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Abstract 

Background:  Mental fatigue is usually caused by long-term cognitive activities, mainly manifested as drowsiness, 
difficulty in concentrating, decreased alertness, disordered thinking, slow reaction, lethargy, reduced work efficiency, 
error-prone and so on. Mental fatigue has become a widespread sub-health condition, and has a serious impact on 
the cognitive function of the brain. However, seldom studies investigate the differences of mental fatigue on elec-
trophysiological activity both in resting state and task state at the same time. Here, twenty healthy male participants 
were recruited to do a consecutive mental arithmetic tasks for mental fatigue induction, and electroencephalogram 
(EEG) data were collected before and after each tasks. The power and relative power of five EEG rhythms both in rest-
ing state and task state were analyzed statistically.

Results:  The results of brain topographies and statistical analysis indicated that mental arithmetic task can success-
fully induce mental fatigue in the enrolled subjects. The relative power index was more sensitive than the power 
index in response to mental fatigue, and the relative power for assessing mental fatigue was better in resting state 
than in task state. Furthermore, we found that it is of great physiological significance to divide alpha frequency band 
into alpha1 band and alpha2 band in fatigue related studies, and at the same time improve the statistical differences 
of sub-bands.

Conclusions:  Our current results suggested that the brain activity in mental fatigue state has great differences in 
resting state and task state, and it is imperative to select the appropriate state in EEG data acquisition and divide alpha 
band into alpha1 and alpha2 bands in mental fatigue related researches.
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Background
Mental fatigue refers to a condition of low alertness and 
cognitive impairment [1]. Too much brain activity and 
stimulation can make a person feel mentally exhausted, 
and this feeling is akin to physical fatigue. Mental fatigue 

can give rise to numerous bad consequences, for exam-
ple, making the uncomplicated tasks turn to be increas-
ingly difficult or even impossible. Mental fatigue has 
become a popular sub-healthy state in nowadays, which 
has effects on almost all aspects of cognitive functions of 
human brain [2], such as driving fatigue [3]. Considering 
the impacts of mental fatigue on our daily life, it is very 
important to reveal the differences of mental fatigue on 
brain activity in resting state and task state at the same 
time.

Previous studies have been centered on the changes 
associated with task-related brain activity [4, 5]. The 
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fatigue-inducing mental tasks were widely used by 
researchers. The mental tasks that requiring different 
intensity of attention can differentiate the levels of men-
tal fatigue, and their experimental duration could be dis-
tinct. The n-back task [6, 7] and psychomotor vigilance 
task [8, 9] (PVT) can be categorized as high-attention-
demanding tasks, sleep deprivation [10] can be classified 
into low-attention-demanding tasks, meanwhile mental 
arithmetic task [11] and driving simulation task [12] fall 
into middle-attention-demanding tasks. However, among 
these three-type tasks, the middle-attention-demand-
ing tasks are greatly in line with our daily working load. 
Therefore, we chose mental arithmetic task to induce 
mental fatigue.

Historically, mental fatigue has been most prevalently 
studied with the neuroimaging technique of EEG [13–
15]. It has been widely proved that mental fatigue can 
result in obvious changes in EEG signals [16]. Strijkstra 
has found that EEG at resting state shows strong nega-
tive correlations of alpha power and positive correlations 
of theta power with subjective sleepiness [17]. With the 
mental fatigue increasing, the power of alpha rhythm 
increases when the eyes are open and decreases when the 
eyes are closed [18]. These changes in EEG can be used to 
detect mental fatigue [11, 16], which is especially impor-
tant and meaningful for driving fatigue estimation [8, 12]. 
From the above, we can conclude that EEG has become 
the most effective technical means for exploring the neu-
romechanism and detection of mental fatigue [19, 20].

The current study is also motivated by the stud-
ies which have divided the EEG bands into narrower 
bands. In mental fatigue related studies, some research-
ers divided alpha band into alpha1 (8–10 Hz) and alpha2 
(10–13  Hz). Li has performed statistical analysis on the 
characteristics of alpha1 and alpha2 to estimate men-
tal fatigue, and reported that alpha1 band is better for 

fatigue detection [11]. Sun has applied alpha1 frequency 
band for mental fatigue classification, and achieved a 
high prediction accuracy [21].

In this study, we would explore the differences of men-
tal fatigue on electrophysiological activity both in resting 
and task states at the same time. To this end, we admin-
istered a group of challenging sustained mental arithme-
tic math tasks for mental fatigue induction among the 
recruited young healthy male participants, and EEG data 
for resting and task states before and after each task seg-
ments were collected. Then the power and relative power 
of delta, theta, alpha1, alpha2, and beta were computed, 
and statistical analysis were carried on the results among 
different brain regions.

Results
Figure 1 and Table 1 depict the results of EEG power. It 
has been found that the power of each rhythm in resting 
state and task state varies in the evolutionary process of 
mental fatigue, but there are few statistical differences 
and FDR correction are not performed on the results of 
the P-values. In resting state, the alpha1 rhythm power 
at frontal and temporal regions have a marked tesndency 
to increase, and the alpha2 power at parietal region has 
a significant reduction. In task state, only the beta power 
at parietal and occipital regions have obvious decrease. 
The reason for the insignificant statistical differences may 
be that the power of EEG rhythms is not sensitive to the 
mental fatigue, and the small changes of EEG power will 
be masked by individual differences and power spectrum 
fluctuations. Therefore, the other widely used EEG index, 
relative power, was analyzed in the study.

Figures  2 and 3, Tables  2, and 3 show the results of 
EEG relative power in resting state. Figure 2 is the brain 
topography of the relative power for every rhythms. 
Figure 3 is the average relative power of all electrodes. 

Rhythm

Po
w
er

a

Rhythm

Po
w
er

b

Fig. 1  The power of EEG rhythms over the whole brain region at different time periods. a Resting state, b Task state
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Table 2 is the statistical results of P value, F-value and 
η2p  for EEG relative power in different brain regions, 
which shows very good statistical differences accord-
ing to the results of P-value, F-value and η2p . There-
fore, FDR correction was performed on the results of 
P-value among different brain regions to reduce the 
risk of false positive. Table  3 is the corrected statisti-
cal differences corresponding to Table  2. As shown in 
Figs. 2 and 3, Tables 2 and 3, the relative power of delta 
rhythm presents a monotonically decreasing trend 
throughout the whole brain, and has corrected signifi-
cant statistical differences across all brain regions. The 
results of theta rhythm indicate that only in the cen-
tral region has a corrected significant increasing trend 

Table 1  ANOVA results of P-value for EEG power in different brain regions in resting state and task state

State Region Delta Theta Alpha1 Alpha2 Beta

Resting state Whole 0.118 0.792 0.403 0.572 0.710

Frontal 0.366 0.819 0.044 0.372 0.656

Temporal 0.135 0.574 0.011 0.221 0.078

Central 0.513 0.887 0.119 0.114 0.273

Parietal 0.141 0.735 0.203 4.3E − 4 0.112

Occipital 0.492 0.796 0.914 0.159 0.089

Task state Whole 0.760 0.507 0.212 0.673 0.103

Frontal 0.833 0.728 0.735 0.390 0.684

Temporal 0.106 0.179 0.765 0.903 0.193

Central 0.965 0.845 0.434 0.743 0.195

Parietal 0.644 0.426 0.059 0.057 8.9E − 7

Occipital 0.223 0.724 0.757 0.324 0.013

Fig. 2  Brain topography of the relative power of EEG rhythms in resting state. In the figure, all the relative power values are normalized to 0–1

Rhythm

R
el

at
iv

e 
po

w
er

Fig. 3  The average relative power of EEG rhythms over the whole 
brain region at different time periods in resting state
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[P = 0.005, F = 7.29, η2p = 0.74, corrected P = 0.03], and 
there are no statistic difference in other brain regions. 
Whereas, both alpha1 rhythm and alpha2 rhythm have 
corrected significant statistical differences among all 
the brain regions, and beta rhythm have corrected 

significant statistical differences only in temporal 
region [P = 7.3E − 5, F = 13.5, η2p = 0.78, corrected 
P = 4.4E − 4]. Besides, the changing regularities of 
alpha1, alpha2, and beta rhythms are not monotonous.

Figures 4 and 5, Tables 4 and 5 show the results of EEG 
relative power in task state. Figure 4 is the brain topog-
raphy of the relative power for every rhythms, and Fig. 5 
is the average relative power of all electrodes. Table 4 is 
the statistical results of P-value, F-value and η2p for EEG 
relative power in different brain regions. Table  5 is the 
corrected statistical differences corresponding to Table 4 
obtained by FDR correction performed on the results 
of P-value among different brain regions. As shown in 
Figs. 4 and 5, Tables 4 and 5, the relative power of delta 
rhythm presents a decreasing trend throughout the 
whole brain, and has corrected significant statistical dif-
ferences in frontal region [P = 0.003, F = 5.22, η2p = 0.41, 
corrected P = 0.012], central region [P = 0.004, F = 7.69, 
η2p = 0.76, corrected P = 0.012], and parietal region 

Table 2  ANOVA results of P-value, F-value and η2p for relative power EEG rhythms in different brain regions in resting state

Statistically significant differences are highlighted in italics (P < 0.05)

Region Delta Theta Alpha1 Alpha2 Beta

P F η
2
p

P F η
2
p

P F η
2
p

P F η
2
p

P F η
2
p

Whole 1.5E − 5 7.98 0.26 0.955 0.17 0.01 1.4E − 15 29.3 0.57 7.1E − 11 18.0 0.44 0.079 2.16 0.09

Frontal 2.2E − 5 10.3 0.58 0.664 0.60 0.07 3.4E − 15 75.2 0.91 4.5E − 20 168 0.96 0.038 2.91 0.28

Temporal 0.025 3.81 0.50 0.727 0.51 0.12 2.3E − 4 10.9 0.74 0.012 4.72 0.56 7.3E − 5 13.5 0.78

Central 2.0E − 4 16.5 0.87 0.005 7.29 0.74 1.7E − 6 47.9 0.95 2.1E − 9 193 0.99 0.117 2.42 0.09

Parietal 1.8E − 4 17.1 0.86 0.309 1.38 0.06 5.5E − 4 13.1 0.84 1.2E − 5 31.7 0.93 0.043 3.68 0.59

Occipital 0.015 9.42 0.89 0.950 0.16 0.03 0.004 16.4 0.93 0.002 22.3 0.95 0.750 0.48 0.02

Table 3  Corrected results of  P-value corresponding 
to Table 2 among different brain

Statistically significant differences are highlighted in italics (P < 0.05)

Region Delta Theta Alpha1 Alpha2 Beta

Whole 6.6E − 5 0.955 8.4E − 15 2.1E − 10 0.1185

Frontal 6.6E − 5 0.955 1.0E − 14 2.7E − 19 0.086

Temporal 0.025 0.955 3.5E − 5 0.012 4.4E − 4

Central 3.0E − 4 0.030 3.4E − 6 4.2E − 9 0.1404

Parietal 3.0E − 4 0.927 6.6E − 4 1.8E − 5 0.086

Occipital 0.018 0.955 0.004 2.4E − 3 0.75

Fig. 4  Brain topography of the relative power of EEG rhythms in task state. In the figure, all the relative power values are normalized to 0–1
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[P = 0.006, F = 7.02, η2p = 0.74, corrected P = 0.012]. Both 
theta rhythm and alpha1 rhythm have a non-monotonic 
increasing trend for the results of relative power, but only 
in temporal region for theta rhythm [P = 0.001, F = 7.67, 
η2p = 0.67, corrected P = 0.006], and only in central region 
[P = 7.7E − 5, F = 20.8, η2p = 0.89, corrected P = 4.6E − 4] 
and parietal region [P = 3.6E − 4, F = 14.5, η2p = 0.85, cor-
rected P = 0.001] for alpha1 rhythm that have corrected 
significant statistical differences. As for alpha2 rhythm 
and beta rhythm, no corrected statistically significant dif-
ferences are observed.

Discussion
In the present study, we analyzed the difference in spon-
taneous neural activities caused by performing prolonged 
fatigue-inducing mental arithmetic tasks both in rest-
ing state and task state. Five EEG rhythms were evalu-
ated among five brain regions in the two states. The delta 
rhythm power was 7.1 ± 0.54 μV2 in the resting state, and 
had the lowest proportion (10%) in all EEG rhythms; in 
the task state, the power was 6.1 ± 0.34 μV2, but the pro-
portion increased to 21.5%. This is mainly because Alpha1 
and Alpha2 rhythms were significantly suppressed in 
task state (see Fig. 4), leading to a significant increase in 
the proportion of corresponding delta rhythm. The delta 
rhythm power had no statistical difference both in resting 

and task states (see Table 6), which is in line with its actual 
physiological meaning. Because delta rhythm is related 
to people’s deep sleep [22], and it usually appears in large 
quantities in adult’s deep sleep, anesthesia and hypoxia. 
As for the relative power of delta rhythm, it decreased 
significantly along with the accumulation of task time, 
which is consistent with the results reported by Jap when 
researching driving fatigue [23]. Some literatures have 
also pointed out that the amplitude and relative power 
of delta rhythm increased under fatigue state [24]. How-
ever, in many fatigue evaluation studies, delta band was 
directly removed by researchers and technicians [22]. 
Because they believe that delta rhythm reflects the state of 
deep sleep, and general brain fatigue status does not show 
significant changes. Moreover, the frequencies of EEG 
artifacts (such as blink artifacts, eye movement artifacts, 
electrocardio artifacts, etc., except for power–frequency 
artifacts and myoelectricity artifacts) mainly coincide 
with the delta frequency band. The removal of the arti-
facts is highly subjective, and the removal effect varies 
from person to person. Therefore, the results of delta 
rhythm in this study will not be in further discussion.

The power and relative power results of theta rhythm 
were unanimous both in resting state and task state, 
demonstrating an increasing trend, which was consistent 
with the results of most fatigue studies [17, 22–24]. Gen-
erally, theta rhythm is considered to reflect the early state 
of sleepiness [25], which is related to brain fatigue [26] 
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Fig. 5  The average relative power of EEG rhythms over the whole 
brain region at different time periods in task state

Table 4  ANOVA results of P-value, F-value and η2p for relative power EEG rhythms in different brain regions in task state

Statistically significant differences are highlighted in italics (P < 0.05)

Region Delta Theta Alpha1 Alpha2 Beta

P F η
2
p

P F η
2
p

P F η
2
p

P F η
2
p

P F η
2
p

Whole 0.109 1.95 0.08 0.044 2.56 0.10 0.056 8.99 0.29 0.311 1.21 0.05 0.060 2.53 0.09

Frontal 0.003 5.22 0.41 0.114 2.04 0.11 0.115 3.68 0.33 0.526 0.81 0.09 0.197 1.62 0.11

Temporal 0.406 1.07 0.02 0.001 7.67 0.67 0.225 3.80 0.50 0.084 2.53 0.4 0.015 4.41 0.54

Central 0.004 7.69 0.76 0.424 1.06 0.02 7.7E − 5 20.8 0.89 0.859 0.32 0.01 0.326 1.32 0.05

Parietal 0.006 7.02 0.74 0.021 4.72 0.65 3.6E − 4 14.5 0.85 0.164 2.04 0.12 0.103 8.25 0.07

Occipital 0.037 6.03 0.83 0.579 0.79 0.03 0.076 4.12 0.27 0.540 0.87 0.02 0.238 2.03 0.13

Table 5  Corrected results of  P-value corresponding 
to Table 4 among different brain

Statistically significant differences are highlighted in italics (P < 0.05)

Region Delta Theta Alpha1 Alpha2 Beta

Whole 0.131 0.088 0.112 0.622 0.180

Frontal 0.012 0.171 0.138 0.648 0.286

Temporal 0.406 0.006 0.225 0.492 0.090

Central 0.012 0.509 4.6E − 4 0.859 0.326

Parietal 0.012 0.063 0.001 0.492 0.206

Occipital 0.056 0.579 0.114 0.648 0.286
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and has a sensitive response to fatigue [27]. As shown in 
Tables  3 and 5, the response results of theta rhythm in 
the task state were slightly better than that in the resting 
state, because there were corrected statistical differences 
in the temporal region and parietal region in the task 
state, while there were corrected statistical differences 
only in the central region in the resting state.

Alpha rhythm reflects the state of relaxation and wake-
fulness. When focusing attention, external stimulation 
or visual input, alpha rhythm will be blocked [28]. Alpha 
rhythm is considered to be the most sensitive indica-
tor of brain fatigue [26, 27], which is consistent with the 
statistical analysis results of alpha1 and alpha2 showed 
in Tables 2, 3, 4, and 5. Along with the increase of men-
tal fatigue, the power and relative power of alpha rhythm 
were reported to be significantly increased [22, 24]. Sev-
eral other researchers reported the opposite changing ten-
dency [23]. However, it is now widely accepted that alpha 
rhythm intensifies as the brain transformed from normal 
into fatigue [29, 30] (see detailed statistical results of rel-
evant studies in Ref. [27]). As shown in Tables 3 and 5, the 
effect of alpha1 and alpha2 rhythm in depicting mental 
fatigue in resting state is better than that in task state.

In this study, alpha band was further divided into 
two sub-bands, alpha1 band and alpha2 band, obtain-
ing some meaningful results: the relative power of 
alpha1 rhythm increased significantly both in resting 
state and task state, while alpha2 rhythm decreased sig-
nificantly in the resting state, but showed an increasing 
trend in the task state, which were consistent with the 
power change trends shown in Fig. 1. In similar research 
results, it is also pointed out that alpha1 rhythm power 
increases with the increase of fatigue level [21, 30, 31], 
and alpha2 rhythm has the same changes in task state 
[30]. The changing regularities of alpha1 and alpha2 in 
the resting state is completely opposite, and that in the 
task state is consistent, indicating that it is essential to 
divide alpha frequency band into alpha1 and alpha2 sub-
bands in brain fatigue research based on EEG. Klimesch 
has emphasized that using narrower frequency bands in 
the study can reduce the risk that the frequency effects 
are cancelled out or not discovered [32], which is well 

demonstrated in the results of alpha1 and alpha2 rhythms 
in this study. In addition, narrower frequency band divi-
sion can enhance the physiological meaning of the sub-
bands and make their statistical results more significant. 
The contrary changing trend and significant statistical 
results of Alpha1 and Alpha2 rhythms in the resting state 
can prove this inference.

Klimesch has pointed out through the analysis of 
event-related potential that alpha1 rhythm is related to 
attention, and its power will increase significantly when 
the attention task increases and the subjects are required 
to stay awake and not allow sleep and rest [32], which is 
consistent with the results of alpha1 rhythm in this study. 
As for alpha2 rhythm, Klimesch et al. have indicated that 
alpha2 desynchronization is positively correlated with 
brain long-term memory function by comparing the 
performance of subjects with different memory abili-
ties in memory tasks [33]. In their subsequent studies, it 
has been further proved that alpha2 rhythm is correlated 
with memory [34–37] and cognitive behavior [38]. When 
the memory task increases, alpha2 rhythm (in the state 
of eye closure at the time of EEG data collection) shows 
synchronization [34, 35, 39], that is, the power decreases, 
which can explain the changing trend of alpha2 rhythm 
in the resting state in this study.

Further analysis of the brain topography in the fourth 
column of Figs. 2 and 4, we found that: (a) alpha2 rhythm 
power is mainly distributed in the occipital region, 
which is consistent with the results of topography given 
by Craig et  al. [30]; (b) in resting state, alpha2 rhythm 
is very strong in all brain regions in the baseline state 
(referring to the T0 period), but when the brain enters 
into the fatigue state (referring to the T1, T2, T3 and T4 
periods), alpha2 rhythm is mainly concentrated in the 
occipital region; (c) in task state, alpha2 rhythm is mainly 
concentrated in occipital region, and tends to strengthen 
in the parietal region and right temporal region with the 
increase of tasks. The above results suggest that alpha2 
rhythm is also closely related to visual information 
processing in the brain, as the occipital lobe is mainly 
responsible for visual functions. In the resting state, there 
is no visual information input in the brain, and the influ-
ence of memory task may be dominant in the brain, so 
the brain is shown as de-synchronization [33], and the 
power and relative power are shown as decreased. In the 
task state, the brain has a large amount of visual infor-
mation to be processed, then the neural centers in the 
occipital area and nearby brain areas are activated (mani-
fested as increased energy of alpha2 rhythm) to complete 
the visual information transmission and processing tasks. 
The influence of visual information processing task is 
dominant, while the influence of memory task is covered. 
Under the combined action of these two comprehensive 

Table 6  Division of  the  brain regions and  their included 
electrode

Brain region Electrode name

Frontal Fp1, Fp2, F3, F4, F7, F8, Fz

Temporal T3, T4, T5, T6

Central C3, Cz, C4

Parietal P3, Pz, P4

Occipital O1, O2
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effects, the power of alpha2 rhythm has increasing trend, 
but no statistical difference.

With the deepening of mental fatigue, the relative 
power of beta rhythm decreases significantly both in 
resting state and task state, which is consistent with the 
change trend of its power. Consistent research results 
have also been widely reported [22, 23]. Beta rhythm 
is usually associated with the excited state of the brain 
(e.g., mood and mental activity). When the brain con-
verts from resting state to task state, it needs to main-
tain a high concentration to complete the tasks, and its 
beta proportion rises from 15% to 28%. According to the 
brain topography in the fifth column of Figs.  2 and 4, 
beta rhythm is mainly distributed in the temporal region, 
which is consistent with the results of the brain topogra-
phy given by Jap et al. [23]. Based on the statistical results 
in Tables 3 and 5, the effect of beta rhythm on depicting 
mental fatigue in resting state is slightly better than that 
in task state.

Conclusions
In this study, we attempted to study the differences of 
mental fatigue on electrophysiological activity both 
in resting and task states at the same time. A group of 
mental arithmetic math problems was performed for 
mental fatigue induction. EEG data was collected before 
and after the tasks. Then five EEG rhythms (delta, theta, 
alpha1, alpha2, and beta) were calculated and discussed 
both in resting and task states. The results suggested the 
following conclusions: firstly, the task of mental arithme-
tic problems can successfully induce mental fatigue in 
the enrolled subjects; secondly, the relative power index 
of each EEG rhythm is more sensitive than the power 
index in response to mental fatigue, suggesting that rela-
tive power can be applied to estimate brain fatigue level; 
thirdly, the relative power of each EEG rhythm is better at 
assessing mental fatigue in resting state than in task state; 
finally, it is of great physiological significance to divide 
alpha frequency band into alpha1 band and alpha2 band 
in fatigue related studies, and at the same time improve 
the statistical differences of sub-bands.

Methods
Participants
In this study, 20 right-handed and healthy male par-
ticipants of engineering postgraduate students (age: 
24.5 ± 1.5  years, BMI: 20.7 ± 1.8  kg/m2) were recruited. 
Each subject must have regular living habits and normal 
eyesight, and have no brain disorders. All participants 
were asked to follow the bellow requirements before 
the tests: (1) forbid to stay up late and drink alcohol and 
drugs within a week, (2) prohibit smoke, coffee and tea 
within 8 h, and (3) wash the hair two hours ago. Every 
participant signed the informed consent, and Shan-
dong University Ethics Committee approved our study. 
Detailed descriptions about the participants were intro-
duced in the Ref. [40].

EEG data recording and preprocessing
A mental fatigue model was carried out to induce fatigue 
among all recruited participants: do two hundred differ-
ent mental arithmetic problems (one number between 
sixty and ninety plus another number between sixty and 
ninety, and then multiplied by a number between six and 
nine) for one hundred minutes. All problems were strictly 
designed to be at appropriate difficulty level and can be 
finished within thirty-seconds according to preceding 
pretests. That is, all the participants can get high accura-
cies during the divided four tasks. The results of the accu-
racies were similar and had no statistic difference among 
these four tasks. What we concerned was the effects of 
tasks on the brain when the participants highly focused 
on the given mental arithmetic math tasks. Detailed 
descriptions about the experimental design were intro-
duced in the Ref. [40].

As depicted in Fig. 6, these two hundred problems were 
evenly divided into four task segments, and 19-chan-
nel EEG data were recorded before and after these four 
task segments for both resting state and task state (2 
minutes EEG data recordings for each state). Thus, five 
times EEG recordings named as T0, T1, T2, T3 and T4 
were implemented in total. Then, 10 pieces of sequential 
5-second EEG signals with no artifacts were selected by 
EEGLAB for each state (Only eighteen participants’ EEG 
signals were further analyzed, because the other two 
were excluded due to their large head movements dur-
ing EEG collections). EEG rhythms of delta (2–4  Hz), 

Fig. 6  EEG data acquisition (EEG DAQ) procedures. C1 means resting state and C2 means task state
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theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), and 
beta (13–30 Hz) were extracted by digital FFT filtering. 
Detailed descriptions and definitions about EEG data 
recordings and preprocessing were introduced in the Ref. 
[40].

Computation of EEG indices
In this study, the power and relative power of every EEG 
rhythms were explored. The frequency spectrum X(f) 
of EEG signal x(n) was obtained by means of FFT, and 
then the power spectrum Px(f) of EEG were gained with 
Eq. (1). The power E(h) and relative power R(h) were cal-
culated through Eq.  (2) and Eq.  (3). Where, in Eq.  (1), 
Eq. (2) and Eq. (3), N is the number of EEG signal x(n), h 
represents the EEG rhythms (such as delta, theta, alpha1, 
alpha2, beta), fh and fl are the upper and lower frequen-
cies of h rhythm respectively, Etotal is the total power of all 
EEG rhythms. Besides, all the calculated power spectrum 
are the average value of the selected 10-segment EEG 
signals for each condition. In order to study the differ-
ences of mental fatigue in different brain regions [23], we 
divided the whole brain region into five brain functional 
regions. As shown in Table 6, the nineteen electrodes are 
also divided into five groups. And EEG indices are also 
computed based on the five brain functional regions.

Statistical analysis
One-way analysis of variance (ANOVA) was performed 
on the power and relative power of EEG bands to distin-
guish the statistically significant differences among the 
five periods. P-value, F-value and η2p (partial eta squared) 
are given in the ANOVA results. In order to make the 
statistical results more convincing and reduce the risk 
of false positive, FDR (false discovery rate) correction 
was carried out for the P-values among different brain 
regions.

Abbreviations
EEG: Electroencephalogram; ANOVA: Analysis of variance; FDR: False discovery 
rate; EEG DAQ: EEG data acquisition.
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