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Following the publication of the original article [1], it was 
highlighted that an old version of the text for abstract 
P252 was published, thereby causing the text to no 
longer correspond with Fig. 1. The updated abstract text 
is included in this Correction article together with the 
figure.

Decision making in the insect brain utilizes learned 
valence to bias particular actions in response to the ani-
mal’s environment. A key site for learning in insects is 
the mushroom body (MB) [1], where environmental cues 
are encoded by Kenyon cells (KCs) and assigned valence 
by MB output neurons (MBONs). Valence memories are 
learned via reward-modulated synaptic plasticity and 
stored in KC-MBON synapses, at which rewards are sig-
naled by dopaminergic neurons (DANs). Recent stud-
ies in Drosophila have revealed intricate connections 
between these three cell types, which are necessary for 
learning appropriate actions [2,3]. Here, we present a MB 
model that captures these data to compute reward pre-
diction errors (RPEs) for learning, thus implementing the 
Rescorla–Wagner model.

Current models posit that the alpha− (A) and beta− 
(B) lobes of the MB encode the signed valence of reward 
information and actions [1]: DANs in the A-lobe (here-
after called D−) are excited by negative (−ve) rewards, 
and depress active KC synapses onto MBONs that bias 
actions toward approach (M+); DANs in the B-lobe (D+) 
are excited by positive (+ve) rewards, depressing active 

KC synapses onto MBONs that bias actions toward 
retreat (M-). If MBONs provide excitatory feedback to 
their respective DANs, the learned reduction in MBON 
firing can offset the excitatory reward signal arriving at 
that DAN. Thus, D+ and D− may both encode RPEs 
in the signed (+ve or −ve) reward valence. Moreover, 
the difference in MBON firing rates,  m+-m−, signals a 
reward prediction, i.e., the learned net valence associated 
with a sensory cue.

We first show two problems with this model: (1) It 
cannot learn reward magnitudes above an upper bound; 
(2) it learns only when KC-DAN excitation is minimal 
or absent, in contrast to experiments [2]. We propose a 
solution, in which D+/D− neurons are instead inhibited 
by −ve/+ve reward signals, and in which KC-DAN exci-
tation is required. We also derive a plasticity rule for KC-
MBON synapses that performs gradient descent on the 
RPE, and that resembles experimentally observed rules 
[4]. We call this model the Signed Valence Circuit (SVC). 
As before, DANs encode RPEs in the signed reward 
valence, and the difference in DAN firing rates,  d+-d−, 
yields the net RPE.

In the SVC, D+/D−, respectively, signal RPEs for –
ve/+ ve rewards, so do not actually contribute to learn-
ing +ve/-ve valences, counter to experimental evidence 
[1]. However, in a dual version of this circuit, in which  
D+/D− are driven by +ve/−ve rewards, D+ no longer 
signals decrements in –ve rewards, again in contrast with 
experiments [5]. We therefore combine the SVC and its 
dual to produce the Signed RPE Circuit (SRC; Fig.  1a), 
in which the lobes encode the signed RPE of both +ve 
and –ve reward signals. Both the SVC and SRC are able 
to learn rapid changes to reward contingencies (Fig. 1b).

Open Access

BMC Neuroscience

*Correspondence:  james.bennett@sussex.ac.uk 
School of Engineering and Informatics, University of Sussex, Brighton, UK

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.1186/s12868-018-0451-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s12868-019-0486-8&domain=pdf


Page 2 of 2Bennett and Nowotny  BMC Neurosci            (2019) 20:4 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

Lastly, the SRC performs well in a traplining task, 
repeating learned routes and minimizing the distance 
traveled between feeding areas, a behavior exhibited by 

bees [6] and other species, and a foraging analog of the 
traveling salesman problem.
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Fig. 1 (a) Schematic of the Signed Reward Prediction Error Circuit. 
White arrows on the dopamine synapses indicate the relative change 
in synaptic weight with increases in dopamine released by the 
respective DAN. (b) Reward contingencies, and reward predictions 
computed from the MBON firing rates, in a two-alternative forced 
choice task. Reward predictions track the actual rewards associated 
with each option and become highly erroneous for options that are 
repeatedly not chosen
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