaviour. Social impairments are typically displayed by anti-
biotic-treated and germ-free animals, yet there is a lack of understanding of the underlying neurobiological changes. 
Since the μ-opioid, oxytocin and vasopressin systems are key modulators of mammalian social behaviour, here we 
investigate the effect of experimentally manipulating the gut microbiome on the expression of these pathways.

Results:  We show that social neuropeptide signalling is disrupted in germ-free and antibiotic-treated mice, which 
may contribute to the behavioural deficits observed in these animal models. The most notable finding is the reduc-
tion in neuroreceptor gene expression in the frontal cortex of mice administered an antibiotic cocktail post-weaning. 
Additionally, the changes observed in germ-free mice were generally in the opposite direction to the antibiotic-
treated mice.

Conclusions:  Antibiotic treatment when young can impact brain signalling pathways underpinning social behaviour 
and pain regulation. Since antibiotic administration is common in childhood and adolescence, our findings highlight 
the potential adverse effects that antibiotic exposure during these key neurodevelopmental periods may have on the 
human brain, including the possible increased risk of neuropsychiatric conditions later in life. In addition, since antibi-
otics are often considered a more amenable alternative to germ-free conditions, our contrasting results for these two 
treatments suggest that they should be viewed as distinct models.
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Background
The regulation of behaviour and emotion is complex, 
influenced by both genes and the environment. The 
microbial environment within the gut, known as the gut 
microbiome, has recently been shown to affect various 
aspects of brain development and behaviour [1–3]. The 

brain is particularly sensitive to perturbations through-
out childhood and adolescence when its structure is 
undergoing rapid change [4, 5]. During this time, envi-
ronmental disruptions may permanently impact brain 
function and increase susceptibility to neuropsychiatric 
conditions. These include changes to the gut microbiome 
which can affect neurodevelopment via gut–brain signal-
ling. The microbial community of the gut may influence 
the functioning of the central nervous system through 
various mechanisms, including communication via the 
nervous, immune and endocrine systems [6–8].
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Numerous studies in rodents have revealed that manip-
ulation of the gut microbiome can affect the brain’s 
anatomy and physiology, as well as behaviour [1–3]. In 
particular, multiple facets of social behaviour are influ-
enced by the gut microbial community [9, 10]. Germ-free 
animals provide a useful model to directly investigate 
which aspects of neurodevelopment and behaviour are 
modulated by the gut microbiome since they are raised 
in a sterile environment with no associated microor-
ganisms. The germ-free phenotype exhibits behavioural 
traits reflective of autism, such as a reduced preference 
for social interactions [11–15] and social novelty [12, 
13, 16], as well as repetitive behaviours [12]. However, 
if germ-free mice are colonized at weaning with gut 
microbiota from conventionally raised mice, their defi-
cits in social interaction and repetitive behaviours can 
be reversed [12]. While the majority of studies using the 
standard three-chamber social interaction test [17] have 
found that germ-free mice are less sociable [12–15], one 
study has reported an increase in sociability [18]. This 
may be due to different experimental conditions such as 
the age of the mice being tested, the strain of stimulus 
mouse used in the social interaction test and animal hus-
bandry practices. Nonetheless, germ-free studies reveal 
that the gut microbial community is important for nor-
mal social development.

In addition, recent research provides strong support for 
the causal relationship between a dysbiotic gut microbi-
ome and altered social behaviour [13]. Offspring of mice 
which had been fed a high-fat diet exhibited autistic-like 
behaviours including social impairments, anxiety and 
repetitive behaviours, as well as fewer oxytocin-express-
ing neurones in the hypothalamus. Notably, offspring 
were found to have an altered gut microbial community 
but supplementation with the bacterial species Lactoba-
cillus reuteri restored oxytocin levels and reversed social 
deficits in this mouse model of autism.

Another commonly used approach to investigate the 
effect of the gut microbiome on the brain and behaviour 
is antibiotic treatment to deplete the gut microbial com-
munity during specific developmental periods [19]. Anti-
biotics also alter the composition and function of the gut 
microbiome, as well as reducing its diversity [20]. Studies 
in rodents have demonstrated that antibiotic treatment 
can cause visceral pain [19, 21, 22], cognitive deficits [19, 
23, 24] and behavioural changes, including impairments 
in social behaviour [19, 23, 25–29]. For example, early-
life antibiotic exposure to low-dose penicillin can have 
lasting effects on both gut microbiome composition and 
behaviour, with mice showing decreased sociability and 
a reduced preference for social novelty [27, 29]. How-
ever in both studies, supplementation with Lactobacil-
lus rhamnosus at the same time as antibiotic treatment 

protected animals from these social impairments. Simi-
larly, mice administered an antibiotic cocktail during the 
key developmental stage of early adolescence have an 
altered microbiome composition and exhibit cognitive 
and social deficits [23]. They also show reduced expres-
sion of the neuropeptides vasopressin and oxytocin, 
with the latter only reduced when the animals have been 
exposed to stress [23]. In addition, administration of L. 
reuteri in mice has been found to increase plasma oxy-
tocin through vagal signalling [30].

While studies have frequently reported the impact of 
an altered gut microbiome on host social behaviour, there 
is little understanding of the underlying neurochemical 
changes. We therefore aimed to address this by investi-
gating the effect of antibiotic treatment and germ-free 
status on the gene expression of neuropeptides and their 
receptors implicated in social behaviour. Mammalian 
social behaviour is underpinned by multiple neuropep-
tide signalling pathways, namely the μ-opioid, oxytocin 
and vasopressin systems [31, 32], which have evolution-
arily conserved functions in regulating social behaviour 
[33]. Specifically, both oxytocin and vasopressin are well 
known for their roles in social cognition, pair bonding 
and sociosexual behaviours [33, 34]. The endogenous 
opioid system is also involved in the modulation of social 
behaviour. As well as mediating physical pain [35, 36], 
the opioid system plays a key role in social attachment, 
affiliative behaviour and emotion regulation. Indeed, opi-
oid receptors are abundantly expressed in brain regions 
central to the regulation of social and emotional behav-
iour [37–39]. Specifically, β-endorphin, which binds 
to µ-opioid receptors, modulates social motivation 
and is important for the formation and maintenance of 
social bonds [40–43]. Activation of the μ-opioid system 
is associated with increased sociability [44, 45], while 
the µ-opioid antagonist naltrexone diminishes feelings 
of social connection in people [46] and inhibits social 
behaviour in rodents [43, 45]. Notably, μ-opioid recep-
tor knockout mice display symptoms characteristic of 
autism, with impairments in social interactions, com-
munication and attachment behaviour [47–49]. Fur-
thermore, the endogenous opioid system regulates both 
oxytocin and vasopressin release and there is consider-
able interaction between these three neuropeptide sys-
tems [49–53].

Neuropeptides are postulated to play an important 
role in communication between the gut microbiome 
and the brain, especially since they interact with both 
the immune system and the vagus nerve [54]. Interest-
ingly, μ-opioid receptors are not only widely expressed 
in the brain but also in the gut, where they regulate the 
gut–brain neural circuitry involved in satiety [55]. In 
fact, opioids, oxytocin and vasopressin can all influence 



Page 3 of 14Johnson and Burnet ﻿BMC Neurosci           (2020) 21:32 	

gut physiology, such as motility [56–59]. Certain Lacto-
bacillus species can induce μ-opioid receptor expression 
in the gut via the nuclear factor-κB immune response 
[60], while antibiotic treatment has been found to reduce 
expression of this receptor in the gut [61]. However, the 
interaction between the gut microbiome and the μ-opioid 
system in the central nervous system has not previously 
been investigated. Furthermore, there have been few 
studies on the relationship between the gut microbiome 
and brain neuropeptide systems [13, 23], with research 
focusing on the expression of the peptides rather than 
their receptors.

Here we examine the influence of antibiotic treatment 
and germ-free status on neuropeptide pathways impli-
cated in social and emotional behaviour by measuring 
gene expression of both the peptides and their corre-
sponding receptors. The experiments were conducted in 
mice since they are a naturally social mammalian species 
and therefore represent a suitable model organism [62]. 
We adopt two different approaches, using mice treated 
with antibiotics post-weaning and germ-free mice, since 
both models are commonly used to ascertain the role of 
the microbiome in host development and behaviour.

Methods
Animals
For the antibiotic experiment, suckling male NIH Swiss 
mice (Charles River) at postnatal day 16 were housed 
with dams in cages maintained under standard con-
trolled laboratory conditions with a 12 h light–dark cycle 
at 21 ± 1  °C and 50 ± 5% relative humidity. At postnatal 
day 21, mice were weaned and housed three per cage 
under identical environmental conditions and fed a 
standard mouse chow diet ad libitum. The animals were 
allocated randomly to the treatment and control groups 
and were provided with either drinking water containing 
a cocktail of antibiotics or drinking water alone, respec-
tively. For the germ-free experiment, Swiss Webster mice 
were housed by the supplier (Taconic Biosciences) with 
three to five mice per cage in a gnotobiotic isolator under 
a 12 h light–dark cycle at 21 ± 1 °C and an average rela-
tive humidity of 50%. Mice were fed an autoclaved chow 
diet ad libitum and specific pathogen-free mice received 
chlorinated water, while germ-free mice received water 
that had been chlorinated and then autoclaved. The same 
strain, supplier and age (8 weeks) of germ-free and spe-
cific pathogen-free mice were used as in the seminal 
study showing reduced sociability in germ-free mice [12]. 
In both the antibiotic and germ-free experiments there 
were eight male animals in each of the treatment and 
control groups (n = 8, weight range 29–38 g at 8 weeks). 
This research was carried out with local ethical approval 

and a UK Home Office licence granted under the Ani-
mals (Scientific Procedures) Act 1986.

Antibiotic treatment
This method followed that of a previous study which 
had shown that an antibiotic cocktail administered in 
early adolescence altered cognitive, social and emo-
tional behaviour [23]. Mice were treated with antibiot-
ics from postnatal day 21 to deplete the microbiota. This 
high-dose antibiotic cocktail administered in the drink-
ing water comprised ampicillin (1  mg/ml), vancomycin 
(5 mg/ml), neomycin (10 mg/ml), metronidazole (10 mg/
ml) and amphotericin-B (0.1  mg/ml). This specific mix-
ture has been shown to reduce faecal bacterial DNA 
load by 400 fold without causing morbidity [63]. It is a 
commonly used broad-spectrum antibiotic treatment in 
gut microbiome research and is considered a standard 
microbiome depletion protocol [64–66]. Fluid intake 
was monitored every two days and the concentrations 
of antibiotics were adjusted according to the volume of 
fluid consumed. Mice were weighed routinely to monitor 
their general health and check that antibiotic treatment 
did not significantly affect body mass (Additional file  1: 
Figure S1). Animals were treated with antibiotics until 
postnatal day 55, when they were sacrificed.

Tissue dissection
Following euthanasia via cervical dislocation, the brains 
of the antibiotic-treated and control mice were dissected 
into the frontal cortex, hippocampus, hypothalamus and 
brainstem and frozen at – 80 °C. The brain samples from 
germ-free and specific pathogen-free mice were placed 
in RNAlater (Sigma-Aldrich), transported on dry ice and 
then frozen at – 80 °C, prior to dissection into the same 
regions.

RNA extraction and cDNA synthesis
The mass of each brain region was measured (to the 
nearest mg) prior to homogenizing the tissue in TRI 
Reagent (Sigma-Aldrich) for RNA extraction. The RNA 
concentration of each sample was measured using a Nan-
oDrop ND-1000 spectrophotometer (Thermo Scientific) 
and each RNA extract was assessed for purity by ensur-
ing the 260/280 nm absorbance ratio was approximately 
two. Each RNA sample was diluted in nuclease-free 
water (Millipore) and stored at – 20 °C. In preparation for 
reverse transcription, the RNA was treated with DNase 
(Promega) and heated to 37  °C for 20  min, followed by 
5 min at 75  °C. Complementary DNA (cDNA) was syn-
thesized from 1 µg RNA using the High-Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems) and 
incubated at 37  °C for 1  h, along with a corresponding 
negative control for each sample. The cDNA samples 
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were then diluted in nuclease-free water to a concentra-
tion of 20 ng/µl, prior to storage at – 20 °C.

Quantitative real‑time PCR
Quantitative real-time polymerase chain reaction (RT-
PCR) was performed on the 7900HT Fast Real-Time 
PCR System (Applied Biosystems), with all cDNA sam-
ples diluted in nuclease-free water to a concentration of 
5 ng/µl. Each RT-PCR reaction consisted of 3 µl cDNA, 
6 µl TaqMan Universal PCR Master Mix (no AmpErase 
UNG) and 0.6 µl TaqMan probes, and was made up to a 
total volume of 12 µl with nuclease-free water. The same 
thermal cycling conditions were used for all runs: 5 min 
at 95  °C (initial step), 15  s at 95  °C (denaturation step) 
and 45  s at 60  °C (annealing and extension step), with 
the latter two steps repeated for 40 cycles. TaqMan gene 
expression assays (Additional file 1: Table S1) were used 
to quantify messenger RNA (mRNA) expression of genes 
encoding the µ-opioid (Oprm1), oxytocin (Oxtr) and 
vasopressin (Avpr1a) receptors and their corresponding 
peptides, namely pro-opiomelanocortin (Pomc), oxy-
tocin (Oxt) and vasopressin (Avp) respectively (note that 
pro-opiomelanocortin is cleaved into multiple peptides, 
including β-endorphin which binds to µ-opioid recep-
tors). While there are several opioid and vasopressin 
receptor genes, we measured the expression of Oprm1 
and Avpr1a since these are most strongly associated with 
social behaviour [43, 45, 67, 68].

In addition, gene expression levels were also deter-
mined for myeloid differentiation factor 88 (MyD88) 
which is a key mediator of host–microorganism com-
munication and integral to the host immune response 
and intestinal homeostasis [64, 69]. Expression of the 
gene encoding brain-derived neurotrophic growth factor 
(Bdnf), important for neuronal growth and survival, was 
measured as a positive control since several studies have 
reported its downregulation in both antibiotic-treated 
mice [23, 24, 28] and germ-free mice [70–72]. Negative 
controls (both no-template and nuclease-free water) 
were also included in each run for the treatment and con-
trol groups. All samples were run in triplicate and the 
average threshold cycle number (CT) recorded. As rec-
ommended for accurate normalization of RT-PCR data 
[73], CT values for the target genes were normalized to 
the geometric mean of three endogenous control genes 
(Gapdh, B2m and Polr2a) whose expression did not differ 
significantly between the control and treatment groups.

Statistical analyses
Data were analysed using the comparative CT method 
[74, 75] and two-sample t-tests were performed on the 
2
−��CT values to test for statistically significant dif-

ferences in gene expression between the control and 

treatment groups. Where necessary, Welch’s t-test was 
conducted when the variances of the two groups were 
significantly different (determined using Levene’s test 
for homogeneity of variances) and the non-parametric 
Mann–Whitney U test was carried out when the assump-
tion of normality was not met (determined using the Sha-
piro–Wilk test).

Results
Antibiotic‑treated mice
The most striking effect of antibiotic administration 
was in the frontal cortex, where all three receptor genes 
showed a reduction in expression (Fig.  1). This down-
regulation in the treatment group was significant for 
both Oprm1 (P = 0.021) and Oxtr (P = 0.016), with a 
trend towards reduced expression for Avpr1a (P = 0.079). 
While there were no significant differences in receptor 
gene expression in the hippocampus or hypothalamus, 
there was a significant increase in Oprm1 expression in 
the brainstem (P = 0.046).

In terms of the corresponding peptides (Fig.  2), the 
expression of Pomc and Avp was reduced in the frontal 
cortex and hippocampus of the antibiotic-treated mice. 
However, these differences were not significant due to 
the considerable within-group variation in peptide gene 
expression. In the hypothalamus there was increased 
expression of both Oxt (P = 0.065) and Avp (P = 0.037), 
which was statistically significant in the case of Avp. In 
addition, there was a consistent trend towards reduced 
Pomc expression in each of the four brain regions, and 
when the results from all regions were combined, this 
downregulation was statistically significant (P = 0.010).

MyD88 expression was reduced in all four brain regions 
of antibiotic-treated mice (Fig.  3), with a significant 
downregulation in the frontal cortex (P = 0.021) and 
brainstem (P = 0.043). Antibiotic administration also led 
to reduced expression of Bdnf (included as the positive 
control gene) in the frontal cortex (P = 0.013, Additional 
file 1: Figure S2). This is in accordance with the majority 
of previous research showing a decrease in Bdnf expres-
sion in antibiotic-treated mice [23, 24, 28], thereby vali-
dating the treatment effects.

Germ‑free mice
The only significant change in receptor gene expression 
was for Oprm1 in the frontal cortex (Fig. 4). Notably the 
treatment effect was in the opposite direction to antibi-
otic-treated mice since Oprm1 expression was upregu-
lated in the frontal cortex of germ-free mice (P = 0.018).

Regarding peptide gene expression (Fig.  5), Avp was 
downregulated in the hypothalamus of germ-free mice 
(P = 0.046), which again contrasted the direction of 
change in antibiotic-treated mice. Pomc expression was 
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significantly reduced in the frontal cortex (P = 0.030) 
and combining the expression results from all four brain 
regions also revealed a significant overall downregulation 

of Pomc (P = 0.008), as was the case in the antibiotic-
treated animals.

Fig. 1  Effects of post-weaning antibiotic treatment on the expression of neuropeptide receptor genes implicated in social behaviour. Data are 
plotted as mean expression (relative to the control group) ± SEM for Oprm1, Oxtr and Avpr1a (encoding the µ-opioid, oxytocin and vasopressin 
receptors respectively) and all comparisons are with n = 8 per group. Two-sample t-tests have 14 degrees of freedom (df ) and asterisks denote 
P < 0.05

Fig. 2  Effects of post-weaning antibiotic treatment on the gene expression of neuropeptides implicated in social behaviour. Data are plotted 
as mean expression (relative to the control group) ± SEM for Pomc, Oxt and Avp (encoding the peptides pro-opiomelanocortin, oxytocin and 
vasopressin respectively) and all comparisons are with n = 8 per group. Two-sample t-tests have 14 degrees of freedom (df ) and asterisks denote 
P < 0.05. Note that Oxt was only detectable in the hypothalamus, its site of production
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MyD88 expression was significantly reduced in the 
frontal cortex (P = 0.019) and brainstem (P = 0.012) of 
germ-free mice (Fig.  6), as in the antibiotic treatment 
group. Similarly, Bdnf expression in germ-free mice 
(Additional file 1: Figure S3) was also reduced in the fron-
tal cortex (P = 0.050) and brainstem (P = 0.005). These 
changes in the positive control gene are consistent with 
the majority of previous findings showing downregula-
tion of Bdnf in germ-free mice [23, 70–72].

Discussion
In this study we show that the gene expression of social 
neuropeptides and their receptors is altered in both 
antibiotic-treated and germ-free mice, as summarised in 
Table 1. The most notable finding is the reduction in neu-
ropeptide receptor gene expression in the frontal cortex 
of mice administered the antibiotic cocktail, which is par-
ticularly relevant given the prominent role of this brain 
region in social behaviour [76]. Downregulation of these 
receptors may partly reflect the considerable interaction 
between the μ-opioid, oxytocin and vasopressin systems 
[49–53]. The behavioural impairments reported in anti-
biotic-treated rodents [19, 22, 23, 25–29], including mice 
receiving the identical combination of antibiotics used 
in this study [23], may therefore partially be a result of 
reduced activation of these neuropeptide pathways.

In contrast to the downregulation of Oprm1 (encoding 
the μ-opioid receptor) in the frontal cortex of antibiotic-
treated mice, this gene was significantly upregulated 
in the brainstem. Notably, research on the serotoner-
gic system has also reported elevated signalling in the 
brainstem and reduced serotonin turnover in the frontal 
cortex of suicides with a psychiatric diagnosis [77]. This 
similar pattern of regional differences in the μ-opioid sys-
tem may therefore reflect the known interaction between 
serotonin and opioid signalling [78–80]. The antibiotic-
treated mice also showed an increase in expression of 
Avp (encoding vasopressin) and a trend towards upreg-
ulation of Oxt (encoding oxytocin) in the hypothala-
mus, their site of synthesis, perhaps compensating for 

Fig. 4  Effects of germ-free status on the expression of neuropeptide receptor genes implicated in social behaviour. Data are plotted as mean 
expression (relative to the control group) ± SEM for Oprm1, Oxtr and Avpr1a (encoding the µ-opioid, oxytocin and vasopressin receptors 
respectively) and all comparisons are with n = 8 per group. Two-sample t-tests have 14 degrees of freedom (df ) and asterisks denote P < 0.05

Fig. 3  Effects of post-weaning antibiotic treatment on the 
gene expression of MyD88. Data are plotted as mean expression 
(relative to the control group) ± SEM for MyD88 (encoding myeloid 
differentiation factor 88) and all comparisons are with n = 8 per 
group. Two-sample t-tests have 14 degrees of freedom (df ) and 
asterisks denote P < 0.05
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the corresponding reduction in receptor gene expres-
sion in the frontal cortex. Interestingly, a similar pat-
tern of increased gene expression of the peptide but 
downregulation of its receptor was also reported for the 
neuropeptide Y pathway in antibiotic-treated mice [24]. 
The upregulation of Avp found here is in the opposite 

direction to a previous study using the same antibiotic 
treatment and mouse strain, where Avp expression was 
reduced in the hypothalamus [23]. One important dif-
ference, however, is that our animals were behaviour-
ally naïve rather than having been subjected to a series 
of behavioural tests prior to measuring gene expres-
sion. In contrast to the increased expression of Oxt and 
Avp in our antibiotic treatment group, Pomc showed an 
overall reduction in expression when the results of all 
four brain regions were combined. This suggests reduced 
endorphin levels in the brains of antibiotic-treated mice, 
since the peptide encoded by Pomc is cleaved to produce 
β-endorphin. Combined with reduced expression of the 
corresponding receptor gene Oprm1, these data indicate 
that μ-opioid signalling may be attenuated in these ani-
mals. In fact, reduced activation of the μ-opioid system 
has been associated with social deficits [43, 45], and such 
deficits are typically observed in rodents administered 
antibiotics [23, 27–29].

The one previous study looking at the effect of antibi-
otic treatment on the neuropeptides oxytocin and vaso-
pressin only measured gene expression of the peptide 
and not its corresponding receptor [23]. Our results indi-
cate that quantifying mRNA abundance for the receptors, 

Fig. 5  Effects of germ-free status on the gene expression of neuropeptides implicated in social behaviour. Data are plotted as mean expression 
(relative to the control group) ± SEM for Pomc, Oxt and Avp (encoding the peptides pro-opiomelanocortin, oxytocin and vasopressin respectively) 
and all comparisons are with n = 8 per group. Two-sample t-tests have 14 degrees of freedom (df ) and asterisks denote P < 0.05

Fig. 6  Effects of germ-free status on the gene expression of 
MyD88. Data are plotted as mean expression (relative to the control 
group) ± SEM for MyD88 (encoding myeloid differentiation factor 
88) and all comparisons are with n = 8 per group. Two-sample t-tests 
have 14 degrees of freedom (df ) and asterisks denote P < 0.05
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rather than the neuropeptides, may be more informative 
since they showed considerably less variation in gene 
expression. Perhaps this is because receptor transcript 
levels are more stable, with a lower turnover than signal-
ling peptides. Thus, measuring both peptide and receptor 
gene expression may allow a more holistic assessment of 
the disruption of brain signalling pathways and the pos-
sible compensatory mechanisms involved.

It might be expected that germ-free conditions would 
have similar effects on gene expression as antibiotic 
exposure, and perhaps more extreme given the complete 
lack of microorganisms, rather than just a severe deple-
tion. Surprisingly, the significant changes in expres-
sion were generally in the opposite direction to the 
antibiotic-treated mice.  Avp was downregulated in the 
hypothalamus of germ-free mice but upregulated in the 
hypothalamus of antibiotic-treated mice. Oprm1 was 
upregulated in the frontal cortex of germ-free mice, in 
contrast to its decreased expression in antibiotic-treated 
mice. Interestingly, germ-free mice showed reduced 
Pomc expression in the frontal cortex and this pattern 
of peptide downregulation and receptor upregulation in 
germ-free mice may reflect a homeostatic mechanism. 
In fact, there is evidence of feedback inhibition in the 
opioid system whereby high levels of receptor activation 
inhibit pro-opiomelanocortin neurone activity, resulting 
in lower concentrations of the peptide [81].

In light of the known interactions between these neu-
ropeptides and the immune system [82–84] and the 

increasing evidence that the immune system is an impor-
tant mediator of the microbiome–gut–brain axis [85], 
we were also interested to investigate the effect of both 
antibiotic treatment and germ-free status on MyD88 
expression. This gene encodes an immune system protein 
which is a key mediator of host–microorganism commu-
nication in vertebrates. Specifically, MyD88 functions as 
an adaptor protein for Toll-like receptors, which detect 
and respond to gut bacteria in the intestinal epithelium 
[64, 69, 86]. MyD88 signalling therefore plays an inte-
gral role in the host’s immune response [69, 87–89] and 
is also important for homeostasis of the intestinal bar-
rier [64, 90, 91]. Both antibiotic treatment and germ-free 
status had the same effect on MyD88 expression, with a 
significant reduction in both the frontal cortex and brain-
stem. Since commensal microbiota drive stimulation of 
MyD88, its downregulation may reflect the reduction in 
microbial interactions with Toll-like receptors due to the 
lack of microorganisms in antibiotic-treated and germ-
free mice. In fact, there is evidence that both probiot-
ics and prebiotics benefit gut health by stimulating the 
immune system through MyD88-dependent NF-κB acti-
vation [92–96]. Moreover, MyD88 is expressed in many 
different organs and cell types beyond the gut, including 
neurones [97] and microglia [98], suggesting that it may 
also be involved in communicating the state of the gut 
to distant organs such as the brain. Future studies using 
immunodeficient animals, such as MyD88 conditional 

Table 1  Summary of results for changes in expression of neuroreceptor and neuropeptide genes in the antibiotic-treated 
and germ-free mice

Treatment Brain region
Receptor gene Peptide gene

Oprm1 Oxtr Avpr1a Pomc Oxt Avp

Antibiotic

Frontal cortex NA

Hippocampus NA

Hypothalamus

Brainstem NA

Germ-free

Frontal cortex NA

Hippocampus NA

Hypothalamus

Brainstem NA

Cells coloured red denote a significant reduction in gene expression and those coloured green denote a significant increase in gene expression. Hatch patterns 
indicate non-significant trends. Note that Oxt was only detectable in the hypothalamus, its site of production
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knockout mice, will be required to experimentally deter-
mine its role in the microbiome–gut–brain axis.

Overall, our findings that neuropeptide pathways impli-
cated in social and emotional behaviour are disrupted are 
in line with previous studies showing social impairments 
in antibiotic-treated and germ-free rodents [11–13, 15, 
16, 23, 27–29]. However, while these animal models may 
be useful for establishing causality, we cannot necessarily 
extrapolate from these findings the role of the gut micro-
biome in the social behaviour of healthy animals. Future 
studies involving more fine-scale manipulations of the 
gut microbial community, such as probiotic or prebiotic 
feeding or narrow-spectrum antibiotic administration, 
are required to determine the contribution of specific 
members of the gut microbiota. While the use of antibi-
otics to deplete the gut microbiota is often seen as a more 
accessible alternative to germ-free models [23, 63, 65], 
the differences reported here between antibiotic-treated 
and germ-free mice suggest that they should be viewed 
as distinct models of gut microbiome manipulation. 
Indeed, antibiotic-treated mice have a normal gut micro-
biome during the early postnatal period whereas germ-
free mice represent a rather different biological case since 
these animals are never exposed to microorganisms and 
so exhibit impaired physiology and immune development 
from birth. However, it cannot be eliminated that differ-
ences between the antibiotic-treated and germ-free mice 
may be partly due to the different mouse strains, though 
both were outbred strains. The antibiotic experiment 
was conducted with NIH Swiss mice since this was the 
same strain used by a previous study which had demon-
strated effects of this antibiotic treatment on the brain 
and behaviour [23], and whose methodology was closely 
followed here. The germ-free experiment was carried 
out with Swiss Webster mice since this is the strain most 
commonly available as a germ-free model and is the pri-
mary strain in studies reporting impaired sociability in 
germ-free mice [12, 14, 15, 18].

To date, there have been few studies investigating the 
effects of antibiotics on the brain during early life [99], 
yet antibiotic treatment is arguably more clinically rel-
evant than germ-free conditions. In fact, antibiotics are 
the most commonly prescribed drug to children [100] 
and human population studies have linked antibiotic 
exposure during early life with increased risk of allergy, 
inflammatory bowel disease and obesity, as well as poorer 
neurocognitive outcomes [101]. The results here, particu-
larly the salient reduction in neuroreceptor gene expres-
sion in the frontal cortex, have potential implications for 
understanding the impact of antibiotic administration 
on human brain function. Furthermore, the interaction 
between the gut microbiome and the brain’s endogenous 
opioid system has not previously been investigated, with 

the results of this study indicating reduced μ-opioid sig-
nalling in mice treated with antibiotics in early adoles-
cence. This may at least partly explain the behavioural 
deficits in animals exposed to antibiotics [23, 27–29] 
since activation of the μ-opioid system is integral to social 
motivation and social bonding [43, 45], as well as regu-
lating stress and emotion [39, 102, 103]. While caution 
must be exercised when considering the possible impact 
of antibiotics during childhood and adolescent years in 
humans, we hypothesize that the μ-opioid system may 
also be downregulated, with implications for behaviour. 
Notably, μ-opioid receptor density in the human frontal 
cortex is positively associated with motivation to seek 
close social relationships [104], which is especially rel-
evant given the reduced gene expression of this receptor 
in the frontal cortex of antibiotic-treated mice. Human 
brain imaging studies have also revealed that activation 
of the μ-opioid system helps to alleviate the experience of 
social pain and is positively correlated with social moti-
vation and psychological resilience [105, 106]. Thus a 
decrease in μ-opioid signalling may have consequences 
for mental health and well-being. In fact, dysregulation 
of the endogenous opioid system has been implicated 
in depression and schizophrenia, with the majority of 
human studies reporting a reduction in β-endorphin lev-
els [107, 108] or decreased activity of the μ-opioid system 
[37, 106]. It is an interesting observation that antibiotic 
exposure in humans is associated with increased risk of 
depression and anxiety [109] and treatment with antibi-
otics during the first year of life has also been linked to 
an increased risk of depression and behavioural diffi-
culties in childhood [110]. However, further research is 
required to determine the changes in brain function that 
may underlie these associations and whether the effects 
are long-lasting.

As well as its role in social behaviour, the endogenous 
opioid system is a key regulator of pain [35, 36]. Our 
finding that antibiotic treatment reduces μ-opioid recep-
tor expression in the central nervous system therefore 
has potential clinical relevance. In fact, antibiotic treat-
ment in rodents increases visceral pain [19, 21], including 
early-life antibiotic exposure [22]. Whilst the gut micro-
biome has been shown to modulate pain, the mechanisms 
are yet to be elucidated [111], though our results suggest 
that the effect of the microbiome on both pain and social 
behaviour may be underpinned, at least in part, by its 
interaction with the μ-opioid system. In support of this, a 
recent study showed that decreased expression of Oprm1 
in the prefrontal cortex was associated with increased 
pain sensitivity in male and female rats [112]. A reduc-
tion in μ-opioid receptor availability in the brain has been 
linked to increased pain sensitivity in healthy volunteers 
[113] and has also been found in sufferers of chronic pain 
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[114]. In addition, since the opioid system is central to 
addiction [115] and we show that the gut microbiome 
interacts with this neuropeptide system, our findings are 
also relevant to the observation that antibiotic treatment 
enhances addictive behaviour in mice [116].

In terms of further research directions, it would be 
interesting to investigate whether prebiotic or probiotic 
supplementation in antibiotic-treated animals can rescue 
the disrupted social neuropeptide signalling, and whether 
any effects of probiotics are specific to certain bacterial 
species or strains. Since antibiotic treatment can deplete 
the production of short-chain fatty acids, particularly 
butyrate [117, 118], it would also be informative to test 
whether administration of butyrate helps to reduce the 
impact of antibiotic treatment. If so, this would suggest 
that the influence of the gut microbiome on the expres-
sion of these neuropeptide pathways is at least partly 
mediated by butyrate. Future research should also exam-
ine the impact of antibiotic administration on the neuro-
genetics of adult mice to determine whether the effect is 
less marked than antibiotic treatment immediately fol-
lowing weaning when the developing brain is particularly 
vulnerable to perturbation. To avoid introducing addi-
tional variation, this study was only conducted on male 
mice but it would be interesting to investigate whether 
females show similar changes in gene expression since 
there are some notable sex differences in the microbi-
ome–gut–brain axis [27, 119–121]. Indeed, a recently 
reported study found that early-life antibiotic exposure 
induced social deficits only in male mice [29]. Similarly, 
male germ-free mice show more pronounced social 
impairments [12] and alterations in neurochemistry [72, 
122] compared to their female counterparts, which may 
be reflective of the higher incidence of autism among 
males. It should also be noted that this study focused 
on quantifying mRNA expression. This is considered to 
provide a more accurate indication of treatment-induced 
changes in neuronal gene expression than measur-
ing protein levels which may reflect homeostatic bal-
ance between neuronal release, translation and storage 
[24]. While there is a degree of correspondence between 
mRNA and protein levels [123, 124], protein abundance 
cannot necessarily be inferred from quantifying mRNA 
transcripts. However, studies on these neuropeptide sys-
tems in rodents suggest that changes in mRNA expres-
sion have measurable impacts on behaviour and pain 
response [125–127].

While antibiotic treatment and germ-free condi-
tions are two helpful approaches to investigate causality, 
both models have limitations. Germ-free animals show 
numerous defects, including in their development, gut 
morphology and physiology, nervous system, immune 
response and metabolism [128–131]. Notably, they 

also have a more permeable blood–brain barrier [132]. 
Although this artificial model is useful for investigating 
which processes are modulated by the gut microbiome, 
the findings are not easily translatable to human physi-
ology and disease. In terms of the high-dose, broad-
spectrum antibiotic treatment used in this study, it not 
only dramatically reduces the bacterial load but also 
significantly restructures the gut microbial community, 
decreasing its diversity and altering its composition [23, 
118], including the possibility of increasing antibiotic-
resistant bacteria. While the relative abundances of the 
phyla Firmicutes and Bacteroidetes are reduced, Cyano-
bacteria and Proteobacteria increase in relative abun-
dance with this antibiotic cocktail [23, 118]. Indeed, the 
phylum Proteobacteria includes a wide variety of patho-
gens such as Escherichia, Helicobacter, Pseudomonas, 
Salmonella and Vibrio [133] and increased abundance of 
this phylum is associated with psychological distress in 
patients with irritable bowel syndrome [134]. In addition, 
members of the phylum Cyanobacteria produce toxins 
including lipopolysaccharides which can have pathologi-
cal effects [135]. Thus, the effects of antibiotic treatment 
may not necessarily be through depleting the gut micro-
biota but also by significantly changing its composition. 
Furthermore, antibiotics can have systemic effects in 
addition to their antimicrobial actions [130, 136]. Antibi-
otics may even act directly on the brain and there is evi-
dence that they can modulate the vagus nerve [137] and 
the enteric nervous system [138]. Antibiotics can also 
have neurotoxic effects including encephalopathy [139], 
as observed in some clinical cases of metronidazole use 
[140]. Thus while this is a widely used antibiotic cocktail 
to deplete the microbiota [64–66], including in studies 
of the microbiome–gut–brain axis [19, 23], it is impor-
tant to bear in mind that observed changes may be partly 
the result of systemic effects of antibiotics, in addition 
to the direct effects of antibiotics on reducing bacterial 
load. Finally, although mice represent a useful model for 
understanding mammalian physiology, with many simi-
larities between the mouse and human gut microbiome, 
there are also notable differences and caution is needed 
when extrapolating the potential significance of these 
findings to humans [130, 141].

Conclusions
The results of our study reveal that disruption of the gut 
microbiome in early life can significantly impact social 
neuropeptide signalling. The reduced activation of these 
pathways in mice treated with antibiotics post-weaning 
likely contributes to their social impairments. It is also 
relevant to note the opposing effects of antibiotic treat-
ment and germ-free status on gene expression in the 
brain; an interesting observation that should be explored 
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in further studies. Our findings indicate the possible 
effects that early-life exposure to antibiotics may have 
on pathways in the brain mediating social and emotional 
behaviour, with potential implications for the risk of 
developing neuropsychiatric conditions such as autism, 
depression and anxiety.
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