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Abstract

Background: Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they
are essentially multivariate objects. Brain�computer interface applications are a notable exception to this practice,
because they are based on multivariate classi�cation of single-trial ERPs. Multivariate ERP assessment can be facilitated
by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the
continuous wavelet transform (CWT) and Student�s t-test.

Results: This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to
ERP assessment in general and to the t-CWT method in particular. Further, it presents for the �rst time a detailed,
step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure
based on principal component analysis in the frequency domain is presented as an important pre-processing step.
The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the �rst time as free and
open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm.
Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in
particular are suggested and discussed.

Conclusions: Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm
along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT
more accessible to both users and developers in the �eld of neuroscience research.

Keywords: Event-related brain potentials, ERP, Continuous wavelet transform, CWT, t-CWT, Principal component
analysis, PCA, Multivariate statistics

Background
An event-related brain potential (ERP) is extracted from
an electroencephalogram (EEG) [1]. Since the EEG is a sto-
chastic process, the ERP is a multivariate statistical object,
as well. It is a set of random curves (one curve per EEG
channel), and a random curve cannot be simply repre-
sented by a single univariate feature (or a curve parame-
ter) without loosing a lot of potentially useful information.
Nevertheless, ERPs are usually represented by univariate
�components�, which most often are prominent peaks of
the curves. An ERP component is usually assessed by its
peak value or by the area under the curve in a narrow
time window around the peak. This method has the huge
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advantage that it is both simple and visually and intuitively
clear. For instance, peak latency can be interpreted as
brain processing time related to an ERP-triggering event.
More sophisticated methods for ERP component extrac-
tion from single trials exist as well [2]. The statistical
assessment of ERP components is usually based on analy-
sis of variance (ANOVA) [3]. Such assessment is su�cient
for many applications. Some inherent limitations of this
approach have been addressed by �mass univariate analy-
sis� methods based on permutation/randomization tests
[4,5].
There are, however, cases in which univariate assess-

ment is not su�cient. For instance, ERP-based brain�
computer interfaces (BCI) require full-�edged multivari-
ate assessment of the ERP curves [6]. The t-CWT [7], a fea-
ture extraction method based on the continuous wavelet
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transform (CWT) [8,9] andStudent�s t-test, was �rst intro-
duced as one possiblemultivariate solution to the problem
of single-trial ERP classi�cation at the International BCI
Competition 2003, where it was compared to a variety of
other feature extraction and classi�cation methods rang-
ing from simple and weak to advanced and powerful ones
like, e.g., Support Vector Machines (SVM) [6,10]. t-CWT
was a winner on two of the six ERP datasets provided for
the competition [6]; these two were obtained in two dif-
ferent BCI paradigms, �P300 Speller� and �Self regulation
of Slow Cortical Potentials (Biofeedback)� [7].
Apart from BCI applications, it has been shown how

t-CWT can be used for detection and quanti�cation of
ERPs in other paradigms as well, e.g., for individual (clin-
ical) diagnostics [11,12]. In the latter application, t-CWT
was combined with a multivariate randomization test
based on Hotelling�s T2-statistic. Similarly to the univari-
ate randomization tests mentioned above [4], which pro-
vide an e�ective correction for multiple univariate com-
parisons, themultivariate randomization test [11] corrects
the accumulation of chance bias arising from performing
both t-CWT feature extraction and hypothesis testing on
the same ERP dataset.
A comparison of t-CWT to classical univariate ERP

assessment methods based on peak picking and area com-
putation showed a clear advantage of multivariate t-CWT
features over univariate measures [11]. More recently, t-
CWT has been systematically evaluated in comparison to
several other ERP component detection methods ranging
from simple univariate peak picking to tmax randomiza-
tion tests [4] performed on band pass �ltered EEG and
on t-CWT features [13]. This evaluation was performed
with both simulated and real ERP data at di�erent lev-
els of signal-to-noise ratio. Sensitivity, speci�city, posi-
tive and negative predictive values were assessed, and,
as a result, t-CWT showed superior to all other meth-
ods, especially at low signal-to-noise ratios. It should be
noted, however, that, in that study, t-CWT was used only
as a feature extraction method and only mass univariate
analysis (tmax), but no multivariate statistical assessment
of the obtained features was done. In another recent study,
t-CWT feature extraction was compared to two other
wavelet-based ERP component detection methods using
the spikelet technique and wavelet asymmetry, respec-
tively, with the result that both t-CWT and the novel
wavelet asymmetry method showed a marked advantage
over the spikelet technique in terms of detection accuracy:
83% and 91% vs. 43%, correspondingly [14]. In the latter
study, however, only a single ERP component of interest,
the N160, was detected without any multivariate or mass
univariate analyses of the whole ERP curves.
Although t-CWT features may well be interpreted as

ERP components [7,11,14], the current article is mainly
focused on t-CWT applications in which, as in the case of

BCI, the whole (multivariate) di�erence between two ERP
curves is of primary importance, while di�erences in single
components are only of secondary interest.
The goals of the this article are: (a) to provide a didac-

tic geometric primer on some basic concepts of multi-
variate statistics as applied to ERP assessment in general
and to the t-CWTmethod in particular; (b) to present for
the �rst time a detailed, step-by-step, formal description
of the t-CWT algorithm and to make its MATLAB and
GNUOctave [15] implementationpublicly available as free
and open source code [16,17] (Additional �le 1) released
under the GNUGeneral Public License, version 3 (GPLv3,
full text available in the t-CWT documentation [17]); (c)
to demonstrate the t-CWT method in the assessment of
example ERP data [18] obtained in a passive oddball para-
digm [19,20]; (d) to suggest and discuss conceptually novel
applications of the multivariate approach in general and
of the t-CWT method in particular for the purpose of
hypothesis testing rather than for BCI and single-trial clas-
si�cation.
An important newpre-processing step in the revised ver-

sion of the t-CWT algorithm presented here is the novel
multivariate outlier rejection procedure based on princi-
pal component analysis (PCA, see below). Other changes
in the algorithm were aimed at simpli�cation for the sake
of easier understanding. For instance, the time-dependent
�ltering module [7] was removed from the current ver-
sion and the discrete wavelet transform (DWT) [8,21]
was replaced by a discrete Fourier transform (DFT) [22].
Visualization was simpli�ed as well by plotting the one-
dimensional linear discriminant function (LDF, see below)
instead of the two-dimensional t-value scalogram [7].

Multivariate statistics: a geometric primer
Multivariate statistical analysis [23] cannot be substituted
by a multitude of univariate analyses, because the latter
cannot address adequately the covariance of the data. Even
if the e�ect of the correlations between the variables on
multiple univariate tests is taken into account by a proper
correction of the overall α-level, e.g., by a permutation test
[4], the univariate approach stillmisses a lot of information
contained in the covariance matrix [23, p. 8].
In this section, some basic concepts of multivari-

ate analysis are represented as geometric notions. This
approach is meant as an aid to better understanding of
these concepts through there association with familiar
images from Euclidean space.

ERPs as points in a vector space
Consider a sample of N ERP trials obtained from K EEG
channels, in the time interval (epoch) 0 ≤ t < T , where t
is the time relative to a triggering event. For each channel
k = 1, 2, . . .K , and each single trial n = 1, 2, . . .N , the
ERP voltage curve vkn(t) can be represented by a row vec-
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tor vkn =
(
vk1n , vk2n , . . . vkLn

)
with components vkln = vkn(tl),

where tl = (l − 1)T/L, l = 1, 2, . . . L are the equidistant
sampling time points whose number L is obtained from
the original sampling frequency R0:

L = R0T. (1)

The entire K -channel ERP trial can be represented by the
vector

vn =
(
v1n, v2n, . . . vKn

)
. (2)

Thus, the ERP is represented by a randomvector v in aK×
L-dimensional space, and the ERP sample is represented
by the N -by-K × Lmatrix

V =

⎛

⎜⎜⎜
⎝

v1
v2
...
vN

⎞

⎟⎟⎟
⎠
. (3)

Note that this notation is di�erent from the standard nota-
tion inwhich vectors are represented by columns [23, p. 7].
Here, vectors are represented by rows, as in the MATLAB
and GNU Octave [15] implementation of t-CWT [16,17].

Mahalanobis distance and Hotelling’s test
Now, consider a random vector v and the corresponding
single-trial ERP sample V which, however, in this case,
comprises two subsamples VA andVB obtained under two
di�erent experimental conditions A and B (A-B design).
The two corresponding ERPs are then represented by VA
and VB and by the respective random vectors vA and vB .
Assuming multivariate normal distributions [23, pp. 37�
59] with equal covariance matrices, we want to compare
the two ERPs by testing the hypothesis H0 : vA = vB ,
where vA and vB are the mean vectors (representing the
average ERP curves). Geometrically, vA and vB represent
two points in theK ×L-dimensional space. Hence, we can
testH0 by testing the hypothesis that the distance between
these two points is zero. Thus, the problem ofmultivariate
hypothesis testing can be reduced to the geometric prob-
lemof de�ning andmeasuring distance in this vector space
and then performing a univariate test on this (random)
distance.
Like in the univariate case, the scale for measuring dis-

tance is provided by the variance or, more precisely, by
its square root, the standard deviation (like in Student�s t-
test). There are, however, two problems in themultivariate
case: (a) we have di�erent variances corresponding to the
di�erent vector components, and (b) these variables are
correlated. The latter problem can be solved by princi-
pal component analysis (PCA). The principal component
transform (PCT) represented by its corresponding matrix
Tp is an orthogonal transformation, i.e., a kind of rotation
of the coordinate axes, such that, in the new coordinate

system, the covariance matrix has a diagonal form [23,
pp. 343�344]. The transformation of the vector compo-
nents is given by

vp = vTp, Vp = VTp. (4)
The covariance matrix S is diagonalized by this transfor-
mation, i.e., the correlations between the new variables
vip, i = 1, 2, . . .K × L are all zero. Because Tp is an orthog-
onal transformation, the inverse transformation (i.e., the
rotation back to the original axes) is given by the transpose

v = vp T−1
p = vp TT

p, V = Vp TT
p, (5)

and, correspondingly, the diagonalized covariance matrix
Sp is given by

Sp = TT
p STp, S = Tp Sp TT

p. (6)
The diagonal elements (the eigenvalues) of Sp are the

squared standard deviations
(
σ i
p

)2
of the uncorrelated

variables vip. Normalizing these variables by the transfor-
mation

xi = vip/σ
i
p, (7)

we land in a familiar K × L-dimensional Euclidean space
where the scale is the same in all directions, i.e., the con-
stant density ellipsoids [23, p. 40] of the multivariate nor-
mal distribution of x are spheres (the procedure (4�7) is
known as PCA �sphering� or �whitening�). In Euclidean
space, the squared distanceD2 between two points xA and
xB is simply given by the Pythagorean theorem

D2(xA , xB ) =
K×L∑

i=1

(
xiA − xiB

)2
. (8)

Substituting (7) into (8), we can compute the distance
between vpA and vpB

D2(vpA , vpB ) =
(
vpA − vpB

)
S−1
p

(
vpA − vpB

)T . (9)

In (9), we use the fact that S−1
p is a diagonal matrix with

eigenvalues
(
σ i
p

)−2
. Substituting the right parts of (5) and

(6) into (9), we obtain

D2(vA , vB ) =
(
vA − vB

)
S−1 (

vA − vB
)T . (10)

In (10), we use the property that S−1 is diagonalized by the
same transformation as S. The expression (10) is called a
�Mahalanobis distance� [23, p. 22]. When S is substituted
with an unbiased estimator and the resulting D2 is mul-
tiplied by a proper coe�cient (a function of the degrees
of freedom), it turns into Hotelling�s T2-statistic whose p-
value is obtained from the corresponding (univariate) T2-
distribution and can be used to test H ′

0 : D2(vA , vB ) = 0,
which is equivalent toH0 : vA = vB [23, pp. 60�120]. Thus,
the multivariate problem of comparing two mean vectors
(representing two average ERP curves) is reduced to the
univariate problem of testing whether the Mahalanobis
distance between the mean vectors is di�erent from zero.
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Linear discriminant analysis (LDA)
So far,wehave shown thatHotelling�sT2 is a kindofMaha-
lanobis distance between twomean vectors de�ned by the
natural metric provided by the covariance. But (10) bears
another geometric interpretation as well. De�ning the lin-
ear discriminant function (LDF) d [23, pp. 74] as a column
vector by

d = S−1 (
vA − vB

)T , (11)

theMahalanobis distance (10) is expressed as a LDF value:

D2(vA , vB ) =
(
vA − vB

)
d. (12)

The column vector d de�nes a direction in space. The pro-
jection of the mean di�erence vA − vB onto this particular
direction is the maximum of all projections of vA − vB
onto all possible directions [23, pp. 92]. Linear discrim-
inant analysis (LDA) is based on the construction of a
separation plane which is perpendicular to d and passes
through the middle between vA and vB , i.e. through the
point (vA + vB )/2. This separation plane is de�ned by the
equation

vd = 1
2 (vA + vB )d. (13)

According to the optimal LDA classi�cation rule [23,
pp. 231], an ERP trial vx drawn from a new sample VX
(comprising an unknown mixture of vectors drawn from
both populations A and B) is assigned to the population
A if it lies above this plane, i.e.

vxd > 1
2 (vA + vB )d, (14)

and it is assigned to the population B otherwise. The rule
(14) is optimal because itminimizes the classi�cation error
rate.
Moreover, the LDF value di�erence

(
vx− 1

2 (vA+ vB )
)
d

is proportional to the distance from the point vx to the
separation plane (13) and can be seen as a measure of the
a�liation of vx withA or B.
The optimal LDA classi�cation rule (14) is based on the

assumption that the a priori probabilitypA that anERP trial
of unknown a�liation belongs toA is equal to the a priori
probability pB that it belongs to B. If pA �= pB , the optimal
LDA classi�cation rule (14) is generalized as follows [23,
pp. 231]. An ERP trial vx is assigned toA if

vxd > 1
2 (vA + vB )d + ln

(
pB
pA

)
, (15)

and toB otherwise, i.e., the separation plane (13) is shifted
in the direction of vA if pA < pB , and it is shifted in the
direction of vB if pA > pB . Note that (15) is a generalization
of (14) because the logarithmic term is zero when pA = pB .
The LDF value vxd has an interesting property that

should be noted, because it could be important for some
interesting applications. Since the LDF d is obtained from
the sampleV while vx is drawn from a di�erent sampleVX ,

the LDF value vxd has univariate normal distribution [23,
p. 45]. This property can be used to reduce themultivariate
ERP vx to the univariate random variable vxd that exclu-
sively and fully re�ects the (multivariate) ERP di�erence
between two particular experimental conditions, A and
B. The important point here is that vxd can be used for
other purposes beside classi�cation. For instance, if the
A-B structure of VX is known, the LDF value vxd can be
subjected to Student�s t-test in order to test the hypoth-
esis about the mean A-B di�erence within VX . Note the
di�erence toHotelling�sT 2-test: while in theMahalanobis
distance (12), the LDF d is computed from the sample that
is tested, in vxd it is computed from a di�erent sample.
This means that the multivariate structure of theA-B dif-
ference derived fromVis imposed onVX in order to assess
the (univariate) magnitude of the A-B di�erence within
VX . This procedure provides a methodologically impor-
tant alternative to Hotelling�s T 2-test, because it implies a
conceptually novel approach to multivariate ERP assess-
ment which could be useful, e.g., in clinical applications
(see the �Discussion� section).

The problem of dimensionality
The multivariate ERP model presented above is ideal-
ized. It can only work with few EEG channels, low time-
sampling rates, short epochs and large number of ERP tri-
als. In most applications, however, the dimensionality of
the vector space is very large and exceeds the number of
trials. For instance, if the number of channels is K =32,
the sampling rate (1) is R0 = 500Hz, and the epoch length
is T =1 s, then the number of time points is L=R0T =500,
and we have K × L=16,000 dimensions. If the number of
trials is, e.g., N =1,000, the rank of the covariance matrix
S is N − 1 = 999 [23, pp. 9,406], which means that S
is singular (i.e. S−1 does not exist, because S has at least
15,001 zero eigenvalues), and (9�15) cannot be applied.
Even if N − 1 > K × L and S is not singular, it is still nec-
essary to reduce the dimensionality of the model because
of (a) the loss of statistical power caused by the inclusion
of noise variables in the D2-sum (9), and (b) the compu-
tational problems associated with too many variables and
too small eigenvalues.
A standard solution to the dimensionality problem is

given by PCA (see above): the variables vip with small vari-

ances
(
σ i
p

)2
are simply deleted from the model according

to a certain criterion, e.g., all eigenvalues greater than the
average are retained, or the largest eigenvalues explaining
a certain proportion of the total variance are retained [23,
pp. 347�348].
The t-CWT method provides a further solution to the

dimensionality problem. It uses explicitly the special fact
that the random vectors represent ERP curves, i.e., contin-
uous functions of time. The continuous wavelet transform
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(CWT) [8,9] and Student�s t-test are used to extract cer-
tain �features� of the ERP curves, which build the �feature
space� whose dimensionality is substantially smaller than
that of the original space. All the standard multivariate
procedures described above (PCA, Hottelling�s test, LDA)
can then be performed in this feature space.
Here, it is interesting to mention an alternative, recently

proposed, dimensionality reduction approach based on
E�ect-Matched Spatial (EMS) �ltering [24].While t-CWT
reduces the dimensionality of the ERP time curves, inde-
pendently for each single channel, the EMS �ltering
method reduces the number of channels (to one), inde-
pendently for each single time point, thus representing
the multichannel ERP by a single �surrogate time-course�.
Thus, in a certain sense, EMS �ltering can be seen as com-
plementary to t-CWTand, for particular purposes, the two
methods can be used in combination with each other.

The t-CWT method
The t-CWTmethodhas already beendescribed in the con-
tinuous notation [7]. Here, it is presented in the discrete
vector and matrix notation as well, because this discrete
representation is the one that is used in the computational
algorithm [16,17].

CWT
The CWT [8,9] wk

n(s, t) of the EEG signal vkn(t) of the kth
channel of the nth ERP trial is given by

wk
n(s, t) =

1√
s

T∫

0

vkn(τ )ψ
(

τ − t
s

)
dτ , (16)

whereψ(t) is a wavelet function which is (a) well localized
in both time and frequency, and (b) has a zero mean:

∞∫

−∞
ψ(t)dt = 0. (17)

The approximate position ofψ
(
(τ − t)/s

)
in time is deter-

mined by the time shift t, while the scale s, which is the
inverse frequency, de�nes the approximate position in the
frequency domain (Fig. 1a).
The CWT (16) is a linear transformation, which means

that it can be represented by a matrix Tw such that

w = vTw , W = VTw , (18)

where the random vectors v and w represent the ERP
in the time domain and in the time-frequency domain,
respectively, and the matricesV andW represent the cor-
responding single-trial samples. The coe�cients of Tw in
(18) are obtained by substituting vkn(t) and ψ

(
(τ − t)/s

)

in (16) with their respective discrete representations as in
(2) and converting the integrals into corresponding sums.
Note, however, that the CWT (16) is highly redundant
and the wavelet space de�ned by w is much �larger� than
the original vector space de�ned by v. Note also that Tw
is actually a block diagonal matrix built from K identical
blocks, one per channel. The t-CWTcomputer application
[16,17] uses only one CWT block which is applied to each
channel.

t-CWT
Now, consider again two experimental conditionsA andB
(A-B design), and the corresponding two samples of sizes

Mexican Hat wavelet of scale s = 0.3 s and time shift t = 0.4 s Logarithmic sampling grid with 10 sampling points per scale

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a b

Fig. 1 A Mexican Hat wavelet and a logarithmic sampling grid. The left plot a displays a Mexican Hat wavelet as a function of time (in seconds). The
scale (approximate wavelength) is s = 0.3 s and the time shift (the position of the maximum) is t = 0.4 s. The right plot b displays a log-grid in the
t-s-plane (t at the horizontal axis, s at the vertical axis, both measured in seconds). The scale-invariant sampling rate is R = 10 pps. Note that the
number of sampling points in the time interval 0 ≤ t < 0.2 at s = 0.2 is the same, as in the interval 0 ≤ t < 0.3 at s = 0.3, and as in the interval
0 ≤ t < 0.4 at s = 0.4, etc., and as the number of lines of points in the scale interval 0.2 ≤ s < 0.4, which in turn is the same as in the interval
0.4 ≤ s < 0.8, etc.



Bostanov BMC Neurosci  (2015) 16:73 Page 6 of 20

M and N , respectively, of K -channel ERPs represented by
the random curves vkAm(t) and vkBn(t), where: k = 1, 2, . . .K ;
m = 1, 2, . . .M; n = 1, 2, . . .N ; and 0 ≤ t < T . The cor-
responding CWTs are computed by (16). Then, Student�s
two-sample t-value tk (s, t) is computed for each k and each
scale-time point (s, t) from the correspondingCWTvalues
wk
Am(s, t) and wk

Bn(s, t):

tk (s, t) =
√

MN
M + N

wk
A (s, t) − wk

B (s, t)
σ k
AB (s, t)

, (19)

where wk
A (s, t) and wk

B (s, t) are the sample means and
σ k
AB (s, t) is the pooled standard deviation computed from
the corresponding sums of squares (SS).
In the next step, each of the points (skj , tkj), at which the

functions tk (s, t) reach a local extremum, are detected. In
the last step, we de�ne the t-CWT vector samplesW�

A and
W�

B by their respective components, the t-CWT features

w�kj
Am and w�kj

Bn de�ned by

w�kj
Am = wk

Am(s
kj , tkj), w�kj

Bn = wk
Bn(s

kj , tkj). (20)

Finding the local extrema of a function of two variables is
an analytical operation, but its result can be represented by
a simple projection in the wavelet space, i.e. selecting the
vector components that correspond to the points (skj , tkj)
anddiscarding all otherdimensions.This projection canbe
represented by the matrix T�

w which is obtained from Tw
in (18) by deleting the columns corresponding to the dis-
carded spacedimensions.The t-CWTvectors are obtained
by substituting Tw in (18) with T�

w

w� = vT�
w , W� = VT�

w , (21)

where V is the �total� ERP sample comprising the sub-
samples VA and VB , and v is the corresponding random
vector.

Methods
This section provides a detailed, step-by-step, formal
delineation of the t-CWT algorithm. In the brief intuitive
descriptions published before [7,11], most of the details
were omitted. Here, a rigorous mathematical delineation
of all steps is presented for the �rst time.

Pre-processing
Theoretically, the t-CWT could be performed directly in
the time domain de�ned by (2). TheCWT (16�18) is, how-
ever, highly redundant and computationally demanding.
That is why the dimensionality of the vector space must
be reduced substantially before computingw andw� (16�
21).

Frequency domain representation
The �rst pre-processing step is based on a frequency
domain representation of the ERPs by a discrete Fourier

transform (DFT [22]; note the di�erence to the previous
version of t-CWT [7] in which time-dependent �ltering
and DWT [8,21] were performed instead of DFT). The
dimensionality of the vector space is reduced by deleting
all frequencies larger than 2fc , where fc is a cuto� frequency
de�ned by a cuto� scale

Sc = 1/fc. (22)

This is done as follows. First, we compute the orthogo-
nal (real) DFT matrix Tf . The ERP vectors (2�3) are then
transformed by

vf = vTf , Vf = VTf . (23)

Geometrically, the DFT (23) can be seen as a rotation of
the axes, analogical to the PCT (4). Note, however, that
Tf is actually a block diagonal matrix built from zeros and
K identical DFT blocks, one per channel. (The t-CWT
computer application uses only one copy of the DFT block
which is applied to each channel.)
As next, we retain only those columns of Tf that corre-

spond to frequencies f j ful�lling the cuto� condition

f j ≤ 2fc =
2
Sc
, j = 1, 2, . . . (24)

A �reduced� matrix �Tf is obtained from Tf by deleting
all columns corresponding to frequencies f j > 2fc. The
reduced DFT is then given by

�vf = v �Tf , �Vf = V �Tf . (25)

As in (5), the �inverse� transform (i.e., the rotation back
to the time domain axes) is given by

�v = �vf �TT
f , �V = �Vf �TT

f . (26)

Note, however, that, since �Tf is not a square matrix, �v and
�V are �ltered versions of v and V.
In order to smooth the cuto�, the vector components

corresponding to the frequencies f j of the last octave
fc < f j ≤ 2fc are attenuated gradually. This is done by
multiplication with a diagonal matrix Rf whose diagonal
elements are given by the values of an envelope function
r(f ) such that r(f j) = 1, for f j ≤ fc, and r(f j) = 2− f j/fc, for
fc < f j ≤ 2fc. Similarly, the vector components in the time
domain, v and V, can also be multiplied with an appro-
priate window function before DFT. This is done by left
multiplication of �Tf with a diagonal matrixRt whose diag-
onal elements are given by the values of the corresponding
envelope function. The current t-CWT implementation
uses a modi�ed Tukey window [25] de�ned by the enve-
lope function

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
1 − cos

(
π Tin

T

) )
for 0 ≤ t < Tin

1 for Tin ≤ t < Tout

1
2

(
1 − cos

(
π T−Tout

T

) )
for Tout ≤ t < T

(27)
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where Tin is the fade-in time and Tout is the fade-out
time.
Chaining all transformations together, we obtain

�vf = v �Tf , �Vf = V �Tf , (28)

where �Tf is de�ned by
�Tf = Rt �Tf Rf . (29)

For some purposes (e.g. visualization), it might be useful
to represent the �ltered ERP back in the time domain by
the �inverse� transform (26):

�v = �vf �TT
f = v �Tf �TT

f . (30)

The number of frequency components per channel is

NF = 1 + 4fcT, (31)

where T is the length of the time interval. The dimension
of the frequency domain space (i.e., the number of rows
of �Tf or �Tf ) is then KNF , where K is the number of EEG
channels. Substituting (22) in (31) we obtain the following
approximation:

NF ≈ 4
T
Sc

(32)

In the t-CWT software [16,17], the time-to-frequency
domain transformation (28) is implemented by the func-
tion tcwt_t2f; the preceding computation of the transfor-
mation matrix �Tf (22�29) is implemented by the function
tcwt_prm2mat (Table 1).

PCA and outlier detection
The multivariate outlier detection procedure proposed
here is heavily based on PCA not only for computational
reasons (due to small eigenvalues), but also because amul-
tivariate outlier can strongly in�uence the dimensionality
of the model, producing �fake� dimensions that survive
PCA unless the outlier is excluded from the computation
of the covariance matrix [23, p. 373].
An important distinction should be made at this point.

PCA, as commonly used in ERP applications [26,27] is
performed in the time domain and it usually includes an
additional rotation of the axes [28] following the initial
one (4). This second rotation is aimed at obtaining more
meaningful components, which, however, are not uncor-
related. In t-CWT,where PCA is only used in the pre/post-
processing (see below), it does not include any additional
rotations and the resulting components remain uncorre-
lated.
Consider an ERP represented via (28) in the frequency

domain by the random vector �vf and the single-trial sam-
ple �Vf , the latter comprising two subsamples �VfA and
�VfB corresponding to two di�erent experimental con-
ditions; �VfA and �VfB may in turn comprise subsamples
of trials obtained from di�erent individuals. PCT is per-
formed according to (4), using the total covariance matrix

obtained directly from �Vf (i.e. ignoring the subsample
structure of �Vf )

vp = �vf Tp, Vp = �Vf Tp. (33)

Then, components (represented by columns of Vp and
Tp) corresponding to eigenvalues smaller than a certain
cuto� value (de�ned by one of the criteria mentioned
above) are temporarily removed. The remaining Qp vari-
ables vip, i = 1, 2, . . .Qp, are normalized by (7). From the
normalized variables xi, for each n, the Mahalanobis dis-
tance Dn from the n-th single-trial ERP xn to the total
mean x is computed according to (8)

D2
n = D2(xn, x) =

Qp∑

i=1

(
xin − xi

)2
. (34)

With growing number of trials, each of the terms of the
sum in (34) rapidly converges to the square of a stan-
dard normally distributed random variable. Hence, D2

is approximately χ2-distributed. With growing Qp, the
square root of a χ2-distributed random variable converges
rapidly to a normal distribution as well, which means that
D =

√
D2 is approximately normally distributed.

The nth ERP trial is temporarily marked as an outlier if

Dn > D + CσD, (35)

whereD is themean, σD is the standard deviation ofD, and
C is a heuristically chosen coe�cient, (usually C ≥ 2.5).
The steps described above are repeated iteratively. Tri-

als marked as outliers (represented by rows of Vp) are
excluded from the PCA and the computation of D and
σD in the next iteration, but then they are tested again
by (35) together with all other trials. Principal compo-
nents are also excluded for one iteration only until their
number remains unchanged through two consecutive iter-
ations. After that, the PCA criterion is not applied any
more and PCT is performed further with a �xed num-
ber of components. This is done in order to facilitate
convergence. Also, in order to prevent oscillatory behav-
ior, if the number of marked outliers does not increase
after the current iteration, the outliers detected in the
previous iteration are marked again together with those
detected in the current iteration. The procedure ends
when the set of detected outliers does not change any
more (i.e. the same trials are marked in two consecutive
iterations).
If �Vf comprises di�erent individual datasets, a whole

dataset ismarked as an outlier (with all its trials) if a certain
percentage of its trials are alreadymarked. This criterion is
applied, however, only if the number of single-trial outliers
does not increase at the end of the current iteration. Note
that, like single trials, whole data sets excluded at a certain
step, can nevertheless be included again later.
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Table 1 A schematic representation of the t-CWT algorithm as implemented by the software [16,17]
t-CWT Input Processing Output
Function Files Steps Files: variables (equations)

prm2mat input parameter file Computes time-to-frequency domain transformation
matrix, CWT matrix and log-grid matrix

_A_const.mat : �Tf (22�29), �Tw (16�18, 43�45),
(sg, tg,h) (40�41)

t2f *.t.mat Performs time-to-frequency domain transformation and
�ltering of ERP datasets

*.f.mat : �Vf (28)
_A_const.mat *.ri0.mat : initial index vector

f2pc *.f.mat Computes PCT by performing PCA-based multivariate
outlier detection in frequency domain

*.pc.mat : �Tp (33�38)
*.ri0.mat *.ri1.mat : outlier index vector

f2cwss *.f.mat Performs CWT and computes sums of squares (SS) for
Student�s t-values for t-CWT scalograms

*.cwss.mat : SS of �W (48) for the computation of
σ k
AB (s, t) and tk (s, t) (19)*.pc.mat

*.ri1.mat
_A_const.mat

pc2cnd2ri *.f.mat Performs outlier detection for each experimental
condition separately with �xed PCT obtained by f2pc

*.ri2.mat : outlier index vector
*.pc.mat
*.ri1.mat

f2x *.f.mat Computes t-CWT scalograms using SS computed by
f2cwss, detects t-CWT scalogram extrema, and
computes t-CWT matrix

*.tcw.mat : tk (s, t) (19)
*.pc.mat *.x.mat : �T�

w (49)
*.cwss.mat
*.ri2.mat
_A_const.mat

x2ld *.f.mat Performs PCA-based step-down reduction of t-CWT
features obtained by f2x and computes LDF in
reduced feature space

*.ld.mat : �T�
p (50�51), d�

f (52�55)
*.x.mat
*.ri2.mat

The full names of the functions include the prefix ‘tcwt_’ (e.g., ‘tcwt_t2f’). The functions listed above (except for prm2mat) operate according to the following general
scheme:

function tcwt function (List , FurtherArguments )
define InputIndex
define FurtherInput
define Output
define Procedure
for each dataset in List

read OutlierIndex from dataset.Files[InputIndex]
read InputData from dataset.Files[FurtherInput]
Data = InputData .RemoveOtliers(OutlierIndex)
compute OutputData from Data by Procedure using FurtherArguments
write OutputData to dataset.Files[Output]

end for
end function

As a result of the procedure described above, both rows
of �Vf representing single-trial outliers and columns of Tp
representing �noise components� or �outlier components�
are deleted. The reduction of dimensionality is thus rep-
resented by the reduced PCT �Tp and the corresponding
�reduced� ERP matrices �Vp and �vp where

�vp = �vf �Tp, �Vp = �Vf �Tp. (36)

We use the �inverse� PCT �TT
p to represent the dimension-

ality reduction in the frequency domain

�vpf = �vp �TT
p, �V

p
f = �Vp �TT

p. (37)

From (36) and (37), we �nally obtain

�vpf = �vf �Tp �TT
p, �V

p
f = �Vf �Tp �TT

p. (38)

Note that in (38) we assume that all rows of �Vf correspond-
ing to outliers have already been deleted.
It is important to emphasize that, the principal compo-

nents obtained by this procedure are identical with those
which would be obtained if PCA were performed in the
time domain using the �ltered ERP, �v (30). This is so,
because the principal component axes that diagonalize
the covariance matrix are unique (although their repre-
sentation and the corresponding PCT depend on the rep-
resentation of the input sample). The frequency domain
representation is solely a matter of computational conve-
nience due to dimensionality reduction by frequency �l-
tering. Note also that although the dimensionality of the
model is further reduced by the statistical �PCA �ltering�
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(38), the dimensionality of the frequency domain repre-
sentation remains unchanged.
The above procedure can be additionally applied to each

of the two subsamples �VfA and �VfB separately, using the
principal components obtained from the whole sample
�Vf . The only di�erence is that no PCA is done any more
(because the components have already been �xed).
It is important to note that the pre-processing proce-

dures described above can be used independently from the
t-CWT feature extraction (described below). For instance,
the ERP sample �Vp

f (�ltered and free from outliers) can be
represented back in the time domain by (26):

�Vp = �V
p
f
�TT
f , (39)

and then used as input for other assessment procedures.
In this article, the representation (39) is used solely for
visualization purposes (see Fig. 2).
In the t-CWT software [16,17], the PCA-based mul-

tivariate outlier detection procedure (33�38) is imple-
mented by the function tcwt_f2pc; outlier detection for
each experimental condition separately with �xed PCT
obtained by tcwt_f2pc is implemented by the function
tcwt_pc2cnd2ri (Table 1).

t-CWT
Log-grid sampling
In (18), the number of rows of the CWT matrix Tw
is equal to the number of components of w, which
is equal to the number of sampling points in the s-t-
plane of the wavelet ψ

(
(τ − t)/s

)
in (16). This num-

ber can be signi�cantly reduced by using the log-grid
introduced in [7] instead of a regular sampling grid.
The vertices (sg , tg,h) of the log-grid (Fig. 1b) are de�ned
by

sg = S0 exp
(
ln(2)

g
R

)
, tg,h = sg

h
R
, (40)

where S0 is some unit scale, R is the scale-invariant sam-
pling rate measured in points per scale (pps), and g and
h take integer values (including negative and zero). The
scale invariance can be expressed by the two proper-
ties: sg+R = 2sg (i.e., we have R grid lines per octave),
and tg,h+R = tg,h + sg (i.e., on each grid line, we have
R sampling points per time interval of length sg ). The
special case R = 1 yields the DWT with its dyadic
structure [8,21]. The t-CWT application uses only the
part of the in�nite log-grid (40) con�ned by the rectan-
gle

Sc
2

≤ sg ≤ 4T, 0 ≤ tg,h ≤ T. (41)

In (41), the minimal scale Sc/2 corresponds to the maxi-
mal frequency 2fc in (24). For a large number of log-grid
vertices NG , a good approximation is given by

NG ≈ 3R2 T
Sc
. (42)

Thus, the number of CWT sampling points is signi�cantly
reduced, compared to the number of vertices of a rec-
tilinear grid with a regular spacing de�ned in the same
rectangle (41), e.g., by the original sampling frequency R0
applied to both axes as in (1). Note that the sampling fre-
quency R of the log-grid can be chosen to correspond to
the original sampling rate R0 by setting R=ScR0, but this is
not necessary and R can as well take an independent value
R �=ScR0.
In the t-CWTsoftware [16,17], the log-grid (sg , tg,h) (40�

41) is implemented by a matrix of vertices computed by
the function tcwt_prm2mat (Table 1).

CWT and t-CWT from the frequency domain
As in (18), we de�ne the CWT �Tw of the �ltered ERP
de�ned by (26) as

�w = �v �Tw , �W = �V �Tw , (43)

Substituting (26) in (43), we obtain

�w = �vf �Tw , �W = �Vf �Tw , (44)

where
�Tw = �TT

f
�Tw . (45)

The rows of the inverseDFTTT
f are the discrete vector rep-

resentations of the basic EEG oscillations sin(2π f jt) and
cos(2π f jt) with frequencies f j = j/T , where j = 0, 1, 2...
such that f j ≤ 2fc according to (24). Hence, �Tw is com-
puted by (16) using the log-grid sampling (40�42). The
convolution integrals are represented by the correspond-
ing sums with the original sampling rate R0.
Like Tw (18), �Tw is a block diagonal matrix built from K

identical blocks (one per channel). The size of each block
is NF×NG where NF and NG are the number of frequency
components (31, 32) and the number of log-grid vertices
(42), respectively. From (32) and (42) we obtain the follow-
ing approximation:

NFNG ≈ 12R2T 2

S2c
. (46)

The current implementation of t-CWT uses a Mexican
Hat wavelet de�ned by

ψ(t) = (1 − 16t2)e−8t2 . (47)

Note that (47) di�ers from the standard de�nition of the
Mexican Hat, ψ(t) = (1 − t2) exp(−t2/2). The unity scale
de�ned by (47) is four times larger than the standard.
This is done for convenience: de�ned in this way, the
scale corresponds better to the durations of the ERPwaves
matched by the wavelet and to the periods of the oscilla-
tions sin(2π f jt) and cos(2π f jt) in (45).
In order to exclude the outliers detected above, we apply

the obtained CWT �Tw to the �reduced� matrices �vp
f and

�Vf
p de�ned by (38)

�w = �vp
f
�Tw , �W = �Vf

p �Tw . (48)
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(ID=‘GIM’) average ERPs: std. [thin black], dev. [thick gray]
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Fig. 2 Group and individual ERP averages, Student�s t-value curves, and LDFs. Upper plots a grand average and b individual average ERPs (in
microvolts, as functions of time in seconds) elicited by 242 standard (thin black line) and 38 deviant (thick gray line) stimuli in a passive oddball
paradigm. The individual dataset was obtained from the EEG of participant �GIM� (see Table 3 for LDA classi�cation results). The ERPs were �ltered by
a low-pass �lter with cuto� frequency 25 Hz (Sc = 40ms) and by a statistical PCA �lter with proportion of explained variance Pv = 99%. Themiddle
plots c and d show the corresponding ERP di�erence t-value curves (without any correction for multiple comparisons), while the lower plots e and f
show the normalized linear discriminant functions (LDFs) obtained by the t-CWT method for the whole group and for the individual dataset. The
LDFs were computed for Sc = 40ms, Pv = 99%, and log-grid sampling rate R= 15 pps
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The t-CWT features are computed by (19, 20) and the t-
CWTmatrix �T�

w is obtained from �Tw by retaining only the
columns that represent the t-CWT features (20). Substi-
tuting �Tw in (48) with �T�

w , we obtain

w� = �vp
f
�T�
w , W� = �Vf

p �T�
w . (49)

In the t-CWT software [16,17], the computation of the
CWT matrix �Tw (16�18, 43�45) is implemented by the
function tcwt_prm2mat; the computations of the t-CWT
scalogram tk (s, t) (19), the t-CWT extrema and the t-
CWT matrix �T�

w (49) are implemented by the functions
tcwt_f2cwss and tcwt_f2x (Table 1).

Post-processing in the feature space
The t-CWT features w� are still strongly correlated,
because one and the same ERP component is found in
more than one EEG channel represented by at least one
extremum in each channel�s sub-scalogram. Furthermore,
not all such sets of extrema represent signi�cant ERP com-
ponents. For these reasons, the dimensionality of the fea-
ture space is reduced further by PCA and step-down selec-
tionof principal components. Finally, theLDF is computed
in the reduced feature space.

PCA and step-down test
PCT is performed in the feature space according to (4)

w�
p = w� T�

p, W�
p = W� T�

p, (50)

and the set of components is reduced according to one
of the PCA criteria mentioned above. Then, a subset of
components, �selected principal components� (SPC), is
selected by a step-down test [23, pp. 111, 177, 217] based
on the natural ordering of the components (sorted by
eigenvalue). The �reduced� matrices �T�

p, �W�
p and �w�

p are
obtained by deleting the columns corresponding to the
eliminated components in T�

p,W�
p and w�

p, respectively:

�w�
p = w� �T�

p, �W�
p = W� �T�

p, (51)

LDA
The LDF d�

w is computed in the reduced feature space as
in (11):

d�
w = �S�−1

pAB

(
�w�

pA − �w�

pB

)T
, (52)

where �w�

pA and �w�

pB are the respective means of the two
subsamples �W�

pA and �W�
pB , and

�S�
pAB is the pooled covari-

ance matrix. The LDA separation plane is de�ned as in
(13�15) by

�w�
p d�

w = 1
2

(
�w�

pA + �w�

pB

)
d�
w + ln

(
pB
pA

)
. (53)

Now, the transformations (28), (38), (49), and (51) can
be chained together in order to represent the LDF d�

w and

the LDF value �w�
p d�

w back in the frequency domain and in
the time domain:

�w�
p d�

w = vf d
�
f = vd�, (54)

where

d�
f = �Tp �TT

p �T�
w �T�

p d�
w , (55)

and

d� = �Tf d�
f . (56)

Finally, itmight be useful tomention also the continuous
time domain representation of the LDF value:

vd� =
K∑

k=1

T∫

0

vk (t) d�k (t) dt, (57)

where K is the number of channels, T is the length of
the time window, and vk (t) and d�k (t) are the continuous
representations of v and d� respectively (see Fig. 2).
In the t-CWT software [16,17], the PCA-based step-

down reduction of the t-CWT features (50�51) and the
computation of the LDF d�

w (52) and d�
f (55) are imple-

mented by the function tcwt_x2ld (Table 1).

Algorithm summary with links to the t-CWT software
In Table 1, the processing steps delineated above are sum-
marized and linked to the corresponding functions and
input/output data �les de�ned by the t-CWT software
[16] (for a detailed description of these �les and functions,
see the t-CWT software documentation [17]). Output �le
names displayed in the last column of Table 1 are provided
with references to corresponding mathematical variables
and equations de�ned in this article. The wildcard symbol
�* � denotes an ERP dataset name and indicates that the
corresponding t-CWTfunctions accept awhole list of such
names as an argument and then iterate over the list, thus
processing multiple ERP datasets in a single call (see the
pseudocode at the bottom of Table 1).

Computational demands
The most computationally demanding procedures are the
PCAand the t-CWTincludingCWTandextremumdetec-
tion from a scalogram.

PCA
The number of matrix elements of the PCT is K 2N2

F . The
covariancematrix has the samenumber of elements.Using
(32) we obtain the approximate total number of elements
of both matrices:

NP ≈ 32K 2T 2

S2c
. (58)

Both the memory and the processing time required for
PCA are approximately proportional to NP . Each double-
precision matrix element needs eight bytes of memory.
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The processing time depends on the central processing
unit (CPU), but, as a rule of thumb, one microsecond per
matrix element can be used for rough estimation of the
time needed for one iteration of the PCA-based multivari-
ate outlier detection procedure (see above).

t-CWT
The approximate number of (non-zero) CWTmatrix ele-
ments per channel is given by (46). The amount ofmemory
consumed by t-CWT is proportional only to this num-
ber and does not depend on the number of channels K ,
because the t-CWT application [16,17] performs CWT
on one channel at a time. Furthermore, if the processed
dataset is too big, t-CWT does not transform all trials
at once, but processes smaller blocks of trials (the block
size is controlled by an input parameter), thus limiting the
memory demand.
The time t-CWT needs to process one scalogram (com-

prising K sub-scalograms) is approximately proportional
to the total number of non-zero CWT matrix elements
NW =KNFNG . From (46) we obtain the following approx-
imation:

NW ≈ 12KR2T 2

S2c
. (59)

Again, as a rule of thumb, one microsecond per matrix
element can be used for rough estimation of the time
t-CWTneeds to process one scalogram (withK channels).
The t-CWT software package [16,17] includes the func-

tion tcwt_prm2info that evaluates both the exact values of
NP andNW and their approximations computedby (58, 59)
for a given set of input parameters. Further, tcwt_prm2info
makes a rough estimate of the computational demands
based on the simple assumption of eight bytes of work-
ing memory and one microsecond of processing time per
matrix element. All this is done in real time, without actu-
ally creating the corresponding matrices and can be very
useful in the planning stage of a t-CWT project when
the available computational resources must be taken into
account.

Example
Consider, e.g., the following settings: K =64, T =1 s,
Sc =50ms (fc =20Hz), and R=15pps. Then we would
have the following (exact) numbers obtained with
tcwt_prm2info:NF =81,NG =13,276,NP =53,747,712, and
NW =68,822,784. The memory used for PCA would be
about 430MB and for CWT (transforming 1,000 trials at
ones), about 116MB. The estimated processing time for
one PCA iteration would be about 54 s, and for one CWT
scalogram, about 69 s.Onapowerful hardware (seebelow),
however, these computational times can be signi�cantly
shorter (see Table 2).

Example: oddball paradigm
In this section, the t-CWT is demonstrated on example
ERP data [18] obtained in a passive oddball paradigm [19,
20]. Since these datasets have already been described in
detail elsewhere [11], only themost important information
about the experiment is provided here.

Datasets
ERP datasets were obtained from 36 healthy participants
(right-handed, mean age = 27 years, 20 females) in a pas-
sive oddball task [19,20], in which 255 standard and 45
deviant stimuli were presented at a constant rate in a ran-
domized sequence. The standard and the deviant stimuli
were 50-ms-long, 75-dB-loud sine tones, with a frequency
of 1.3 and 0.8 kHz, respectively; the interstimulus inter-
val was 0.8 s. The participants were instructed just to lis-
ten attentively to all tones (passive task). Digitized EEG
[time resolution: 2ms/step (500Hz), voltage resolution:
0.1678microvolts/step] was continuously recorded from
nine scalp positions according to the 10�20 system: Fz,
Cz, Pz, F3, F4, C3, C4, P3, and P4. All electrodes were
referenced to the linked mastoids. Electrical eye activity
was recorded by bipolar acquisition from the following
sites: the two lateral orbital rims for horizontal eye move-
ments, and FP2 and a site below the right eye for vertical
eye movements and eye blinks. The �rst nine datasets (in
alphabetical order) were excluded for technical reasons (in
order to reduce the whole dataset archive to 100MB for
online storage and download purposes). The remaining 27
datasets were processed with t-CWT.

Data processing
Before feeding the data into the t-CWT processor, the
raw EEG curves were segmented and corrected for eye
blink and eyemovement artifacts, by a standard procedure
[29,30]. The epoch length was 1 s, starting 100ms before
stimulus onset. Then, the datasets were checked for series
of more than one deviant trials. Only the �rst trials of
such series were retained, the following deviant trials as
well as the �rst subsequent standard trial were deleted.
The �rst ten trials of each dataset were also deleted. As
a result of this reduction, in each dataset, remained 242
standard trials and 38 deviant trials. Thus, the a priori
probabilities (15, 53) were ps = 86.4 % for standard trials
and pd = 13.6% for deviant trials. The datasets were con-
verted fromASCII format to the internal t-CWT format by
the function tcwt_ascii2tmat [16,17] and the epochs were
reduced to windows of interest starting at stimulus onset
andending600ms later.The signals in thesewindowswere
then referenced to the 100mspre-stimulus baseline.These
signals were processed by t-CWT.
In its current implementation [16,17], t-CWT starts

with a call to the function tcwt_prm2info which gives a
rough estimate of the memory demands and the compu-
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Table 2 Individual hold-out error rates (average %) and computational demands
Sc (ms) fc (Hz) R (pps) PCA Average holdout error rates (%) Freq. Log Matrix ME ratio: Processing time

Pv (%) A priori: 50 % A priori: 13.6 % Dom. Grid Elements NFNGS2c Total (h:min) Per ME (ns)
Std Dev Tot Std Dev Tot NF NG KNF NG R2 T2

250 4 10 95 22.0 31.7 23.3 2.2 66.8 11.0 9 774 62,694 12.1 0:07 858
100 10 15 95 19.0 32.8 20.9 2.7 61.9 10.7 25 4,339 976,275 13.4 0:57 467
100 10 15 97 18.2 32.2 20.1 2.9 60.6 10.8 25 4,339 976,275 13.4 0:58 474
100 10 15 99 16.9 32.0 18.9 2.8 57.6 10.2 25 4,339 976,275 13.4 0:59 476
50 20 15 95 18.7 32.9 20.7 2.9 61.3 10.8 49 8,320 3,669,120 12.6 3:02 394
50 20 15 97 17.5 33.2 19.7 2.8 58.3 10.3 49 8,320 3,669,120 12.6 3:04 398
50 20 15 99 15.4 33.7 17.9 2.9 55.5 10.0 49 8,320 3,669,120 12.6 3:10 412
40 25 15 95 17.8 32.7 19.8 2.7 61.4 10.6 61 10,341 5,677,209 12.5 4:41 393
40 25 15 97 16.9 32.6 19.0 2.8 58.8 10.4 61 10,341 5,677,209 12.5 4:37 388
40 25 15 99 15.3 33.2 17.7 3.0 55.0 10.0 61 10,341 5,677,209 12.5 4:44 397
40 25 20 99 15.4 31.8 17.6 3.0 55.2 10.1 61 18,257 10,023,093 12.4 8:19 395
40 25 25 99 15.0 32.7 17.4 2.7 55.7 9.9 61 28,245 15,506,505 12.3 13:41 420
30 33 15 99 15.5 34.5 18.1 3.3 56.5 10.5 81 13,657 9,955,953 12.3 7:46 372

tational time (see above). The next call is to the function
tcwt_prm2mat that creates and saves to a �le those trans-
formation matrices which do not depend on the data, but
are functions of global input parameters only (see Table 1).
Thesematrices are the DFT �Tf (29) and the CWT �Tw (45),
and they depend on the original sampling rate R0 (1), the
length of the time window T (1), the fade-in and the fade-
out times Tin and Tout of the window function (27), the
log-grid sampling rate R (40), and the cuto� scale Sc (22).
While R0 is de�ned by the time resolution setting of the
EEG ampli�er (in this case, R0 = 500Hz), the other para-
meters can be varied to achieve best LDA classi�cation
results. In the current example, T , Tin and Tout were kept
�xed: T =600ms, Tin = 20ms, Tout = 200ms, while R and
Sc took the following values: R = 10, 15, 20, and 25pps;
Sc = 250, 100, 50, 40, and 30ms. Note that these values of
Sc correspond to cuto� frequencies fc = 4, 10, 20, 25, and
33.3Hz, respectively (22).
After computing �Tf and �Tw , thedatawere represented in

the frequency domain by (29) using the function tcwt_t2f
(Table 1). The outlier rejection procedure described above
(33�38) was performed on each dataset, �rst on the whole
dataset (by the function tcwt_f2pc), then on each of
the two subsets, standard and deviant (by the function
tcwt_pc2cnd2ri, see Table 1). The greatest eigenvalues
explaining a certain percentage Pv of the variance were
retained after PCT. Di�erent values of Pv were tried in
order to minimize the LDA classi�cation error rates (see
below): Pv = 95, 97, and 99%. The outlier criterion was
de�ned by setting C = 2.7 in (35). (Other values of C
ranging from 2.5 to 9.9 were tried as well, but without any
substantial e�ect on the results; see the Limitations section
in the �Discussion� section.)
As a next step, the t-CWT features w� were com-

puted (for each dataset) as described in (43�49) using
the function tcwt_f2x (Table 1). The obtained set of t-
CWT features was reduced further by PCAs (50) and step-

down tests (51), implemented by the function tcwt_x2ld
(Table 1). The same PCA criterion with the same value
of Pv as in the outlier rejection procedure was applied.
The overall α-level for the step-down test was set to
αsd = 0.3. Finally, the LDFs d� of the individual datasets
were obtained by (52), also implemented by the function
tcwt_x2ld (Table 1).
LDA classi�cation was performed according to (13�15,

53) and classi�cation error rates were computed using the
hold-out method and the split-half method [23, p. 244]
for both unknown (i.e., equal: ps = pd =50%) and known
(i.e., oddball: ps =86.4%, pd =13.6%, see above) a priori
probabilities.
In the �individual hold-out� method, all of the above

steps but the �rst one (outlier rejection from the whole
dataset) were performed on a dataset obtained from
the original one by excluding one single trial. The LDF
thus obtained was used to classify the excluded trial as
standard or deviant by (14) and (15). The error rates
were obtained by repeating the procedure for each sin-
gle trial and each dataset and comparing the result with
the true category of each trial (standard or deviant).
The hold-out method is very e�cient, because it is
almost unbiased and it uses the whole available statis-
tical power, but it is also a computationally demand-
ing procedure. In the t-CWT software [16,17], the indi-
vidual hold-out method is implemented by the function
tcwt_f2holdout.
In the �individual split-half� method, all steps were

performed on the �rst half of the trials of each dataset
(extracted by the function tcwt_f2split [16,17]). The LDFs
obtained from these �training datasets� were then applied
to the second halves of the datasets, the �test datasets�.
This method is quick and simple, but it has considerable
loss of statistical power as a major disadvantage.
�Individual biased� error rates were also computed in

order to demonstrate the bias resulting from using the
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same dataset (without excluding any trials) for both train-
ing and testing.
In order to demonstrate multivariate hypothesis testing,

only the last 9 deviant trials and 50 standard trials of each
dataset were used as training dataset, while the �rst half
of the trials were used as test dataset. The SPCs obtained
from each training dataset by the step-downmethod were
applied to each test dataset and subjected to Hotelling�s
T2-test. Both the individual split-half error rates and the
biased error rates, as well as Hotelling�s T2-tests were per-
formed with the function tcwt_f2stats [16,17].
Finally, all individual datasets were pooled together into

one large group dataset (using the function tcwt_f2pool
[16,17]). Outlier rejection (using tcwt_f2pc and tcwt_
pc2cnd2ri) was performedwith the average eigenvalue as a
PCA criterion in order to emphasize group features and to
suppress individual and/or oscillatory features. The single-
trial outlier criterion was de�ned by setting C = 2.5 in
(35). (Again, experimenting with other values of C had
virtually no e�ect on the results; see the Limitations sec-
tion in the �Discussion� section.) The dataset outlier crite-
rion was de�ned by setting the minimum number of trials
retained to 50% of the trials in the dataset. t-CWT, PCA
(again, with the average eigenvalue criterion), step-down
test, and LDA were performed as above (using tcwt_f2x
and tcwt_x2ld). A variation of the hold-out method, the
�group hold-out� was used to obtain classi�cation error
rates for the individual datasets: instead of excluding one
single trial at a time, one whole individual dataset was
excluded at each iteration. Each error rate obtained in this
way is based on a group LDF applied to the respective
excluded dataset.
The t-CWT software [16,17], provides the function

tcwt_ri2ri1out that creates systematically hold-out indices
of the pooled group dataset which are specially designed
for the implementation of the group hold-out method. In
a group hold-out index corresponding to a given indi-
vidual dataset, all single trials belonging to this dataset
are marked as �outliers�. The functions tcwt_pc2cnd2ri,
tcwt_f2x, tcwt_x2ld, and tcwt_f2stats can use these index
�les to compute the corresponding grouphold-out t-CWT
features, group hold-out LDFs, and group hold-out error
rates. The hold-out mode of operation of these func-
tions is very similar to their normal mode outlined in
the pseudocode at the bottom of Table 1 (i.e., they iter-
ate through the list of individual datasets, loading in each
iteration the corresponding group hold-out index �le and
other group hold-out input �les, performing the respective
transformations and computations, and saving the results
in corresponding group hold-out output �les).
For all obtained error rates (individual hold-out, individ-

ual split-half, individual biased, and group hold-out), bino-
mial distribution p-valueswere computed (by tcwt_f2stats
and tcwt_f2holdout) to test the hypotheses whether these

error rates were better (i.e., smaller) than the chance clas-
si�cation error rates de�ned by the a priori probabilities
pd = 50% or pd = 13.6% (see above).
All t-CWT computations were performed with the

t-CWT software [16,17] in 64-bit MATLAB 8.1.0.604
(R2013a), under GNU Linux (Scienti�c Linux 6), on the
high performance computing cluster bwGRiD [31] using
a single quad-core CPU (Intel� Xeon� 5150@2.66GHz)
per job (i.e. for a particular combination of input para-
meters). The t-CWT program was also tested with 64-bit
MATLAB8.3.0.532 (R2014a) and64-bitGNUOctave 3.8.2
[15], under GNU Linux (openSUSE 12.3) andWindows 7,
on less powerful desktop and laptop computers (equipped
with dual-core CPUs).

Results and discussion
In this section, some example results are presented
and discussed. These results were obtained with the t-
CWT method from the example datasets [18] described
above.

Results from the example oddball data
Group averages of individual hold-out classi�cation error
rates for di�erent values of the cuto� scale Sc, the log-
grid sampling rate R, and the percentage of variance Pv
explained by PCA are displayed in Table 2. Most of these
results are visualized by bar plots in Fig. 3. Both total
errors (tot) and errors for each category of trials, stan-
dard (std) and deviant (dev), are displayed. The total
error rates computed by taking into account the a pri-
ori oddball probabilities ps =86.4% and pd =13.6% (15)
were, as expected, much smaller than those computed for
ps = pd =50% (14). Note, however, that the error rates
for deviant trials increased when the a priori probabili-
ties were taken into account. It is also interesting to point
out the following observation: while for ps =86.4% and
pd =13.6%, the total error (Fig. 3f) was decreased by the
error reduction in the classi�cation of deviant trials (Fig.
3e), the corresponding total decrease in the case of equal
a priori probabilities ps = pd =50% (Fig. 3c), was caused
by the decline of error of classi�cation of standard trials
(Fig. 3a).
Both the numbers in Table 2 and the plots in Fig.

3 demonstrate how the quality of the LDF d� (52�56)
can be optimized by minimizing the errors of classi-
�cation through systematic variation of the values of
the di�erent input parameters Sc, Pv , R, etc.. This opti-
mization can be very important for di�erent applica-
tions of the t-CWT method. While this is obvious for
cases in which classi�cation is the ultimate goal of the
application (as, e.g., in BCI), other applications aimed
at multivariate hypothesis testing may also use opti-
mized LDFs for their purposes (see the �Discussion� sec-
tion).
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Hold-out Error Rates as Functions of Cutoff Scale Sc and PCA Percentage of Variance Pv for equal a priori probabilities ps= pd= 50%
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Hold-out Error Rates as Functions of Sc and Pv for the known a priori oddball probabilities ps = 86.4%, pd = 13.6%
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Computationals Demands as Fuctions of the Cutoff Scale Sc (and the Cutoff Frequency fc) and the Log-grid Sampling Frequency R
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Fig. 3 Hold-out error rates and computational demands as functions of Sc , Pv and R. These plots visualize the most important results displayed in
Table 2. Plots a�c show the average classi�cation errors obtained with the individual hold-out method with equal a priori probabilities ps=pd =50%
(14) for di�erent values of the cuto� scale Sc and the percentage of variance Pv explained by PCA. The corresponding error rates obtained by using
the knowledge of the real oddball probabilities ps = 86.4% and pd = 13.6% (15) are displayed in the plots d�f . The approximate processing time as a
function of Sc , or the respective cuto� frequency fc (22), is displayed in plot g. Plot h shows how the number of the non-zero CWT matrix elements,
measured in millions (mln), and the respective memory usage, measured in megabytes (MB), depend on Sc or fc . Plot i shows how both processing
time and memory usage increase as a function of the log-grid sampling rate R (40)

In Table 2, NF denotes the number of frequency com-
ponents per channel (31, 32), and NG is the number of
log-grid vertices (42). The number of non-zero CWT
matrix elements (ME) is given by KNFNG , where K is
the number of channels. Table 2 shows that the ME

ratio (NFNGS2c )/(R2T 2) (see 46) is approximately constant.
Table 2 also shows how the computational time depends
on the number of non-zero CWTmatrix elementsKNFNG
which is a function of Sc,R, Pv , and the number of channels
K . This function is de�ned by (59) which was con�rmed
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Table 3 Apparent error rates (%) and Hotelling tests for individual datasets
No. ID Group hold-out Individual biased Individual split-half Ind. hold-out Hotelling

NX NP Std Dev Tot NX NP Std Dev Tot NX NP Std Dev Tot Std Dev Tot p-value

1. GIM 127 6 0.4 76.3 10.7 120 7 2.1 21.1 4.6* 131 5 1.7 15.8 3.6* 2.9 23.7 5.7* 0.0000*

2. GOI 137 6 8.3 55.3 14.6 118 5 2.5 44.7 8.2* 129 4 3.3 42.1 8.6* 1.7 47.4 7.9* 0.0001*

3. GUS 129 6 0.0 100.0 13.6 159 8 2.9 44.7 8.6* 126 4 4.1 73.7 13.6 4.5 57.9 11.8 0.0109*

4. HAH 128 6 0.8 86.8 12.5 140 4 2.1 63.2 10.4 129 4 7.4 68.4 15.7 3.7 71.1 12.9 0.0011*

5. HEA 132 6 0.8 89.5 12.9 130 5 2.9 68.4 11.8 141 2 8.3 47.4 13.6 4.1 68.4 12.9 0.0004*

6. HII 134 6 0.8 94.7 13.6 135 8 2.9 39.5 7.9* 138 7 5.8 73.7 15.0 5.8 57.9 12.9 0.0919
7. JUE 135 6 5.0 97.4 17.5 139 4 2.1 81.6 12.9 155 3 3.3 94.7 15.7 2.5 86.8 13.9 0.7760
8. KAA 135 6 0.8 57.9 8.6* 181 5 0.8 31.6 5.0* 185 2 0.8 52.6 7.9* 0.8 36.8 5.7* 0.0000*

9. KAC 129 6 9.1 71.1 17.5 137 8 3.7 55.3 10.7 148 5 2.5 78.9 12.9 3.7 65.8 12.1 0.1185
10. KUD 127 6 0.8 86.8 12.5 139 4 2.9 57.9 10.4 131 1 0.8 68.4 10.0 2.9 71.1 12.1 0.0572
11. MAH 128 6 2.5 71.1 11.8 131 2 3.7 55.3 10.7 136 3 0.8 84.2 12.1 3.7 60.5 11.4 0.0138*

12. MAN 135 6 0.8 78.9 11.4 163 5 2.5 23.7 5.4* 164 3 3.3 42.1 8.6* 3.3 36.8 7.9* 0.0000*

13. MUV 136 6 5.0 44.7 10.4 115 6 3.3 34.2 7.5* 126 2 1.7 42.1 7.1* 2.9 42.1 8.2* 0.0000*

14. NED 136 6 2.5 73.7 12.1 106 5 3.3 60.5 11.1 147 3 1.7 84.2 12.9 5.8 71.1 14.6 0.0009*

15. OTS 129 6 0.8 94.7 13.6 131 3 0.8 89.5 12.9 136 2 0.8 100.0 14.3 0.8 97.4 13.9 0.6049
16. RER 129 6 1.2 60.5 9.3 139 4 1.2 31.6 5.4* 146 4 0.8 63.2 9.3 2.9 36.8 7.5* 0.0000*

17. ROC 135 6 5.8 47.4 11.4 124 4 1.2 31.6 5.4* 136 3 0.0 68.4 9.3 0.8 36.8 5.7* 0.0000*

18. ROM 132 6 1.7 73.7 11.4 127 5 2.1 44.7 7.9* 119 4 4.1 52.6 10.7 2.5 50.0 8.9* 0.0000*

19. SCA 137 6 3.3 86.8 14.6 120 5 1.7 71.1 11.1 119 5 12.4 84.2 22.1 2.9 86.8 14.3 0.0633
20. SCH 131 6 2.5 71.1 11.8 127 7 2.1 34.2 6.4* 142 5 0.8 68.4 10.0 2.5 50.0 8.9* 0.0000*

21. SCK 142 6 0.8 63.2 9.3* 151 8 1.2 18.4 3.6* 182 5 0.8 42.1 6.4* 3.3 31.6 7.1* 0.0000*

22. SCT 132 6 1.2 68.4 10.4 149 8 0.8 47.4 7.1* 140 6 2.5 68.4 11.4 0.8 47.4 7.1* 0.0001*

23. SCW 135 6 3.7 84.2 14.6 156 12 2.9 34.2 7.1* 163 4 4.1 89.5 15.7 5.8 52.6 12.1 0.5310
24. UMD 124 6 1.2 57.9 8.9* 138 5 0.8 28.9 4.6* 135 4 0.8 36.8 5.7* 1.7 34.2 6.1* 0.0000*

25. USD 137 6 8.3 57.9 15.0 139 7 2.5 50.0 8.9* 156 3 2.5 73.7 12.1 3.3 63.2 11.4 0.0012*

26. WIB 125 6 0.8 73.7 10.7 127 7 1.7 28.9 5.4* 133 5 0.0 42.1 5.7* 2.5 42.1 7.9* 0.0000*

27. ZIA 124 6 0.4 92.1 12.9 147 10 2.1 34.2 6.4* 159 5 8.3 78.9 17.9 2.5 57.9 10.0* 0.0748

Group averages: 2.6 74.7 12.4 2.2 45.4 8.0 3.1 64.3 11.4 3.0 55.0 10.0
* Signi�cant at level α= 0.05: 4 18 8 14 19

Hotelling’s T2-tests were performed with only 9 deviant and 50 standard trials (of each dataset)

by the results displayed in Table 2. The computational
demands as functionsofSc, fc andR arepresented in graph-
ical form in Fig. 3g-i.
The total processing time for the hold-out method is

the product of the processing time per non-zero CWT
element, the number of such elements, and the number
of scalograms. For the hold-out method, as applied to the
example data, the latter was equal to the total number of
trials = 27 datasets × 280 trials per dataset = 7,560. As
the last column of Table 2 shows, the processing time per
matrix element is approximately constant. Note, however,
that this value of less than a halfmicrosecondwas obtained
withMATLAB and certain hardware (see above), and that
the corresponding value for GNU Octave and/or other
hardware may be larger.
The results for Sc =40ms, R=15pps, and Pv =99% are

presented in more detail. The latter values appeared to be
optimal, because, as Table 2 and Fig. 3i show, larger values

of R increased substantially the computational demands
with little improvement of the results.
The average ERP curves are displayed in Fig. 2a for the

whole group (grand average) and in Fig. 2b for one individ-
ual participant (ID=�GIM�). Student�s t-test results for the
di�erence between the ERP responses to deviant vs. stan-
dard tones are displayed in Fig. 2c for the whole group and
in Fig. 2d for the participant �GIM�. Note that, since these
t-valueswere not corrected formultiple comparisons, they
cannot be used for inference about the statistical signi�-
cance of the di�erence between the two ERP curves at each
point in time [4,5]. It is interesting, however, to compare
the forms of these t-value curves with the forms of the
corresponding LDFs. The LDF obtained with the t-CWT
method is displayed in Fig. 2e for the whole group and in
Fig. 2f for the participant �GIM�.
The grand average plots show that the ERP response to

deviant stimuli relative to the response to standards was
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dominated by the Mismatch Negativity (peaking about
200ms post-stimulus) [32], the P3 (300ms) [19,20], and
theNegative SlowWave (400ms) [33]. The individual LDF
displayed in Fig. 2f shows, however, some additional oscil-
latory features which are not quite discernible in the time
domain (Fig. 2b, d) and which, nevertheless, improve sub-
stantially the LDA classi�cation results obtained with this
LDF for the participant �GIM� compared to those com-
puted for the same participant with the group LDF dis-
played in Fig. 2e (see Table 3).
The di�erent LDA error rates as well as the p-values

obtained from Hotelling�s T2-test (with 9 deviant and
50 standard trials) for each participant, for Sc =40ms,
R=15pps, and Pv =99% are displayed in Table 3. Total
error rates (tot) were tested by the binomial cumula-
tive distribution function whether they were signi�cantly
smaller than the a priori probability for deviant (dev) tri-
als pd = 13.6%. The comparison between the di�erent
methods showsanadvantageof the classi�cationsbasedon
individual t-CWT features over those based on group fea-
tures. Furthermore, the individual hold-out method pro-
vided lower error rates than the split-halfmethod.This can
be explained by the split-half method�s loss of statistical
power (less that 20 deviant trials remained after splitting a
dataset).
Table 3 also shows the number of t-CWT extrema NX

obtained with eachmethod for each data set and the num-
ber of SPCs used for classi�cation. While the error rates
obtained with the individual biased method are incorrect,
the numbers of t-CWT features NX and the numbers of
SPCsNP are the correct numbers obtained from the whole
datasets. They can also be seen as good approximations
for the corresponding values obtained with the holdout-
method, in which, of course, they vary with each iteration
(and are not displayed in Table 3 for this reason). These
numbers show that the originally very large dimensional-
ity of the data was reduced to less than 200 (correlated)
t-CWT extrema which in turn were reduced further to
a few (12 or less, uncorrelated) SPCs. The results from
Hotelling�s T2-test (Table 3, last column) show that, for
the most individual datasets, 9 deviants and 50 standards
were enough for the ERP di�erence to reach statistical
signi�cance.

Discussion
Table 3 shows that all error rates vary largely among the
di�erent individual datasets.While the inherent EEGnoise
in the data is responsible for one portion of the error, par-
ticipants� inattention to the stimuli provides an additional
source of systematic error. Thus, error rates can be used
as inverse measures of attention.
Amuchmore straightforwardapproach, however,would

be to use directly the LDF value vd� (52�57) to measure
the ERP di�erence between the two experimental con-

ditions and to interpret this di�erence as a measure of
participants� attention to the stimuli. This could be done
in di�erent ways as described in the following three cases.
In the�rst case, bothv andd� areobtained fromthe same

ERP sample V, comprising two subsamples VA and VB
obtained under two di�erent experimental conditions A
and B (A-B design). Then, the mean di�erence LDF value(
vA− vB

)
d� is exactly the mean Mahalanobis distance

(10�12) computed in the feature space. This same Maha-
lanobis distance is used inHotelling�s T2-test, which, how-
ever, should not be used directly in this case, because the
t-CWT features are extracted from the very sample that is
tested. As already mentioned in the Background section, a
multivariate randomization test based on Hotelling�s T2-
statistic can be used instead [11].
In the second case, the LDF d� is computed from the

same sample as v, but, this time, using t-CWT features
obtained from a training dataset, VZ (by an A-B design
withinZ). In this case, Hotelling�s T2-test may be used, as
this was done above in the assessment of the example data.
The third case, in which both the t-CWT features and

theLDFd�
Z are computed froma training datasetVZ , while

v is drawn from a test datasetV, is themost important and
will be discussed in more detail. As already mentioned
above, this is the usual scenario in a typical BCI appli-
cation, which was also demonstrated above by the split-
half method in the assessment of classi�cation error rates.
But the representation of the Mahalanobis distance (12)
suggests another usage of the LDF apart from single trial
classi�cation. Namely, we can construct a new estimator
D2
Z of the Mahalanobis distance by using d�

Z instead of d:

D2
Z (vA , vB ) =

(
vA − vB

)
d�
Z . (60)

Since d�
Z is computed from the training dataset VZ , it can

be treated as constant in all tests and analyses concern-
ing the test dataset V. Consequently, vAd�

Z , vBd�
Z , and

D2
Z (vA , vB ) are all (univariate) normally distributed and can
be subjected to standard univariate tests. It should also be
noted that in (60) a whole complex pattern recognition
scheme derived from VZ (PCA, t-CWT, etc.) is imposed
on V by simple multiplication.
The signi�cance of (60) reaches, however, beyond mere

computational convenience, because it conveys a whole
concept of multivariate ERP assessment. While, in most
BCI applications, this concept is clearly the most e�ective
for single trial classi�cation, and, therefore, also the stan-
dard one, it has not been used in other ERP applications
for testing hypotheses about mean ERP di�erences. (Note
that mass univariate analyses [4,5], which have become
popular recently, represent a di�erent concept.) In the fol-
lowing, some general ideas about possible applications of
this multivariate concept are presented.
The two kinds of t-CWT features, group and individual,

that can be extracted from the data suggest two di�erent
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kinds of diagnostic applications of the t-CWT method:
within-subject and between-subject. Consider an ERPpar-
adigm testing a certain cognitive function in a group of
individuals under three di�erent conditions: X , experi-
mental condition (e.g. under the in�uence of a drug); Y ,
control condition (e.g. placebo); and Z , standard condi-
tion (no substances administered). Assume that the cogni-
tive function of interest is re�ected by the ERP di�erence
between two sub-conditions, A and B, (A-B design, as
above). Now, the individual t-CWT features, SPCs, and
LDFs obtained from Z can be used to assess the di�er-
ence between X and Y by means of Student�s two-sample
(X -Y) t-test of the Mahalanobis distance (60) and/or by
comparison of classi�cation error rates. This is an exam-
ple of a within-subject application of the t-CWT method.
Note that the t-CWTmethod described above for the case
of anA-B design can be easily extended to the case of only
one sub-condition, A, when the ERP v is compared to 0
(A-0 design).
As an example of a between-subject application, con-

sider an ERP paradigm testing a certain cognitive function
in three di�erent samples of individuals: X , a sample of
patients su�ering a certain disorder which has the impair-
ment of this cognitive function as a symptom; Y , a sample
of healthy individuals; and Z , a mixed sample of patients
and healthy individuals. In this case, the group t-CWT
features, SPCs, and LDFs obtained from Z can be used
to assess the di�erence between X and Y . Further, the
t-CWT method can be applied directly to the ERP di�er-
ence between X and Y and the resulting t-CWT features,
SPCs, and LDFs can be used for classi�cation and diag-
nostics of individuals from the general population (i.e. to
determine whether an individual su�ers from this partic-
ular symptom or not). The greatest problem in the case
of a between-subject comparison would be the substantial
increase in variance due to individual di�erences.
Finally, in both within-subject and between-subject

applications, the LDF value (54�57) can be used as a mea-
sure of the magnitude of the (di�erential) ERP response in
each of the conditions X , Y , and Z in order to investigate
its relationship with other behavioral measures or with the
amplitudes of single (classical) ERP components.

Limitations
All of the above ideas about possible applications of the t-
CWTmethod assume the existence of a cleverly designed
ERP paradigm that tests exclusively (changes in) a partic-
ular (set of) cognitive function(s) of interest without the
resulting ERP di�erences being a�ected by (changes in)
other cognitive functions. In many cases, however, this
assumption might not be true. This is a conceptual limita-
tion, not only of the t-CWTmethod, but of any multivari-
ate ERP assessment method. In certain cases, the ampli-

tudes of single ERP components might be better measures
of particular cognitive functions of interest.
A purely technical limitation of the t-CWT method is

imposed by the computational demands of its current soft-
ware implementation [16,17]. For instance, the usage of
dense electrode arrays combined with long time windows
and small cuto� scales, might result in practical unus-
ability of the application, if no access to adequate com-
putational resources (e.g. a high performance computing
cluster [31]) is provided. In spite of the good scalability of
the application (e.g. the computationally demandingCWT
is performed one channel at a time, the maximum num-
ber of single trials processed by CWT is controlled by an
input parameter, thus limiting working memory usage),
the increase of computational time can be handled only
by parallel execution of t-CWT jobs on several powerful
CPUs.
A notable limitation of the current study is the lack of

evidence for (or against) the usefulness of the novel PCA-
basedmultivariate outlier detection procedure introduced
above. The results of the (within-subject) assessment of
the example oddball data were not sensitive to variations
in the number of outliers detected and excluded by the
procedure, depending on the value of the input parameter
C (35). Whether zero or as much as 20% of the trials were
rejected, the statistical assessments were practically not
a�ected by these changes and the corresponding results
remained virtually the same. It should bementioned, how-
ever, that some unpublished evidence already exists, sug-
gesting that the outlier detection procedure could be cru-
cial in a between-subject design.This evidence comes from
the (un�nished) t-CWT assessment of ERP data obtained
in a previous study [34].

Conclusions
In the present article, some basic concepts of multivari-
ate statistics were introduced as geometric notions. ERPs
were de�ned as random vectors (points) in a metric space,
in which the distance between two points was derived
in a natural way from the covariance of the data. PCT
and DFT were introduced as rotations in this space. LDA
classi�cation was described as computing a LDF vector,
building a separation plane perpendicular to this vector,
and assigning single-trial ERP points to two di�erent cat-
egories according to their position relative to this dividing
plane. CWT and t-CWTwere also de�ned as linear trans-
formations represented by their respective matrices. All
these mathematical constructs were used to provide for
the �rst time a detailed, step-by-step, formal description
of the t-CWT algorithm. Its MATLAB and GNU Octave
implementation was also made publicly available as free
and open source code released for the �rst time under
GPLv3 [16,17].
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A newmultivariate outlier rejection procedure based on
PCA in the frequency domain was introduced. The time-
dependent �ltering and the DWT used in the previous
version of t-CWT [7] were replaced in the current ver-
sion by simple uniform �ltering via DFT. This was done
solely for simpli�cation for the sake of easier understand-
ing and not for improvement of the method. In fact, a
new version of t-CWT is planned including a more �exi-
ble procedure for time-dependent �ltering based on PCA
and DWT.
It should be noted that t-CWT is essentially a feature

extraction method and t-CWT based classi�cation does
not necessarily imply LDA as a post-processing proce-
dure. Classi�cation can be performed using other meth-
ods as well, e.g., SVM [10]. Hypotheses can be tested by
both mass-univariate [13] and multivariate [11] permu-
tation/randomization tests. Moreover, as already men-
tioned above, t-CWT can also be used in combination
with other dimensionality reduction methods, e.g. EMS
�ltering [24]. On the other hand, the PCA-based mul-
tivariate outlier detection introduced here, can be used
independently from t-CWT as a pre-processing proce-
dure in other assessment algorithms. It is also impor-
tant to emphasize that although t-CWT feature extrac-
tion can be computationally demanding, taking several
seconds or even minutes for large scalograms (with
many channels), the t-CWT features, once computed,
can be applied practically instantly in real time applica-
tions (e.g., BCI) via LDA or other proper classi�cation
method.
The t-CWTmethod was demonstrated on example ERP

data [18] obtained in a passive oddball paradigm. Both
group and individual t-CWT features were extracted from
the data and were used for LDA classi�cation of single
trials and for testing mean ERP di�erences for each indi-
vidual dataset via Hotelling�s T2-test. Di�erent methods
for estimation of classi�cation errors were introduced and
compared with each other.
Finally, new ideas for further applications of the mul-

tivariate approach in general and of t-CWT method in
particular were introduced on a conceptual level in the
Discussion. Someof these ideaswill be tested soon in a ran-
domized clinical trial where ERPs are used for assessment
of the sustainedmindful attention developed by training in
a course ofmindfulness-based cognitive therapy for recur-
rent depression [34].

Availability of supporting data
The example datasets [18] supporting the results of
this article are available at http://tcwt.de/ or http://
bioinformatics.org/tcwt/ as well as in the LabArchives
repository at http://doi.org/10.6070/H4MP518T.
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