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Abstract 

Background:  Light exposure induces oxidative stress, which contributes to ocular diseases of aging. Blue light 
provides a model for light-induced oxidative stress, lipid peroxidation and retinal degeneration in Drosophila mela-
nogaster. In contrast to mature adults, which undergo retinal degeneration when exposed to prolonged blue light, 
newly-eclosed flies are resistant to blue light-induced retinal degeneration. Here, we sought to characterize the gene 
expression programs induced by blue light in flies of different ages to identify neuroprotective pathways utilized by 
photoreceptors to cope with light-induced oxidative stress.

Results:  To identify gene expression changes induced by blue light exposure, we profiled the nuclear transcriptome 
of Drosophila photoreceptors from one- and six-day-old flies exposed to blue light and compared these with dark 
controls. Flies were exposed to 3 h blue light, which increases levels of reactive oxygen species but does not cause 
retinal degeneration. We identified substantial gene expression changes in response to blue light only in six-day-old 
flies. In six-day-old flies, blue light induced a neuroprotective gene expression program that included upregulation of 
stress response pathways and downregulation of genes involved in light response, calcium influx and ion transport. 
An intact phototransduction pathway and calcium influx were required for upregulation, but not downregulation, of 
genes in response to blue light, suggesting that distinct pathways mediate the blue light-associated transcriptional 
response.

Conclusion:  Our data demonstrate that under phototoxic conditions, Drosophila photoreceptors upregulate stress 
response pathways and simultaneously, downregulate expression of phototransduction components, ion transport‑
ers, and calcium channels. Together, this gene expression program both counteracts the calcium influx resulting from 
prolonged light exposure, and ameliorates the oxidative stress resulting from this calcium influx. Thus, six-day-old flies 
can withstand up to 3 h blue light exposure without undergoing retinal degeneration. Developmental transitions dur‑
ing the first week of adult Drosophila life lead to an altered gene expression program in photoreceptors that includes 
reduced expression of genes that maintain redox and calcium homeostasis, reducing the capacity of six-day-old flies 
to cope with longer periods (8 h) of light exposure. Together, these data provide insight into the neuroprotective 
gene regulatory mechanisms that enable photoreceptors to withstand light-induced oxidative stress.
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Background
Light itself, although essential for vision, poses a stress 
to the visual system through photogeneration of reactive 
oxygen species [1]. Oxidative stress has been linked to 
the onset of human retinal degeneration [1]. The special-
ized nature and composition of photoreceptor neurons 
may increase their sensitivity to oxidative damage due 
to the energy demands of vision, the high concentration 
of peroxidation-sensitive polyunsaturated fatty acids, 
and exposure to light [2, 3]. In particular, lipid peroxida-
tion, the oxidation of membrane lipids, is an emerging 
hallmark of both neurodegenerative and age-associated 
ocular disease [3, 4]. Lipid peroxidation, once initiated, 
induces a cycle of oxidative damage that harms cellu-
lar membranes and eventually culminates in cell death 
[5]. Cells possess endogenous protective mechanisms 
to withstand lipid peroxidation and maintain redox 
homeostasis including gene regulatory mechanisms [6]. 
However, the neuroprotective mechanisms utilized by 
photoreceptors to withstand the oxidative stress gen-
erated as a normal part of light exposure are not fully 
understood.

In Drosophila, as in other organisms, blue light wave-
lengths induce retinal degeneration [7–9]. Blue light 
(λ = 480  nm) activates the G-protein coupled recep-
tor Rhodopsin 1 (Rh1) within the rhabdomere, the light 
sensing organelle, of R1–R6 photoreceptors [10]. Upon 
blue illumination, Rh1 is activated to metarhodopsin 
initiating the phototransduction cascade [10]. In flies, 
metarhodopsin can be converted back to Rh1 by orange 
light (λ = 580  nm) [10–12]. Persistent production of 
metarhodopsin in the presence of blue light leads to its 
endocytosis and prolonged calcium influx, both of which 
can induce cell death [13–18]. The prolonged calcium 
influx resulting from blue light exposure increases levels 
of reactive oxygen species in the eye including hydro-
gen peroxide and lipid peroxidation [19]. We previously 
showed that lipid peroxidation is a major contribu-
tor to blue light-induced retinal degeneration because 
feeding flies lipophilic antioxidants, or overexpress-
ing Cytochrome-b5, suppressed lipid peroxidation and 
enhanced photoreceptor survival [19]. Thus, blue light 
exposure in flies provides a model for light-induced oxi-
dative stress and lipid peroxidation, hallmarks of age-
associated ocular and neurodegenerative disease [3, 4].

Although blue light induces retinal degeneration in 
mature flies, our previous results showed that very young 
flies are resilient to longer periods of blue light (Fig. 1a). 
Newly-eclosed flies, that have recently emerged from the 
pupal case and are less than one day old, did not undergo 
retinal degeneration in response to prolonged blue light 
[19]. In contrast, mature flies that are only six days old, 
underwent severe retinal degeneration when exposed to 

the same level of blue light [19]. Blue light-induced reti-
nal degeneration required an intact phototransduction 
pathway and calcium influx, mediated by the transient 
receptor potential (trp) calcium channel [19]. Since blue 
light provides a model for light-induced lipid peroxida-
tion in the eye, we sought to identify the gene regulatory 
mechanisms utilized by Drosophila photoreceptors to 
cope with the oxidative stress resulting from blue light 
exposure. Here, we profiled the transcriptome of Dros-
ophila photoreceptors following short blue light expo-
sure at different ages to gain insight into neuroprotective 
pathways that enable photoreceptors to withstand light-
induced oxidative stress.

Results
Blue light induces neuroprotective gene expression 
changes in photoreceptors
To identify gene regulatory mechanisms involved in the 
response of photoreceptors to blue light-induced oxida-
tive stress, we profiled the transcriptome of photorecep-
tor cells in flies that were exposed to blue light relative 
to dark control. Here, we exposed flies to 3 h blue light, 
which we previously showed was sufficient to increase 
levels of reactive oxygen species in the eye of six-day-old 
flies, but not in one-day-old flies [19]. This shorter 3  h 
blue light exposure resulted in less than 1% rhabdomere 
loss at both ages (Additional file  1: Figure S1), enabling 
us to isolate intact photoreceptor nuclei for RNA-seq 
analysis. To isolate photoreceptor nuclear RNA, we used 
previously developed methods to affinity-purify Rh1-
Gal4 > KASH-GFP tagged nuclei from R1–R6 cells in 
adult heads [20, 21]. Since white-eyed flies are sensitized 
to blue light [9], we depleted eye pigments from Rh1-
Gal4 > KASH-GFP flies, which have red eyes due to the 
presence of the mini-white transgene marker, by intro-
ducing homozygous mutations for cn and bw [22, 23]. We 
then exposed one- or six-day-old flies to 3 h of blue light 
and isolated photoreceptor nuclear RNA for RNA-seq 
analysis (Fig. 1b).

To test the enrichment of photoreceptor transcripts 
using our affinity-isolation procedure, we compared 
the transcriptome of the whole head homogenate (pre-
isolation) and post-isolation sample from the control 
dark treated day one flies. Consistent with previous 
results using this affinity-isolation approach [20], the 
post-isolation samples differed substantially from the 
pre-isolation samples based on the principal compo-
nent analysis (Additional file 1: Figure S2A). We identi-
fied 521 genes, including GFP, as significantly enriched 
using edgeR analysis (False Discovery Rate, FDR < 0.05, 
Fold change, FC > 2) in the post-isolation samples rela-
tive to the pre-isolation samples (Additional file 1: Fig-
ure S2B, Additional file 2: Table S1). These genes were 
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enriched for Gene Ontology (GO) terms associated 
with photoreceptor development and function (Addi-
tional file  3: Table  S2). Thus, we conclude that our 
post-isolation samples are enriched for photoreceptor-
expressed transcripts.

Next, we compared the photoreceptor-enriched tran-
scriptome of day one and day six flies that had been 
exposed to blue light or the dark control. Multidimen-
sional scaling plots revealed that both age and light treat-
ment influenced the variation in gene expression between 
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Fig. 1  Blue light provides a model for light-induced oxidative stress and retinal degeneration in flies. a Six-day-old white-eyed flies undergo 
retinal degeneration after 8 h blue light exposure. Blue light-induced retinal degeneration was suppressed by trp mutations that prevent 
phototransduction-associated calcium influx, and by reducing oxidative stress. One-day-old flies did not exhibit blue light-dependent oxidative 
stress or retinal degeneration. b Schematic for photoreceptor transcriptome profiling after exposure to blue light. Male cn, bw; Rh1-Gal4, 
UAS-GFP-Msp300KASH flies were raised in 12 h/12 h light/dark conditions for 1 or 6 days prior to 3 h blue light exposure (2 mW/cm2) or dark control. 
A custom designed optical stimulator with built-in temperature control was used for all experiments. Photoreceptor nuclei labeled with KASH-GFP 
were affinity isolated and nuclear RNA was ribo-depleted and analyzed by RNA-seq
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the samples, with the three biological replicates for each 
treatment and age grouping together (Fig. 2a). To identify 
genes that showed altered expression profiles upon blue 
light treatment, we used edgeR analysis to identify differ-
entially expressed genes in blue versus dark treated sam-
ples from day one or day six flies. Only 40 and four genes 
were significantly up- or downregulated (FDR < 0.05), 
respectively, in day one photoreceptors upon blue light 
stress (Fig. 2b). In contrast, 331 and 237 genes were sig-
nificantly up- or downregulated, respectively, in day six 
photoreceptors upon blue light stress (Fig. 2b). Only six 
genes were uniquely regulated in response to blue light 
in day one photoreceptors, and most of these genes 
also showed strong, albeit not significant, fold changes 
in gene expression in day six flies (Additional file 1: Fig. 
S3). These data indicate that six-day-old flies exhibit 
substantial gene expression changes in photoreceptors 
in response to blue light, whereas these gene expression 
changes are largely absent in newly-eclosed flies. We 
previously observed that in contrast to six-day-old flies, 
one-day-old flies did not show increased levels of reactive 
oxygen species upon blue light exposure [19]. Together, 
these observations suggest that one-day-old flies experi-
ence much lower levels of blue light-induced oxidative 
stress than mature, six-day-old flies.

Next, we asked if the gene expression changes that we 
observed in response to blue light in day six flies could be 
neuroprotective since 3  h blue light exposure increased 
oxidative stress levels in the eye but did not cause retinal 

degeneration (Additional file 1: Fig. S1). GO term enrich-
ment analysis revealed that pathways associated with the 
response to unfolded proteins, environmental stresses 
such as heat, ion transport and protein translation were 
upregulated in response to blue light exposure in six-
day-old flies (Table  1, Additional file  3: Table  S2). The 
blue light-upregulated genes included many heat shock 
protein genes such as Hsc70-2, Hsc70-3, Hsc70-5, Hsp68, 
Hsp70Aa and Hsp70Bc that are part of the Heat Shock 
Protein 70 superfamily of chaperones. These chaperones 
are upregulated in response to chemical and thermal 
stress, resolve misfolded and aggregated proteins, and 
are implicated in having a protective role in neurodegen-
erative disease [24]. In addition, several genes encoding 
proteins involved in ion transport were upregulated in 
response to blue light. These genes include mitochondrial 
transporters such as Thiamine pyrophosphate carrier 
protein 1 (Tpc1) and CG5646, several putative organic 
cation transporters such as CG14855, CG14856 and 
SLC22A, and the gap junction protein Innexin 7 (Inx7), 
which together might restore calcium and energy home-
ostasis within photoreceptors following blue light expo-
sure. Several genes associated with protein translation 
were also upregulated in response to blue light including 
several cytoplasmic aminoacyl-tRNA synthetases (e.g. 
GluProRS/Aats-glupro, GlyRS/Aats-gly, TrpRS/Aats-
trp). Specialized translation is associated with the stress 
response [25], but increased translation following blue 
light might also be required to restore Rh1 levels, which 
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Fig. 2  Blue light exposure alters expression of stress response, photoreceptor development, and circadian rhythm genes in six-day-old 
photoreceptors. a Multidimensional scaling plot of distances between gene expression profiles based on log2 fold change. The plot shows three 
biological replicates for affinity-enriched photoreceptor nuclear RNA from male day one or day six flies exposed to 3 h blue light or 3 h dark 
(control). b Volcano plots showing the differential gene expression profiles in day one (left panel) or day six (right panel) photoreceptors induced 
by blue light relative to dark (control). Fold change was plotted as log2(fold change) for each gene relative to its false discovery rate (−log2[FDR]). 
Genes with significantly differential expression (FDR < 0.05) are highlighted in red or blue, and GFP is shown in green for comparison
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are depleted due to endocytosis of activated metarho-
dopsin [14, 16]. Although DNA repair was not identi-
fied in the GO term enrichment analysis, several genes 
associated with repair of DNA damage were upregulated 
in response to blue light including DNA ligase III (lig3), 
mutagen-sensitive 205 (mus205), Replication Protein A 70 
(RpA-70), Inverted repeat-binding protein (Irbp), Inverted 
repeat binding protein 18 kDa (Irbp18), Replication factor 
C subunit 4 (RfC4), Xrp1, nbs, and CG3448. Thus, blue 
light exposure initiates a transcriptional stress response 
in photoreceptors that induces repair mechanisms to 
combat protein misfolding and DNA damage, and to 
restore Rh1 levels and ion homeostasis.

In addition to the genes that were upregulated in 
response to blue light, a similar number of genes were 
downregulated in response to blue light exposure in day 
six, but not day one, flies. Intriguingly, these blue light-
downregulated genes were enriched for GO terms related 
to photoreceptor function and phototransduction includ-
ing regulation of membrane potential, rhodopsin metab-
olism, and response to light stimulus (Table 2, Additional 
file  3: Table  S2). Several genes involved in regulating 

membrane potential were downregulated in response 
to blue light including potassium and chloride channels 
and their regulators such as Chloride channel-a (ClC-a), 
Slowpoke (slo), Shaker (Sh), small conductance calcium-
activated potassium channel (SK), ether a go–go (eag), 
Slip1, Na+-driven anion exchanger 1 (Ndae1) and Hyper-
kinetic (Hk). In addition, factors involved in post-trans-
lational modification and maturation of rhodopsin such 
as Hexosaminidase 1 (Hexo1), alpha-Mannosidase class 
II b (alpha-Man-IIb), and fused lobes (fdl) were downreg-
ulated in response to blue light. Most strikingly, several 
genes with well-characterized roles in phototransduction 
were significantly downregulated in day six flies upon 
blue light exposure. These genes include components of 
the phototransduction machinery such as retinal degen-
eration A (rdgA), retinal degeneration C (rdgC), Histidine 
decarboxylase (Hdc), Calcium, integrin binding family 
member 2 (Cib2), and the calcium channel trp. Several 
other genes involved in voltage-gated calcium influx into 
photoreceptors were also downregulated in response to 
blue light including Ca2+-channel protein alpha1 subu-
nit D (Ca-alpha1D), Ca2+-channel-protein-beta-subunit 

Table 1  Enriched biological process GO terms identified for day 6 blue versus dark upregulated genes

GO term Description p value FDR Enrichment Genes

GO:0006418 tRNA aminoacylation for protein translation 4.50E − 06 0.00646 6.82 Aats-glupro, CG10802, Aats-thr, Aats-gly, Aats-cys, 
CG33123, Aats-trp, CG17259, Aats-asp

GO:0006399 tRNA metabolic process 0.000895 0.292 3.06 Aats-glupro, CG10802, CG6353, Aats-thr, Aats-gly, 
CG33123, Aats-cys, Aats-trp, CG17259, CG18596, 
Aats-asp

GO:0006820 Anion transport 0.000111 0.0532 3.05 CG14857, CG14856, CG5535, CG7589, CG14855, 
CG5802, CG13646, CG5646, JhI-21, CG9864, 
CG42575, w, MFS3, Tpc1, CG7442

GO:0015695 Organic cation transport 0.000128 0.0574 13.47 CG5646, CG3476, CG7442, Tpc1

GO:0015696 Ammonium transport 0.000465 0.167 10.1 CG5646, w, CG3476, CG7442

GO:0009631 Cold acclimation 0.000338 0.143 18.18 Hsp23, Hsp26, Hsp83

GO:0006457 Protein folding 0.00042 0.159 3.13 Hsp68, Hsp23, CG14894, Hsp70Bc, Hsp26, Hsc70-3, 
Hsc70-5, Hsp70Aa, Hsc70-2, Hsp83, wbl, CG5525

GO:0042026 Protein refolding 2.37E−08 0.00017 14.26 Hsp68, Hsp23, Hsp26, Hsp70Bc, Hsc70-3, Hsc70-5, 
Hsc70-2, Hsp70Aa

GO:0061077 Chaperone-mediated protein folding 8.51E−06 0.00555 6.34 Hsp68, Hsp23, Hsp26, Hsp70Bc, Hsc70-3, Hsc70-5, 
Hsc70-2, Hsp70Aa, CG5525

GO:0009408 Response to heat 0.000101 0.0516 4.27 Hsp68, Hsp23, Nup98-96, Hsp26, Hsp70Bc, Hsc70-3, 
Hsc70-5, Hsc70-2, Hsp70Aa, Hsp83

GO:0006986 Response to unfolded protein 7.39E−06 0.00589 11.36 Hsp68, Hsp70Bc, Hsc70-3, Hsc70-5, Hsc70-2, 
Hsp70Aa

GO:0006458 ‘de novo’ protein folding 1.13E−05 0.00626 8.48 Hsp68, Hsp70Bc, Hsc70-3, Hsc70-5, Hsc70-2, 
Hsp70Aa, CG5525

GO:0051085 Chaperone cofactor-dependent protein refold‑
ing

2.93E−06 0.00525 12.99 Hsp68, Hsp70Bc, Hsc70-3, Hsp70Aa, Hsc70-2, 
Hsc70-5

GO:0034605 Cellular response to heat 8.56E−06 0.00511 7.35 Hsp68, Nup98-96, Hsp70Bc, Hsc70-3, Hsc70-5, 
Hsc70-2, Hsp70Aa, Hsp83

GO:0035080 Heat shock-mediated polytene chromosome 
puffing

0.000338 0.135 18.18 Nup98-96, Hsp70Bc, Hsp70Aa
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Table 2  Enriched biological process GO terms identified for day 6 blue versus dark downregulated genes

GO term Description p value FDR Enrichment Genes

GO:0009886 Post-embryonic animal morphogenesis 0.000318 0.127 2.49 app, ewg, mirr, ara, oc, so, dlg1, sd, Cbl, jumu, CG30456, 
psq, RhoGEF2, Exn, mthl1, CG33275, zfh2, CG13366

GO:0009653 Anatomical structure morphogenesis 0.00041 0.134 1.77 app, kek4, ewg, oc, vri, dlg1, dnt, ric8a, Cbl, jumu, csw, 
RhoGEF2, Prosap, mthl1, Moe, CG13366, zfh2, Hr39, 
slik, CHES-1-like, Shroom, fru, mirr, CG13188, caup, 
ara, so, gl, sd, psq, CG30456, Crg-1, fred, pyd, Exn, 
CG33275

GO:0042693 Muscle cell fate commitment 0.000539 0.133 42.96 caup, ara

GO:0006357 Regulation of transcription by RNA polymerase II 0.000989 0.177 1.97 CHES-1-like, mirr, ewg, Mef2, fru, caup, ara, oc, dlg1, 
gl, so, sd, onecut, psq, Eip74EF, Crg-1, NfI, csw, jing, 
tim, jigr1, Camta, Hr39, Elp3

GO:0006355 Regulation of transcription, DNA-templated 3.00E−04 0.154 1.8 CTCF, ewg, Kdm4B, tinc, oc, vri, dlg1, jumu, onecut, 
Eip74EF, csw, NfI, tim, zfh2, Hr39, Elp3, Pdp1, CHES-
1-like, fru, Mef2, mirr, CG13188, caup, ara, Hmt4-20, 
Hmx, gl, so, sd, psq, Crg-1, jing, jigr1, Camta, wts, 
thoc5

GO:0030001 Metal ion transport 0.000378 0.135 3.67 eag, Hk, Ca-alpha1D, Ndae1, Ca-beta, Sh, SK, trp, 
olf186-F, slo

GO:0042391 Regulation of membrane potential 2.52E−05 0.0903 5.05 eag, inaF-D, Ca-alpha1D, Prosap, Sh, inaF-C, SK, Slob, 
Moe, slo

GO:0007619 Courtship behavior 0.000837 0.162 9.04 eag, rut, Sh, gb

GO:0048150 Behavioral response to ether 0.000539 0.138 42.96 eag, Sh

GO:0007617 Mating behavior 5.54E−05 0.0993 4.62 eag, tim, rut, fru, Sh, gb, dlg1, Moe, Hr39, slo

GO:0007275 Multicellular organism development 0.000177 0.141 3.25 ewg, fru, Mef2, mirr, CG2681, oc, vri, dlg1, dnt, cdi, 
Elp3, Pdp1, Sema-1b

GO:0046154 Rhodopsin metabolic process 4.33E−05 0.104 11.93 fdl, rdgA, alpha-Man-IIb, trp, Hexo1

GO:0001745 Compound eye morphogenesis 0.000177 0.127 4.44 fred, mirr, caup, ara, pyd, oc, so, gl, sd

GO:0008049 Male courtship behavior 0.000892 0.168 5.26 fru, gb, dlg1, Moe, Hr39, slo

GO:0045433 Male courtship behavior, veined wing generated 
song production

0.000837 0.167 9.04 fru, Moe, Hr39, slo

GO:0045938 Positive regulation of circadian sleep/wake cycle, 
sleep

0.000122 0.124 14.32 Hk, homer, Sh, mld

GO:0045187 Regulation of circadian sleep/wake cycle, sleep 0.000344 0.13 7.95 Hk, tim, homer, mld, Sh

GO:0042752 Regulation of circadian rhythm 0.000248 0.148 4.77 Hk, tim, homer, mld, Sh, CG33275, gl, so

GO:0007623 Circadian rhythm 0.000404 0.138 3.99 Hk, tim, Mef2, dlg1, vri, so, gl, Pdp1, slo

GO:0016057 Regulation of membrane potential in photore‑
ceptor cell

0.000638 0.147 16.11 inaF-D, SK, Moe

GO:1902680 Positive regulation of RNA biosynthetic process 0.000803 0.175 2.37 Mef2, mirr, caup, ara, oc, gl, so, sd, jumu, onecut, 
Eip74EF, NfI, jing, Camta, thoc5, Hr39, Pdp1

GO:0035120 Post-embryonic appendage morphogenesis 0.000543 0.13 3.26 mirr, ara, Exn, mthl1, CG33275, sd, zfh2,, Cbl, jumu, 
CG30456, psq

GO:0045317 Equator specification 0.000236 0.154 21.48 mirr, caup, ara

GO:0009887 Animal organ morphogenesis 0.000159 0.143 2.72 mirr, ewg, CG13188, caup, ara, oc, gl, so, vri, sd, dnt, 
fred, pyd, Prosap, mthl1, CG13366, Hr39

GO:0045935 Positive regulation of nucleobase-containing 
compound metabolic process

0.00072 0.161 2.32 mirr, Mef2, caup, ara, oc, gl, so, sd, jumu, tankyrase, 
onecut, Eip74EF, NfI, jing, Camta, thoc5, Hr39, Pdp1

GO:0007635 Chemosensory behavior 8.68E−05 0.124 4.38 mura, smi35A, gish, rut, Sh, gb, nord, Moe, trp, psq

GO:0007610 Behavior 2.40E−05 0.172 2.36 nord, oc, dlg1, vri, hppy, CG13192, eag, smi35A, gish, 
tim, Sh, Prosap, mld, Moe, Elp3, Hr39, Hk, Mef2, fru, 
gb, trp, psq, slo, mura, t, homer, rut

GO:0035025 Positive regulation of Rho protein signal trans‑
duction

0.000317 0.134 11.45 RhoGEF2, Exn, CG33275, CG30456

GO:0009314 Response to radiation 5.00E−04 0.138 3.09 smi35A, tim, CG30118, rdgA, CG9236, Sh, Camta, 
dlg1, wts, gl, Hdc, trp

GO:0009416 Response to light stimulus 0.000275 0.152 3.53 smi35A, tim, rdgA, CG30118, CG9236, Sh, Camta, 
dlg1, gl, Hdc, trp
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(Ca-beta), and olf186-F, which encodes a subunit of the 
store-operated calcium entry channel. Previously, we 
showed that blue light-induced retinal degeneration 
required an intact phototransduction pathway and Trp-
mediated calcium influx [19]. Here, our data suggest that 
under phototoxic conditions, photoreceptors downregu-
late expression of phototransduction components and 
calcium channels, potentially as part of a neuroprotective 
response to mitigate the calcium influx resulting from 
light exposure.

Blue light‑induced changes in gene expression show 
different temporal profiles
Exposure to moderate levels of stress protects photo-
receptors against retinal degeneration [26]. To test if 
exposure to light stress would increase basal expression 
levels of stress response genes, we asked if the changes 
in gene expression that occurred in photoreceptors in 
response to blue light returned to pre-treatment levels 
after different intervals of dark exposure, post light-
treatment. To do this, we exposed male six-day-old cn 
bw; Rh1-Gal4 > KASH-GFP flies to 3 h blue light or dark 
control, and then incubated flies for 0, 3, 6 or 24 h in the 
dark. We then dissected eyes and examined expression 
of several blue light-regulated genes using qPCR. We 
normalized expression of each gene to the pre-treat-
ment control, and compared relative expression levels 
between the blue and dark samples for each time point. 
We examined four blue light-induced genes, branch-
less (bnl), Heat shock protein 26 (Hsp26), RpA-70 and 
Xrp1 and two blue light-repressed genes, Checkpoint 
suppressor 1-like (CHES-1-like) and trp (Fig.  3). The 
four upregulated genes all showed different expression 

profiles following exposure to 3 h blue light: Xrp1 and 
RpA-70 showed significantly increased expression 
in blue light versus dark control at 0, 3 and 6  h post-
treatment, but returned to basal levels by 24  h post-
treatment. In contrast, bnl and Hsp26 levels remained 
high 24 h after blue light exposure. The two downregu-
lated genes, CHES-1-like and trp, showed significantly 
decreased expression levels immediately post-treat-
ment (0 h) but returned to basal levels by 3 h post-treat-
ment. These data indicate that blue light-repression of 
genes is transient and might require continual exposure 
to the light source. In contrast, exposure to blue light 
increases expression of stress response genes, some of 
which remain at relatively high levels up to 1 day after 
flies are removed from the source of light stress.

An intact phototransduction pathway and calcium influx 
are required for blue light‑induced upregulation of stress 
response genes, but not downregulation of visual function 
genes
Phototransduction in R1–R6 photoreceptors initiates 
with the light-sensing G-protein coupled receptor, Rho-
dopsin 1 (Rh1 encoded by ninaE), and culminates in cal-
cium influx, largely mediated by the Trp channel [11]. We 
previously showed that blue light-induced retinal degen-
eration requires both phototransduction and calcium 
influx because rhabdomere loss was suppressed by muta-
tions that reduce Rh1 protein levels to ~ 1% of wild-type 
levels (ninaE7) [27] or reduce Trp expression (trp9) [19]. 
To test if phototransduction and calcium influx were nec-
essary for blue light-regulated gene expression changes, 
we examined expression of blue light-regulated genes 
in eyes from ninaE7 or trp9 flies. We compared gene 
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expression to white-eyed w1118 flies, which lack eye pig-
ment but have otherwise normal phototransduction. We 
exposed six-day-old male flies of each genotype to 3  h 
blue light and examined gene expression relative to the 
dark control at either 0 or 3  h post-treatment by qPCR 
in dissected eyes (Fig.  4). We examined four blue light-
upregulated genes, bnl, Heat shock protein 83 (Hsp83), 
RpA-70 and Xrp1, and three downregulated genes, reti-
nal degeneration A (rdgA), retinal degeneration C (rdgC) 
and Shaker (Sh). Blue light exposure resulted in increased 
expression of bnl, Hsp83, RpA-70 and Xrp1 either at 0 or 
3 h post-treatment in w1118 flies, and mutations in ninaE 
and trp suppressed this increase (Fig.  4). In contrast, 
ninaE and trp mutations did not suppress the down-
regulation of rdgA, rdgC or Sh upon blue light exposure. 
We did not observe significant differences in basal lev-
els of expression of any of the seven blue-light regulated 
genes tested between w1118, ninaE and trp flies in the 
dark controls relative to the pre-treatment samples (data 
not shown). We note that while trp expression was sig-
nificantly reduced in ninaE flies, calcium influx is already 
suppressed in ninaE mutants because Rh1 functions 
upstream of the Trp channel in the phototransduction 
cascade. Together, these data indicate that the blue light-
induced and repressed genes are regulated via distinct 
pathways. Blue light-upregulated genes require an intact 
phototransduction cascade and calcium influx, whereas 
blue light-repressed genes do not. Instead, blue light-
downregulated genes are repressed only immediately 
after light exposure, suggesting that light itself might be 
involved in the transient repression of these genes.

Developmental transitions in photoreceptor gene 
expression correlate with the differential susceptibility 
to blue light between day one and six
Since we did not observe substantial changes in gene 
expression upon blue light exposure in day one flies, we 
next wondered if underlying changes in gene expres-
sion between day one and day six photoreceptors could 
account for the differential susceptibility to blue light. 
Supporting this hypothesis, day one flies have lower 
basal levels of hydrogen peroxide than day six flies, even 
prior to blue light exposures [19]. Principal component 
analysis of the blue and dark treated RNA-seq samples 
revealed that both light treatment and age contributed 
to differences in the gene expression profile (Fig.  2a). 
Indeed, we identified 106 and 496 genes that were signifi-
cantly up- or downregulated, respectively, between day 
one and day six in photoreceptors in the absence of blue 
light exposure (Fig. 5a). Importantly, we did not observe 
differences in GFP expression between day one and day 
six samples (Fig. 5a). Further, we did not observe any dif-
ferences in enrichment of GFP in day one versus day six 
affinity purifications based on qPCR (data not shown). 
Thus, affinity-enrichment of photoreceptor nuclear RNA 
was not affected by differences in age.

Next, we asked if the changes in gene expression 
between day one and day six resembled those gene 
expression changes observed in aging photoreceptors. 
We compared the gene expression changes observed 
between day one and day six in cn bw; Rh1-Gal4 > KASH-
GFP flies with those observed between day 10 and 40 
in pigmented male Rh1-Gal4 > KASH-GFP flies [20]. To 
do this, we performed gene set enrichment analysis to 
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compare the gene expression changes between day one 
and six with day 10 and 40, and asked if these expres-
sion changes showed significant enrichment in either 
direction. We did not observe any significant enrich-
ment of either up- or downregulated genes between day 
one and six, and day 10 and 40 (Fig. 5b). Thus, the gene 
expression changes that occur between day one and six 
in photoreceptors differ from those observed during later 
stages of the aging process in photoreceptors, suggesting 
that these gene expression changes between day one and 
six do not reflect aging. Consistent with these observa-
tions, white-eyed flies show peak reproductive capacity 
between 3 and 6  days post-eclosion [28]. Moreover, the 
fly strains used in our experiments show maximum life 
spans of up to 80  days under our growth conditions at 
25 °C [20]. Together, these data suggest that the changes 
in gene expression between early post-eclosion at day one 
and day six do not represent aging.

Instead, we wondered if the changes in gene expres-
sion between day one and day six represented devel-
opmental transitions between newly-eclosed flies and 
mature, young adults. Strikingly, almost five times as 
many genes were downregulated between day one and 
day six as compared with upregulated genes. Whereas 
the genes that are upregulated between day one and day 

six were enriched for several stress-related pathways 
including response to hypoxia, defense response, and 
heat response (Table  3), the downregulated genes were 
enriched for pathways associated with photoreceptor 
and/or eye development (Table 4). We observed reduced 
expression of genes involved in Notch signaling such as 
Notch (N), Delta (Dl), Serrate (Ser) and fringe (fng). Notch 
signaling plays an important role during eye develop-
ment and specification of photoreceptor fate [29, 30], and 
our data suggest that newly-eclosed flies still show some 
activity of this pathway, but that this rapidly declines 
over the first few days post-eclosion. We next asked if 
some of these changes in gene expression could reduce 
the ability of day six flies to withstand blue light expo-
sure. Indeed, some of the genes that were downregulated 
in the first week of life could account for the increased 
susceptibility of older flies to blue light. For example, day 
six flies showed reduced expression of Calphotin (Cpn), 
encoding an immobile calcium buffer required for rhab-
domere development [31]. Cpn hypomorph files develop 
light-induced retinal degeneration [13], suggesting that 
reductions in Cpn expression could reduce the ability of 
six-day-old flies to buffer the increased calcium levels 
that are necessary for blue light-induced retinal degen-
eration [19]. In addition, day six flies showed reduced 
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expression of several genes with important roles in main-
taining cellular redox homeostasis including Peroxidase 
(Pxd), which converts hydrogen peroxide to water. More-
over, 10 of the 96 annotated Cytochrome P450 genes 
(Cyp28d1, Cyp317a1, Cyp4c3, Cyp4e1, Cyp4e3, Cyp4s3, 
Cyp6a20, Cyp6a8, Cyp6a9, and Cyp9b1) were downregu-
lated between day one and day six. The upregulation of 
stress-related pathways between day one and six suggests 
that photoreceptors experience considerable stress as a 
normal part of their early life, potentially resulting from 
exposure to white light. In addition, the downregulation 
of many genes involved in signaling and developmen-
tal processes supports the idea that major developmen-
tal transitions occur in photoreceptors between the late 
pupal/newly-eclosed adult and mature-young adult stage. 
We propose that these collective changes in gene expres-
sion in the first week of adult life diminish the capacity 
of photoreceptors to maintain homeostasis under photo-
toxic conditions, resulting in their susceptibility to blue 
light-induced retinal degeneration.

Transcription factor‑binding motifs are enriched 
in the promoters of blue light‑regulated genes
What factors mediate the blue light-induced changes in 
gene expression in photoreceptors? Our qPCR analysis 
indicated that there were different pathways associated 
with blue light-upregulated and downregulated changes 

in gene expression. An intact phototransduction pathway 
and calcium influx were only required for upregulation, 
but not downregulation, of genes in response to blue 
light. Thus, these data suggest that light-induced calcium 
influx activates the blue light-upregulated genes, whereas 
the blue light-downregulated genes are repressed, per-
haps transiently, by exposure to light itself. To identify 
potential transcription factors that could mediate blue 
light-induced changes in gene expression, we examined 
the promoters of blue light up- or downregulated genes 
for enriched sequence motifs using hypergeometric opti-
mization of motif enrichment (HOMER) [32]. Using this 
approach, we identified different sets of significantly 
enriched promoter motifs for blue light up- and down-
regulated genes (Additional file 1: Fig. S4, Fig. S5). These 
promoter motifs corresponded to potential binding 
sites for different transcription factors (Additional file 4: 
Table S3). Four of the promoter motifs identified for the 
blue light-upregulated genes contained potential bind-
ing sites for Heat shock factor (Hsf ), a key mediator of 
the stress response [33]. In addition, a potential binding 
site for the AP-1 transcription factor, composed of Jun-
related antigen (Jra) and Kayak (Kay) in flies, was pre-
sent in one of the promoter motifs identified for the blue 
light-upregulated genes. Interestingly, a transcription 
co-activator that is important for redox-sensing by AP-1, 
multiprotein bridging factor 1 (mbf1), was upregulated 

Table 3  Enriched biological process GO terms identified for day 6 versus day 1 upregulated genes

GO term Description p value FDR Enrichment Genes

GO:0055093 Response to hyperoxia 0.000213 0.0899 24.23 AttA, AttB, DptB

GO:0050830 Defense response to Gram-positive bacterium 6.04E−05 0.0394 11.69 AttA, Dro, AttB, TotM, DptB

GO:0009617 Response to bacterium 1.38E−05 0.0142 5.42 AttA, Dro, Lectin-galC1, cathD, TotM, AttB, DptB, TotX, 
TotA, TotC

GO:0051704 Multi-organism process 5.45E−07 0.000977 4.36 AttA, Drsl4, Dro, cathD, TotM, AttB, TotX, TotC, jumu, 
Est-6, Npl4, Lectin-galC1, CG34215, DptB, Drsl5, TotA

GO:0051707 Response to other organism 1.02E−07 0.000732 5.31 AttA, Drsl4, Dro, cathD, TotM, AttB, TotX, TotC, jumu, 
Npl4, Lectin-galC1, CG34215, DptB, Drsl5, TotA

GO:0019731 Antibacterial humoral response 2.85E−06 0.00408 21.15 AttA, Lectin-galC1, Dro, AttB, DptB

GO:0098542 Defense response to other organism 1.05E−05 0.0125 5.01 AttA, Lectin-galC1, Dro, Drsl4, cathD, AttB, TotM, 
CG34215, Drsl5, DptB, jumu

GO:0030431 Sleep 4.99E−05 0.0397 6.02 bgm, AttA, Cyp6g1, CG8435, CG8329, Iris, Amy-p, 
CG16926

GO:0006952 Defense response 5.33E−05 0.0382 3.88 CG10433, AttA, Lectin-galC1, Dro, Drsl4, cathD, AttB, 
TotM, CG34215, Drsl5, DptB, jumu

GO:0009605 Response to external stimulus 2.34E−05 0.021 2.97 CG6188, AttA, Drsl4, Dro, cathD, AttB, TotM, TotX, Slob, 
TotC, jumu, Npl4, Lectin-galC1, CG9236, CG34215, 
DptB, Drsl5, TotA

GO:1901607 Alpha-amino acid biosynthetic process 0.000826 0.296 9.35 CG6188, CG5840, CG10184, CG1315

GO:0009109 Coenzyme catabolic process 0.000125 0.0749 88.84 CG6188, CG8665

GO:0006805 Xenobiotic metabolic process 0.000156 0.0747 26.65 Cyp6g1, St1, CG17322

GO:0046689 Response to mercury ion 0.000125 0.0691 88.84 Cyp6g1, TotA

GO:0034605 Cellular response to heat 0.000478 0.19 10.77 TotM, TotX, TotA, TotC
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in response to blue light [34]. Surprisingly, while expres-
sion of the unfolded protein response mediator Inositol-
requiring enzyme-1 (Ire1) was upregulated in response to 
blue light, we only identified one potential binding site 
for the Ire1-activated transcription factor, X box binding 
protein-1 (Xbp1), in the blue light-downregulated genes. 
One attractive candidate for a transcription factor that 
could mediate the light and calcium-dependent changes 
in gene expression is the Calmodulin-binding transcrip-
tion activator (Camta) that activates expression of genes 
that are involved in deactivation of rhodopsin signal-
ing [35]. Camta expression was reduced upon blue light 
exposure, and a potential Camta binding site (CGCG 
motif, motif 28) was present in the promoters of blue 
light-upregulated genes (Additional file 1: Fig. S4). How-
ever, canonical Camta-target genes such as F box and 
leucine-rich-repeat gene 4 (Fbxl4) and CG7227 were not 
differentially expressed in response to blue light, suggest-
ing that these Camta-regulated genes do not respond to 
blue light under the conditions used for our experiment.

Discussion
The eye is susceptible to light-induced oxidative stress, 
which has been implicated in photoreceptor damage 
in a variety of eye diseases [36, 37]. To characterize the 
light stress response in Drosophila photoreceptors, we 
profiled the transcriptome of photoreceptors exposed to 
high intensities of blue light. Although longer durations 
of blue light induce severe retinal degeneration in white-
eyed flies [19, 38], shorter exposures to blue light induced 
major gene expression changes in photoreceptors but 
did not cause retinal degeneration. Instead, blue light 
induced expression of a broad range of genes involved 
in stress response, together with a concomitant reduc-
tion in expression of genes required for the light response 
including voltage-gated calcium, potassium and chlo-
ride ion channels. We expect that these transcriptional 
changes would result in altered protein levels; however, 
this has not been tested in this study. Previous studies 
showed that very young flies (1  day post-eclosion) were 
resistant to blue light-induced retinal degeneration, and 
our work revealed that the blue light-induced transcrip-
tional changes differed according to the age of the fly; 
mature flies (6  days post-eclosion) showed substantially 
more differentially expressed genes in response to blue 
light exposure than very young flies (1 day post-eclosion). 
The increase in susceptibility to blue light between day 
one and six correlated with developmental transitions in 
photoreceptor gene expression, which included reduced 
expression of genes that function in redox and calcium 
homeostasis (Fig. 6a). Together, our data support a model 
in which mature adult flies upregulate stress response 
pathways in an effort to deal with light-induced oxidative 

stress, and concomitantly quench the light response to 
diminish phototransduction-associated calcium influx 
(Fig. 6b). Newly-eclosed flies might be able to withstand 
blue light exposure better because of an increased capac-
ity to buffer the calcium influx and oxidative stress result-
ing from prolonged phototransduction. Indeed, relatively 
young, yet mature, flies (day six) can withstand moder-
ate blue light exposure without significant retinal degen-
eration but lose the ability to resist longer durations of 
light exposure. Recent work demonstrated that white-
eyed flies (w1118), but not their pigmented counterparts, 
undergo age-associated retinal degeneration under nor-
mal light/dark cycles by 30  days [39]. Thus, the acute 
blue light paradigm used in our study may reveal insight 
into mechanisms associated with age-associated retinal 
degeneration.

The transient, blue light-dependent downregulation of 
the calcium channel gene, trp, in day six flies corresponds 
well with our previous observations that mutations in trp 
suppress blue light-induced retinal degeneration. How-
ever, many voltage-gated potassium and chloride chan-
nels were also downregulated in response to blue light. 
Could decreasing activity of potassium or chloride chan-
nels ameliorate phototoxicity in flies? Excessive calcium 
influx is associated with brain ischemia-induced neu-
ronal death, and potassium channel blockers reduced 
hypoxia-induced neuronal apoptosis in rodent models 
of ischemia [40]. However, eye-specific knockdown of 
ATPα, a subunit of a sodium/potassium channel, using 
the longGMR-Gal4 driver caused age-dependent retinal 
degeneration in flies [41]. It is currently unclear whether 
transient repression of other voltage-gated ion channels 
in photoreceptors could attenuate retinal degeneration 
under phototoxic conditions.

How could exposure to blue light downregulate expres-
sion of genes, independent of phototransduction or 
calcium influx? In Drosophila, the blue light receptor 
cryptochrome (cry) entrains circadian rhythms to light–
dark cycles via light-activated degradation of the clock 
protein Timeless (tim) [42]. Fly photoreceptors possess 
a functional circadian clock and express PAR-domain 
protein 1 (Pdp1), tim, and cry [43–45]. We observed an 
enrichment of genes involved in circadian rhythm among 
the blue light-downregulated genes (Table 2). Regulators 
of the circadian clock including tim, Pdp1, and vrille (vri) 
were downregulated in response to blue light in day six, 
but not day one flies (Additional file 2: Table S1). When 
we compared the blue light-regulated genes in six-day-
old flies with genes showing rhythmic expression patterns 
in fly heads [46], we found that 14 and 24 of the blue light 
up- and downregulated genes respectively (including trp) 
overlapped with the 331 genes showing rhythmic expres-
sion profiles in heads. While in flies Cry is thought to 
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mainly function by mediating light-dependent degrada-
tion of Timeless, some data suggest that Cry also acts as 
a transcriptional repressor in peripheral circadian clocks 
because loss of cry and period (per) in the eye leads to 
ectopic expression of tim [47]. However, we would expect 
to observe increased, rather than decreased, tim lev-
els following blue light exposure if Cry-mediated tran-
scriptional repression was involved because blue light 
causes degradation of Cry [42]. Thus, we propose that 
some unknown part of the circadian gene regulatory 
machinery regulates a light-dependent gene expres-
sion program in photoreceptors that attenuates the light 
response under strong illumination. Other transcription 
factors such as Kayak, which has a promoter motif in the 
blue light-upregulated genes, have been shown to affect 
expression of circadian-regulated genes in pacemaker 
neurons [48]. We note that the design of our study pre-
sents some difficulty in teasing out a potential role for 
circadian pathway components because we cannot read-
ily distinguish between gene expression changes that 
occur in response to blue light and expression changes 
that occur in response to dark incubation, which we used 
as a control for these experiments. Our data suggest that 
the dark incubation does not itself cause major changes 
in gene expression because day one flies showed very few 
gene expression changes in response to blue light rela-
tive to dark control. Further, the subsets of genes tested 
by qPCR in dissected eyes showed similar directions 

of change to the RNA-seq analysis when normalized 
to a pre-treatment sample (Fig.  3). Thus, we speculate 
that some components of the circadian machinery are 
coopted in Drosophila photoreceptors to repress the 
expression of light response pathway genes in response to 
strong illumination.

Conclusions
Although light is essential for vision, it also poses a 
stress to photoreceptor cells within the eye. Young flies 
at 6  days post-eclosion undergo retinal degeneration 
when exposed to prolonged blue light exposure. Here, 
we show that exposure to blue light induces substantial 
gene expression changes in photoreceptors from six-
day-old flies. In these flies, blue light upregulates stress 
response pathways and downregulates light response 
genes to mitigate oxidative stress, and quench the light 
response. Newly-eclosed flies, which are resilient to 
blue light-induced retinal degeneration, show no such 
changes in gene expression. Our data suggest that newly-
eclosed flies express higher levels of genes that help with-
stand light stress because of their recent transition from 
the developing pupal to early adult stage. Together, the 
results from this study provide insight into neuroprotec-
tive pathways utilized by photoreceptors to resist light-
induced oxidative stress.

post-development ∆ gene expression
   106 up, 496 down   

redox homeostasis, calcium buffering,   
   Notch signaling

acute blue light

retinal degeneration

upregulation stress 
response 

downregulation light 
responseCa2+ influx

a b

day 1

day 6

3h blue light

3h blue light

∆ gene expression
 40 up, 4 down

trpoxidative 
stress

Ca2+ independent

∆ gene expression
 331 up, 237 down

day 6

Fig. 6  Blue light induces neuroprotective gene expression changes in photoreceptors via calcium-dependent and independent pathways. a 
Newly-eclosed (day one) flies express high levels of genes that enable them to withstand blue light exposure. Exposure to standard white light 
conditions during the first week of life increases oxidative stress levels in photoreceptors, correlating with increased expression of some stress 
response genes. Concomitantly, post-development transitions in gene expression between newly-eclosed and mature flies result in reduced levels 
of genes required to maintain redox homeostasis and buffer calcium. Following exposure to acute blue light, mature six-day-old flies activate a 
strong neuroprotective gene expression program in an effort to prevent retinal degeneration. b Blue light-induced changes in gene expression in 
six-day-old flies include calcium-dependent upregulation of stress response genes, and calcium-independent downregulation of genes involved in 
light response such as calcium and ion channels. This gene expression program enables six-day-old flies to resist moderate (3 h) blue light exposure, 
but is not sufficient to prevent retinal degeneration when flies are subjected to longer periods of blue light (8 h)
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Methods
Stocks, genetics, and blue light treatment
All genotypes used in this study are described in Addi-
tional file 3: Table S4. Mated male flies were used for all 
experiments. Flies were cultured on standard cornmeal 
food at 25  °C with 12 h/12 h light/dark cycle except for 
ninaE7 and trp9 flies, which together with the w1118 con-
trols for those experiments, were raised in the dark 
prior to blue light treatment to prevent light-dependent 
retinal degeneration [49]. Flies homozygous for KASH-
GFP, P{w+mC= UAS-GFP-Msp300KASH}attP2, under 
the control of Rh1-Gal4 (P{ry+t7.2= rh1-GAL4}3, ry506 
[BL8691] were crossed to cn bw to deplete eye pigments 
[22]. For aging experiments, 400 male flies were collected 
from 0 to 8 h post-eclosion and aged for 12 h (day one; 
12–19  h) or 6  days. Flies were exposed to 3  h of blue 
light (λ = 465 nm) at 8000 lx (2 mW/cm2) using a custom 
designed optical stimulator with temperature control 
(23–25 °C) [38].

Immunostaining and confocal microscopy
Adult fly retinas were dissected and stained with phal-
loidin (A22287, 1:100, Thermo Fisher Scientific) as 
described previously [20]. Laser scanning confocal imag-
ing was performed using a Nikon A1R inverted confocal 
microscope under a 60X/1.30 NA oil immersion Nikon 
Plan Fluor objective. Confocal images were collected 
either as single planes or 1.0  μm  z-stacks using NIS-
Elements software. Retinal cell degeneration was quan-
tified by assessing rhabdomere loss (presence/absence 
phalloidin-positive rhabdomere) for R1–R6 cells per 
ommatidium using stacked images. Rhabdomere loss was 
quantified in five independent male flies (single eye/fly) 
for four independent light exposures (paired blue light 
versus dark controls).

RNA isolation, RNA‑seq, and qPCR analysis
RNA-seq analysis: Heads were collected from ~ 400 
male flies of the indicated treatments and ages and GFP-
labeled photoreceptor nuclei were affinity purified as 
previously described [20, 21]. Total nuclear RNA was 
extracted using Trizol reagent (Life Technologies), fol-
lowed by Direct-zol RNA Micro-prep kit (R2062, Zymo 
Research) including DNase treatment. RNA (35 ng) was 
used to generate uniquely barcoded, strand-specific and 
rRNA depleted library using NuGen Ovation RNA seq 
Systems 1-16 for Model Organism (0350, Nugen). All 
samples were added to a single pool that was clustered 
in two lanes of a HiSeq 2500 single-end rapid flowcell 
to generate 50 base reads per cluster. Quantitative PCR 
(qPCR) analysis: RNA was isolated from dissected eyes 

using Trizol (Invitrogen) and qPCR analysis was per-
formed on cDNA generated from 100  ng RNA using 
random hexamers relative to a standard curve of seri-
ally diluted cDNA. Relative expression for each gene 
was normalized to the geometric mean of two reference 
genes (eukaryotic translation initiation factor 1A, eIF1A 
and Ribosomal protein L32, RpL32). Primers are listed in 
Additional file 4: Table S5.

RNA‑seq data analysis
Three biological samples were analyzed for each of the 
following ages and treatments: day one 3  h dark (pre-
isolation, whole head homogenate), day one 3  h dark 
(post-isolation), day one 3  h blue (post-isolation), day 
six 3  h dark (post-isolation), day six 3  h blue (post-iso-
lation). Reads were trimmed using Trimmomatic (v0.36) 
and mapped against the bowtie2 (v2.3.2) [50] indexed D. 
melanogaster  genome (Drosophila_melanogaster.
BDGP6.89) using Tophat (v 2.1.1) [51]. The raw counts 
matrix was generated by Htseq-count (v0.7.0) applying 
strand-specific assay (fr-secondstrand), union mode, and 
default parameters [52]. Differential expression analy-
sis was performed on genes with greater than one count 
per million (CPM) in at least three samples. Differentially 
expressed genes were detected using glmTreat general-
ized linear model analysis in edgeR (v3.18.1) [53] with a 
FDR of < 0.05. A FC of 2 was applied to glmTreat analysis 
of the pre versus post samples only. Gene set enrichment 
analysis between age-regulated genes (day 10 vs day 40) 
[20] and differentially expressed genes between day one 
and day six (dark controls) was performed using mroast 
and visualized using barcode plot in edgeR. All plots were 
generated in R (v3.4.1) using custom scripts.

GO term analysis
GO term enrichment analysis was performed using 
GOrilla [54] relative to the background gene set of all 
expressed genes with CPM > 1 in at least three of the 
samples. Only GO terms with non-redundant gene mem-
bers are shown in Tables  1 and 2. Complete GO term 
enrichment analyses and parameters used for GOrilla are 
described in Additional file 3: Table S2.

Motif analysis
Significantly-enriched promoter motifs were identified 
using HOMER (v4.9, Hypergeometric Optimization of 
Motif EnRichment) [32] as previously described [20]. The 
background gene set of all expressed genes with CPM > 1 
in at least three of the samples was used for enrichment 
analysis.
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hour; HOMER: hypergeometric optimization of motif enrichment; KASH: Klar‑
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Rh1: rhodopsin 1; Trp: transient receptor potential.

Authors’ contributions
JM performed the RNA-seq studies, HH and SS performed qPCR analysis, and 
WL constructed and supported the optical stimulator. JM and VW analyzed 
the data. JM, HH and VW wrote the manuscript in consultation with the other 
authors. All authors read and approved the final manuscript.

Author details
1 Department of Biochemistry, Purdue University, West Lafayette, IN 47907, 
USA. 2 Present Address: Janelia Research Campus, Ashburn, VA 20147, USA. 
3 Interdisciplinary Life Science (PULSe), Purdue University, West Lafayette, IN 
47907, USA. 4 Purdue Polytechnic Institute, Purdue University, West Lafayette, 
IN 47907, USA. 5 Purdue University Center for Cancer Research, Purdue Univer‑
sity, West Lafayette 47907, USA. 

Acknowledgements
We thank the Bloomington Drosophila Stock Center (NIH P40OD018537) for 
flies. We thank Donald F. Ready for discussions regarding the blue light stress 
model and Yong Zhang for his comments on the manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and material
RNA-seq expression data are available in the Gene Expression Omnibus (GEO) 
repository through GEO series accession numbers GSE106820 and GSE83431. 
All raw and supporting data has been deposited at the Purdue University 
Research Repository (PURR) as a publically available, archived data set and can 
be accessed using https​://doi.org/10.4231/R77W6​9FM. Any additional scripts 
or material required for analysis are available from the corresponding author 
on reasonable request.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
The authors thank the Ralph W. and Grace M. Showalter Research Trust, 
National Institutes of Health R01EY024905 to VW, Purdue University Center for 

Additional files

Additional file 1: Fig. S1. The blue light treatment conditions used for 
RNA-seq analysis do not induce retinal degeneration. Fig. S2. Affinity-
enrichment of photoreceptor nuclear RNA from day one dark-treated flies. 
Fig. S3. Newly-eclosed flies do not show any unique blue light-induced 
gene expression changes. Fig. S4. Promoter motifs enriched at blue 
light-regulated genes. Fig. S5. Distribution of promoter motifs in blue 
light-regulated genes.

Additional file 2: Table 1. Significantly differentially expressed genes 
identified under each comparison.

Additional file 3: Table 2. GO term analysis of differentially regulated 
genes.

Additional file 4: Table 3. Transcription factors matches for all motifs 
identified for blue light-regulated genes.

Additional file 5: Table 4. Fly stocks used in this study.

Additional file 6: Table 5. Primers used in this study.

Cancer Research (American Cancer Society Institutional Research Grant, IRG 
#58-006-53; NIH P30 CA023168) for funding to support this work. The content 
is solely the responsibility of the authors and does not necessarily represent 
the official views of the NIH.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations

Received: 27 March 2018   Accepted: 14 July 2018

References
	1.	 Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related 

macular degeneration. Mol Aspects Med. 2012;33(4):399–417.
	2.	 Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and 

age-related macular degeneration. Mol Vis. 1999;5:32.
	3.	 Handa JT, Cano M, Wang L, Datta S, Liu T. Lipids, oxidized lipids, oxidation-

specific epitopes, and Age-related macular degeneration. Biochim 
Biophys Acta. 2017;1862(4):430–40.

	4.	 Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem 
Biophys Res Commun. 2017;482(3):419–25.

	5.	 Niki E. Lipid peroxidation: physiological levels and dual biological effects. 
Free Radic Biol Med. 2009;47(5):469–84.

	6.	 Burnside SW, Hardingham GE. Transcriptional regulators of redox balance 
and other homeostatic processes with the potential to alter neurodegen‑
erative disease trajectory. Biochem Soc Trans. 2017;45(6):1295–303.

	7.	 Kim GH, Kim HI, Paik SS, Jung SW, Kang S, Kim IB. Functional and morpho‑
logical evaluation of blue light-emitting diode-induced retinal degenera‑
tion in mice. Graefes Arch Clin Exp Ophthalmol. 2016;254(4):705–16.

	8.	 Jaadane I, Boulenguez P, Chahory S, Carre S, Savoldelli M, Jonet L, Behar-
Cohen F, Martinsons C, Torriglia A. Retinal damage induced by commer‑
cial light emitting diodes (LEDs). Free Radic Biol Med. 2015;84:373–84.

	9.	 Stark WS, Carlson SD. Blue and ultraviolet light induced damage to the 
Drosophila retina: ultrastructure. Curr Eye Res. 1984;3(12):1441–54.

	10.	 Katz B, Minke B. Drosophila photoreceptors and signaling mechanisms. 
Front Cell Neurosci. 2009;3:2.

	11.	 Hardie RC, Juusola M. Phototransduction in Drosophila. Curr Opin Neuro‑
biol. 2015;34:37–45.

	12.	 Montell C. Drosophila visual transduction. Trends Neurosci. 
2012;35(6):356–63.

	13.	 Weiss S, Minke B. A new genetic model for calcium induced autophagy 
and ER-stress in Drosophila photoreceptor cells. Channels (Austin). 
2015;9(1):14–20.

	14.	 Kiselev A, Socolich M, Vinos J, Hardy RW, Zuker CS, Ranganathan R. A 
molecular pathway for light-dependent photoreceptor apoptosis in 
Drosophila. Neuron. 2000;28(1):139–52.

	15.	 Satoh AK, Ready DF. Arrestin1 mediates light-dependent rhodopsin 
endocytosis and cell survival. Curr Biol. 2005;15(19):1722–33.

	16.	 Alloway PG, Howard L, Dolph PJ. The formation of stable rhodopsin-arres‑
tin complexes induces apoptosis and photoreceptor cell degeneration. 
Neuron. 2000;28(1):129–38.

	17.	 Weiss S, Kohn E, Dadon D, Katz B, Peters M, Lebendiker M, Kosloff M, 
Colley NJ, Minke B. Compartmentalization and Ca2+ buffering are 
essential for prevention of light-induced retinal degeneration. J Neurosci. 
2012;32(42):14696–708.

	18.	 Wang T, Xu H, Oberwinkler J, Gu Y, Hardie RC, Montell C. Light activation, 
adaptation, and cell survival functions of the Na+/Ca2+ exchanger CalX. 
Neuron. 2005;45(3):367–78.

	19.	 Chen X, Hall H, Simpson JP, Leon-Salas WD, Ready DF, Weake VM. 
Cytochrome b5 protects photoreceptors from light stress-induced lipid 
peroxidation and retinal degeneration. NPJ Aging Mech Dis. 2017;3:18.

	20.	 Hall H, Medina P, Cooper DA, Escobedo SE, Rounds J, Brennan KJ, Vincent 
C, Miura P, Doerge R, Weake VM. Transcriptome profiling of aging Dros‑
ophila photoreceptors reveals gene expression trends that correlate with 
visual senescence. BMC Genom. 2017;18(1):894.

https://doi.org/10.4231/R77W69FM
https://doi.org/10.1186/s12868-018-0443-y
https://doi.org/10.1186/s12868-018-0443-y
https://doi.org/10.1186/s12868-018-0443-y
https://doi.org/10.1186/s12868-018-0443-y
https://doi.org/10.1186/s12868-018-0443-y
https://doi.org/10.1186/s12868-018-0443-y


Page 18 of 18Hall et al. BMC Neurosci  (2018) 19:43 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	21.	 Ma J, Weake VM. Affinity-based isolation of tagged nuclei from Dros‑
ophila tissues for gene expression analysis. J Vis Exp. 2014. https​://doi.
org/10.3791/51418​.

	22.	 Tearle R. Tissue specific effects of ommochrome pathway mutations in 
Drosophila melanogaster. Genet Res. 1991;57(3):257–66.

	23.	 Yoshihara Y, Mizuno T, Nakahira M, Kawasaki M, Watanabe Y, Kagamiy‑
ama H, Jishage K, Ueda O, Suzuki H, Tabuchi K, et al. A genetic approach 
to visualization of multisynaptic neural pathways using plant lectin 
transgene. Neuron. 1999;22(1):33–41.

	24.	 Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, Zhu Y, Orton K, Villella 
A, Garza D, Vidal M, et al. A chaperome subnetwork safeguards proteosta‑
sis in aging and neurodegenerative disease. Cell Rep. 2014;9(3):1135–50.

	25.	 de Nadal E, Ammerer G, Posas F. Controlling gene expression in response 
to stress. Nat Rev Genet. 2011;12(12):833–45.

	26.	 Mendes CS, Levet C, Chatelain G, Dourlen P, Fouillet A, Dichtel-Danjoy ML, 
Gambis A, Ryoo HD, Steller H, Mollereau B. ER stress protects from retinal 
degeneration. EMBO J. 2009;28(9):1296–307.

	27.	 Washburn T, O’Tousa JE. Molecular defects in Drosophila rhodopsin 
mutants. J Biol Chem. 1989;264(26):15464–6.

	28.	 Hanson FB, Ferris FR. Quantitative study of fecundity in Drosophila mela‑
nogaster. J Exp Zool. 1929;54(3):485–506.

	29.	 Tomlinson A, Struhl G. Delta/Notch and Boss/Sevenless signals act 
combinatorially to specify the Drosophila R7 photoreceptor. Mol Cell. 
2001;7(3):487–95.

	30.	 Cagan RL, Ready DF. Notch is required for successive cell decisions in the 
developing Drosophila retina. Genes Dev. 1989;3(8):1099–112.

	31.	 Yang Y, Ballinger D. Mutations in calphotin, the gene encoding a Dros‑
ophila photoreceptor cell-specific calcium-binding protein, reveal roles in 
cellular morphogenesis and survival. Genetics. 1994;138(2):413–21.

	32.	 Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, 
Singh H, Glass CK. Simple combinations of lineage-determining transcrip‑
tion factors prime cis-regulatory elements required for macrophage and 
B cell identities. Mol Cell. 2010;38(4):576–89.

	33.	 Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock tran‑
scription factors and their roles in physiology and disease. Nat Rev Mol 
Cell Biol. 2018;19(1):4–19.

	34.	 Jindra M, Gaziova I, Uhlirova M, Okabe M, Hiromi Y, Hirose S. Coactiva‑
tor MBF1 preserves the redox-dependent AP-1 activity during oxidative 
stress in Drosophila. EMBO J. 2004;23(17):3538–47.

	35.	 Han J, Gong P, Reddig K, Mitra M, Guo P, Li HS. The fly CAMTA transcription 
factor potentiates deactivation of rhodopsin, a G protein-coupled light 
receptor. Cell. 2006;127(4):847–58.

	36.	 Organisciak DT, Vaughan DK. Retinal light damage: mechanisms and 
protection. Prog Retin Eye Res. 2010;29(2):113–34.

	37.	 Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress 
in the pathogenesis of age-related macular degeneration. Surv Ophthal‑
mol. 2000;45(2):115–34.

	38.	 Chen X, Leon-Salas WD, Zigon T, Ready DF, Weake VM. A programmable 
optical stimulator for the Drosophila eye. HardwareX. 2017;2:13–33.

	39.	 Ferreiro MJ, Perez C, Marchesano M, Ruiz S, Caputi A, Aguilera P, Barrio 
R, Cantera R. Drosophila melanogaster white mutant w(1118) undergo 
retinal degeneration. Front Neurosci. 2017;11:732.

	40.	 Wei L, Yu SP, Gottron F, Snider BJ, Zipfel GJ, Choi DW. Potassium channel 
blockers attenuate hypoxia- and ischemia-induced neuronal death 
in vitro and in vivo. Stroke. 2003;34(5):1281–6.

	41.	 Luan Z, Reddig K, Li HS. Loss of Na(+)/K(+)-ATPase in Drosophila pho‑
toreceptors leads to blindness and age-dependent neurodegeneration. 
Exp Neurol. 2014;261:791–801.

	42.	 Michael AK, Fribourgh JL, Van Gelder RN, Partch CL. Animal cryp‑
tochromes: divergent roles in light perception, circadian timekeeping 
and beyond. Photochem Photobiol. 2017;93(1):128–40.

	43.	 Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NR, Hardin PE, 
Young MW, Storti RV, Blau J. vrille, Pdp1, and dClock form a second feed‑
back loop in the Drosophila circadian clock. Cell. 2003;112(3):329–41.

	44.	 Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Ros‑
bash M, Hall JC. The cryb mutation identifies cryptochrome as a circadian 
photoreceptor in Drosophila. Cell. 1998;95(5):681–92.

	45.	 Yoshii T, Todo T, Wulbeck C, Stanewsky R, Helfrich-Forster C. Cryp‑
tochrome is present in the compound eyes and a subset of Drosophila’s 
clock neurons. J Comp Neurol. 2008;508(6):952–66.

	46.	 Rodriguez J, Tang CH, Khodor YL, Vodala S, Menet JS, Rosbash M. Nascent-
Seq analysis of Drosophila cycling gene expression. Proc Natl Acad Sci U 
S A. 2013;110(4):E275–84.

	47.	 Collins B, Mazzoni EO, Stanewsky R, Blau J. Drosophila CRYPTOCHROME is 
a circadian transcriptional repressor. Curr Biol. 2006;16(5):441–9.

	48.	 Ling J, Dubruille R, Emery P. KAYAK-alpha modulates circadian transcrip‑
tional feedback loops in Drosophila pacemaker neurons. J Neurosci. 
2012;32(47):16959–70.

	49.	 Sengupta S, Barber TR, Xia H, Ready DF, Hardie RC. Depletion of 
PtdIns(4,5)P(2) underlies retinal degeneration in Drosophila trp mutants. J 
Cell Sci. 2013;126(Pt 5):1247–59.

	50.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9(4):357–9.

	51.	 Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions 
with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.

	52.	 Anders S, Huber W. Differential expression analysis for sequence count 
data. Genome Biol. 2010;11(10):R106.

	53.	 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package 
for differential expression analysis of digital gene expression data. Bioin‑
formatics. 2010;26(1):139–40.

	54.	 Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for dis‑
covery and visualization of enriched GO terms in ranked gene lists. BMC 
Bioinformatics. 2009;10:48.

https://doi.org/10.3791/51418
https://doi.org/10.3791/51418

	Blue light induces a neuroprotective gene expression program in Drosophila photoreceptors
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Results
	Blue light induces neuroprotective gene expression changes in photoreceptors
	Blue light-induced changes in gene expression show different temporal profiles
	An intact phototransduction pathway and calcium influx are required for blue light-induced upregulation of stress response genes, but not downregulation of visual function genes
	Developmental transitions in photoreceptor gene expression correlate with the differential susceptibility to blue light between day one and six
	Transcription factor-binding motifs are enriched in the promoters of blue light-regulated genes

	Discussion
	Conclusions
	Methods
	Stocks, genetics, and blue light treatment
	Immunostaining and confocal microscopy
	RNA isolation, RNA-seq, and qPCR analysis
	RNA-seq data analysis
	GO term analysis
	Motif analysis

	Authors’ contributions
	References




