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Abstract

Background: Cholesterol metabolism is important for the maintenance of myelin and neuronal membranes in the
central nervous system. Blood concentrations of the brain specific cholesterol metabolite 24S-hydroxysterol to the
peripheral metabolite 27-hydroxycholesterol may be useful surrogate markers for neurodegenerative diseases
including Alzheimer’s disease, Huntington’s disease, HIV-Associated Neurocognitive Disorders, and Multiple Sclerosis.
However, current methods to isolate hydroxycholesterols are labor intensive, prone to produce variable extraction
efficiencies and do not discriminate between free and esterfied forms of hydroxycholesterols. Since free
hydroxycholesterols are the biologically active form of these sterols, separating free from esterfied forms may
provide a sensitive measure to identify disease-associated differences in brain sterol metabolism.

Results: We found that average human serum concentrations were 12.3 ± 4.79 ng/ml for free 24(s)-hydroxycholesterol
and 17.7 ± 8.5 ng/ml for 27-hydroxycholesterol.

Conclusion: Serum measurements of these biologically active oxysterols may be useful surrogate measures for brain
health in a variety of neurodegenerative conditions.

Keywords: Alzheimer’s, Multiple sclerosis, HIV associated neurocogntiive disorder, Serum, 24S-hydroxycholesterol,
27-hydroxycholesterol, LC/ESI/MS/MS
Background
Hydroxycholesterols are mono-oxygenated derivatives of
cholesterol (cholesten-5-3β-ol) that comprise a family of
polycyclic compounds that contain a second oxygen atom
as a hydroxyl group on the skeleton of cholesterol. In vivo,
hydroxycholesterols are present as unesterified (biologic-
ally active) and esterified forms (largely biologically inert)
[1] Hydroxycholesterols are formed through enzymatic
conversion of cholesterol or by free radical autoxidation,
and exhibit a short half life relative to cholesterol.
Hydroxycholesterols are important intermediates in a
number of catabolic pathways that regulate a variety of
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biological effects. For example, hydroxycholesterols are
important for cholesterol transport from the periphery
to the liver [2], modulate the expression of sterol sensi-
tive genes involved in lipid and sterol biosynthesis [3,4],
act as substrates for the formation of bile salts [5],
serve as ligands that activate nuclear liver X receptors-
α and -β [6], and are involved in the regulation of chol-
esterol and lipid metabolism and homeostasis [7,8]. In
the central nervous system, hydroxycholesterols regulate
arachidonic acid release, voltage-gated calcium channels,
synaptic plasticity, induce IL-8, promote neurogenesis and
induce apoptosis [9-16]. Consistent with these important
roles for regulating biological functions, levels of free
hydroxycholesterols are extremely low and tightly con-
trolled, with the majority of hydroxycholesterols main-
tained in esterified forms [17,18].
Many cell types have the ability to oxygenate cholesterol

by mechanisms that involve the cytochrome P450 family of
oxidases (CYP). Cell type specific expression CYP subtypes
results in the tissue-specific production of particular
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oxysterol species. Several CYP are present in the central ner-
vous system including 24S-hydroxycholesterolhydroxylase
(CYP46), a P450 family member that is expressed in
neurons, glia and in endothelial cells of the blood–brain bar-
rier [19]. 24S-hydroxycholesterol (Cholest-5-en-3β, 24(S)-
diol) is the most abundant hydroxycholesterol in brain and
is the primary transport form of cholesterol from
the central nervous system into the blood, with smaller
amounts eliminated through cerebrospinal fluid [20]. It
has been suggested by several studies that serum or
plasma levels of 24S-hydroxycholesterol may reflect brain
developmental and neuropathological changes associated
with Alzheimer’s disease (AD), Huntington’s disease and
Multiple Sclerosis [21-27]. 24S-hydroxycholesterol is often
expressed as a ratio to 27-hydroxycholesterol (25R-Cholest-
5-en-3β, 26-diol). 27-hydroxycholesterol is formed pri-
marily in the periphery by the P450 enzyme sterol
27-hydroxylase (CYP27) [24]. CYP27 is expressed in arterial
endothelium, macrophages and to lesser extents in other tis-
sues such as cortex, spleen, liver, kidney, adrenal gland and
heart [28,29]. 27-hydroxycholesterol can function as a ligand
for nuclear receptors, liver X receptors (LXR) and farnesoid
X-activated receptors (FXRs) [30]. 27-hydroxycholesterol
can also regulate hydrocymethylglutaryl-CoA reductase
[31,32], and enhances cholesterol efflux from the vascular
endothelium [33]. Macrophages have the highest capacity to
convert cholesterol to 27-hydroxycholesterol, which is then
transported in blood to the liver where it is converted to
bile acids [34].
Hydroxycholesterol detection and quantification has been

accomplished in a variety of tissues by isotope-dilution gas-
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Figure 1 Structural representation of cholesterol and related product
C) 27-hydroxycholesterol and D) 24-(R/S)-hydroxycholesterol (d6).
chromatography-mass spectrometry (GC-MS) [18,35], gas-
and high-performance liquid chromatography (HPLC)/mass
spectrometry [36], HPLC with UV detection of cholesterol
oxidation products in tissues [37], as Δ4- 3-ketone deriva-
tives by HPLC [38] and as derivatives of GP hydrazones
[39]. Because “free” hydroxycholesterol levels are below the
detection limits of many instruments, saponification and/or
solid phase extraction techniques have typically been used to
extract “total” hydroxycholesterols. The primary advantage
of these methods is a high yield of hydroxycholesterols. The
disadvantages include lengthy sample preparation times,
sample loss, inconsistent yields, and the inability to discrim-
inate between free and esterified hydroxycholesterols. In this
study we developed a simple and direct extraction protocol
and sensitive LC/ESI/MS/MS method for separation
and simultaneous quantitative determination of free 24S-
hydroxycholesterol and 27-hydroxycholesterol in serum.

Results
Identification and Optimization of ESI/MS/MS for
24S-hydroxycholesterol and 27-hydroxycholesterol
The structures of cholesterol, 24S-hydroxycholesterol, 27-
hydroxycholesterol and 24(RS)-hydroxycholesterol (d6) are
shown in Figure 1. Hydroxycholesterols were identified -as
ammonium adducts of 24S-hydroxycholesterol and 27-
hydroxycholesterol or 24(R/S)-hydroxycholesterol (d6) (dis-
solved in pure CH3OH with 5 mM HCOONH4) using
ESI/MS operated in the positive ion mode. Molecules of
24S-hydroxycholesterol and 27-hydroxycholesterol were
detected as ammonium adducts [M+NH4] with a molecu-
lar weight of 420.3 m/z (Figure 2A). The collision induced
hydroxycholesterol
lest-5-en-3b, 24(S)-diol)
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Figure 2 Identification and fragmentation of 24S or 27-hydroxycholesterol and 24(R/S)-hydroxycholesterol (d6). Mass spectra for A)
identification (Q1 scan) and B) fragmentation (product ion scan) of a purified 24S or 27-hydroxycholesterol standard (420.3 m/z), C) identification
(Q1 scan) and D) fragmentation (product ion scan) of 24(R/S)-hydroxycholesterol (d6) (426.6 m/z) in positive mode using API3000 mass spectrometer.
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dissociation of individual hydroxycholesterol species were
then characterized by product ion scanning using the high-
est abundance product ions with adequate signal/noise ra-
tios. For 24S-hydroxycholesterol and 27-hydroxycholesterol
the molecular fragment identified was 385.3 m/z
(Figure 2B). For 24 (R/S) hydroxycholesterol (d6) the mo-
lecular ion identified was 426.6 m/z and the highly abun-
dant product was 373.7 m/z (Figure 2C,D). We optimized
the following mass spectrometer parameters that were then
used for all hydroxycholesterol species: Ion spray voltage
(IS) 2500 eV, temperature (TEM) 250°C, nebulizer gas
(NEB) 13 psi, curtain gas (CUR) 8 psi, collision activated
dissociation (CAD) 12 psi, dwell time (DW) 150 msec, and
entrance potential (EP) 10 eV. The declustering potential
(DP), focusing potential (FP), collision energy (CE), collision
exit potential (CXP), orientation of the electrospray needle
and auxiliary gas flow were individually optimized for each
analyte by both direct infusion and flow thorough infusion
(FIA) to maximize accuracy and sensitivity (Table 1). We de-
veloped our method with two fragmented ions of 24 (R/S)
hydroxycholesterol (d6) (426.6/373.7 & 426.7/391.6), and
ultimately chose to use 426.6/373.7, as this transition dis-
played a high signal/noise ratio, a stable low baseline, was
abundant, and stable compared to the 426.7/391.6 transi-
tion, which showed an unstable baseline (see in Figure 2D).

Optimization of HPLC conditions for separation of
hydroxycholesterols
Hydroxycholesterols were separated by HPLC using a C18
column. The HPLC gradient conditions were optimized to
obtain good separation between 24S-hydroxycholesterol
and 27-hydroxycholesterol with a short running time
(~12 min). The best signal to noise separation was ob-
served using pure CH3OH containing 5 mM HCOONH4
as a linear mobile phase. The elution sequence for
24S-hydroxycholesterol, 27-hydroxycholesterol and the



Table 1 Molecular and fragment ion m/z, and associated parameters for detection and quantification of
24S-hydroxycholesterol, 27-hydroxycholesterol and 24(R/S) hydroxycholesterol (d6) individual species by MRM

Anylate Mol. Wt. Molecular ion Fragment ion Time DP* FP* Dwell* CE* CXP*

24S-hydroxycholesterol 402.66 420.3 385.5 10.48 60 400 150 13 5

27-hydroxycholesterol 402.66 420.3 385.5 10.83 60 400 150 13 5

24(R/S) hydroxycholesterol (d6) 408.69 426.4 373.6 10.47 45 250 150 20 10

*DP = Declustereing potential (eV), FP = focusing potential (eV), Dwell = Dwell time (ms), CE = Collision energy (eV), CXP = Collision exit potential (eV).
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internal standard 24(R/S)-hydroxycholesterol (d6) were
identified using reference standards (Figure 3). The reten-
tion times were 10.45 min for 24S-hydroxycholesterol,
10.83 min for 27-hydroxycholesterol, and 10.48 min for 24
(R/S)-hydroxycholesterol (Figure 3A,B).
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Recovery, accuracy and precision
Intra-day and inter-day accuracy and precision were evalu-
ated by spiking known amounts of 24-hydroxycheolsterol,
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27-hydroxycholesterol were normalized to the peak area
for the internal standard 24(R/S)-hydroxycholesterol (d6).
The recovery of 24S-hydroxycholesterol was 59.1% ± 6.99,
and recovery of 27-hydroxycholesterol was 55.9%± 4.77. The
inter-day coefficient of variation for 24S-hydroxycholesterol
was 8.9% and for 27-hydrosxycholesterol was 3.9%. Intra-
day coefficient of variations for 24S-hydroxycholesterol was
11.8%, and for 27-hydrosxycholesterol was 1.9%. Accuracy
for 24S-hydroxycholesterol and 27-hydroxycholesterol were
between 91 to 118.2% (CVs for 50 and 100 ng doses of
24S-hydroxycholesterol and 27-hydrosxycholesterol are
shown in Table 2).

Linearity, limits of detection and quantification
Defined amounts of both 24S-hydroxycholesterol and
27-hydroxycholesterol standards (10, 50, 100, 500, 1000 ng/
ml) were added to control serum samples prior to extrac-
tion. Standard curves were plotted as the ratio of the peak
areas for 24S-hydroxycholesterol or 27-hydroxycholesterol
to the peak area of the internal standard 24(R/S)-hydroxy-
cholesterol (d6). Least-squares regression analysis for
24S-hydroxycholesterol and 27-hydroxycholesterol stand-
ard curves demonstrated linearity in the range of 10 –
1000 ng/ml with a correlation coefficient of r2 for 24S-
hydroxycholesterol 0.9979 ± 0.0018 and 0.9940 ± 0.0018
for 27-hydroxycholesterol (Table 3, Figure 4A). The limit
of detection was calculated using the signal to noise ratio.
The lower detection limits for 24S-hydroxycholesterol and
Table 2 Precision and accuracy of hydroxycholesterols

Concentration (ng/ml) n Variables

50 5 Mean (ng/ml)

SD (ng/ml)

CV (%)

Accuracy (%)

100 5 Mean (ng/ml)

SD (μg/ml)

CV (%)

Accuracy (%)

50 5 Mean (ng/ml)

SD (ng/ml)

CV (%)

Accuracy (%)

100 5 Mean (μg/ml)

SD (ng/ml)

CV (%)

Accuracy (%)

n = number of independent replicate, SD = standard deviation and CV = coefficient
27-hydroxycholesterol were nearly identical at 248 fmoles
on the column. We then calculated the concentration of
free 24(S)-hydroxycholeserol and 27-hydroxycholesterol in
our human serum samples. The average serum concentra-
tions were 12.3 ± 4.79 ng/ml for 24(s)-hydroxycholesterol
and 17.7 ± 8.5 ng/ml for 27-hydroxycholesterol (Figure 4).

Discussion
The goal of this study was to develop an efficient and rapid
extraction protocol for LC/ESI/MS/MS-based detection
and quantification of free 24S-hydroxycholesterol and 27-
hydroxycholesterol from human serum. For clinical studies,
and for the potential use of these hydroxysterols as sur-
rogate markers, it is important that sample analysis be
rapid and cost effective. Here we present a simple, in-
expensive, and rapid protocol for the extraction of
24S-hydroxycholesterol and 27-hydroxycholesterol from
human serum. In addition, the simplicity of the extraction
method increases data reproducibility by decreasing vari-
ability of product yield. This low cost and rapid sample
preparation coupled with the high sensitivity of LC/MS/
MS instruments and accurate quantification by MRM
make this a potentially powerful approach for the high-
throughput quantification of hydroxycholesterol species in
clinical and experimental samples.
This extraction method does not use saponification and

therefore measures free hydroxycholesterols. This is an
important consideration since free hydroxycholesterols are
hydroxycholesterols
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Table 3 Linearity calculated by regression analysis from
standard curves of hydroxycholesterols

Analytes a Regression analysis Correlation
coefficient
(R)

Slope Intercept

Mean SD Mean SD

24S-hydroxycholesterol 0.3936 0.0988 0.0031 0.0018 0.9979

27-hydroxycholesterol 0.2948 0.0150 0.0127 0.0018 0.9940
a y = m x + c.
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the most biologically active form of these sterols [40,41].
In our healthy human volunteers, serum concentrations
ranged from 4 to 21 ng/ml for 24S-hydroxycholesterol
and 4 to 29 ng/ml for 27-hydroxycholesterol. These ranges
are considerably lower than previously reported levels of
total hydroxycholesterol in human serum that range from
60 to 83 ng/ml for 24S-hydroxycholesterol and 120 to
159 ng/ml for 27-hydroxycholesterol [18,24,42,43]. These
data are consistent with findings that suggest more than
80% of 24S-hydroxycholesterol and 27-hydroxychoelsterol
are maintained in an esterfied state [17].
Since this is the first report of this extraction method, it

is not possible to determine if measuring free hydroxycho-
lesterols has a diagnostic or experimental advantage over
measuring total hydroxycholesterols. In this study we ana-
lyzed a small number of samples to validate the method
and did not compare to a disease state. However, we have
recently used this method to quantitatively measure levels
of free 24S-hydroxycholesterol and 27-hydroxycholesterol
in serum of subjects who later developed cognitive impair-
ment, and found that increased levels of free 24S-
hydroxycholesterol and the 24S-hydroxycholesterol/total
cholesterol ratio were associated with greater risk of im-
pairment on tasks that assess psychomotor speed and
executive functioning, while higher levels of free 27-
hydroxycholesterol and the 27-hydroxycholesterol/total
cholesterol ratio were associated with greater risk of
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Figure 4 Quantification of free 24S-hydroxycholesterol and 27-hydrox
B) quantities of free 24S-hydroxycholesterol and 27-hydroxycholesterol extr
delayed memory impairment. These data were qualita-
tively different from previous reports that measured total
serum levels of these hydroxysterols. For example, total
27-hydroxycholesterol to total cholesterol ratio was associ-
ated with a faster decline of immediate memory recall over
six years of follow-up [44]. Although, a second reported
study did not find an association between total serum 24-
hydroxycholesterol or total 27-hydroxycholesterol and
cognitive performance [45], this study measured total
hydroxysterols. To date, only a single study has directly
compared free to total levels of 24S-hydroxycholesterol
and 27-hydroxycholesterol in serum. In this study it was
reported that 80% of 24S-hydroxycholesterol and 85% of
27-hydroxycholesterol is esterfied in healthy volunteers.
Males had higher levels of total 27-hydroxycholesterol
compared to females. They found no other demographic
or age-related differences in total 24S-hydroxycholesterol
or 27-hydroxychoelsterol, and did not determine if
there were age- or disease-related differences in free vs.
esterfied hydroxycholesterols. Since it is the free forms
of these hydroxysterols that have biological activity, and
free forms are less than 20% of total hydroxysterols, it is
possible that measuring total 24S-hydroxycholesterol and
27-hydroxycholesterol could mask a biological or disease-
associated effect. These findings suggest that there
may be important differences in free vs. total 24S-
hydroxycholesterol and 27-hydroxycholesterols in relation
to sex, age and neurodegenerative conditions that merit
further study.
The ability to economically and efficiently measure 24S-

hydroxycholesterol and 27-hydroxycholesterol in serum
may also be useful as surrogate measures for the effective-
ness of chemotherapeutics. The approximate cost per sam-
ple for this rapid extraction method is $3.00. Saponification
with solid phase extraction increases the approximate cost
$18.00/sample. These costs are for sample processing and
do no include mass spectrometry time that is equal for
B

ycholesterol from normal human serum. A) Standard curves and
acted from serum of healthy volunteers.
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both methods. Likewise sample run times are 12 min/sam-
ple regardless of the extraction method. A number of sterol
modifying agents are being tested as potential therapeutics
for neurodegenerative disease [46-52], and it is possible
that serum measures of 24S-hydroxycholesterol and
27-hydroxycholesterol may have utility as rapid and inex-
pensive surrogate markers to efficiently determine the ef-
fectiveness of therapeutics.

Conclusion
Serum measurements of these biologically active hydroxy-
cholesterols may be useful surrogate measures for brain
health in a variety of neurodegenerative conditions.

Methods
Chemicals and equipment
All solvents and chemicals were HPLC grade. Methanol
(CH3OH), ethanol (C2H5OH) and diethyl ether (CH3-
CH2-O-CH2-CH3) were purchased from Fisher Scientific
(USA), ammonium formate (HCOONH4) and formic acid
(HCOOH) were purchased from Sigma Aldrich (St. Louis,
MO). 24S-hydroxycholesterol and 27-hydroxycholesterol
were purchased form Research Plus Inc. (Barnegat, NJ). In-
ternal standard 24(R/S)-hydroxycholesterol (d6) [cholest-
5-ene-3β, 24(R/S)-diol (d6)] was purchased from Avanti
Polar Lipids (Alabaster, AL). Glass vials were purchased
from Agilent Technologies, Inc. (Santa Clara, CA). Iso-
temp vacuum oven was purchased from Fisher Scien-
tific (Model 285A, Pittsburgh, PA). Borosilicate-coated
glass tubes and pipettes were used to reduce adhesion
of sterols to plastic and glassware (Fisher Scientific,
Pittsburgh, PA).

Serum samples
Human serum was obtained from 12 healthy volunteers
(5 males and 7 females) age 25–36 years at the Johns
Hopkins University School of Medicine. Approximately
8 ml (human) blood was collected into BD P100 tubes
Sodium heparin (Beckton Dickenson, Franklin Lakes,
NJ). Tubes were inverted 8–10 times to mix the protease
inhibitors and anticoagulent with the blood sample
then placed onto ice. Blood was then centrifuged at
2000 g at 4°C for 15 min. Serum was aliquoted and
transferred into cryovials for storage at −80°C until
Table 4 Gradient conditions for LC

Step Total time (min) Flow rate (μl/min)

0 0 300

1 0.3 300

2 9 300

3 12 300

*A: water with 5 mM ammonium formate, B: pure methanol with 5 mM ammonium
use. All samples underwent a single freeze-thaw cycle
before use.

Extraction of 24S-hydroxycholesterol and 27-
hydroxycholesterol
We developed a single step direct extraction method for
both 24S-hydroxycholesterol and 27-hydroxycholesterol.
For extraction, 0.5 ml of Serum was transferred into a glass
tube and 5 μl of 24(R/S)-hydroxycholesterol (d6) (internal
standard) from 100 μg/ml stock was added, followed by
3 ml of pure ethanol and the mixture vortexed. Diethyl
ether (4 ml) was then were added and the mixture vortexed
and centrifuged at 4,000 g for 10 minutes. The supernatant
was separated and the residue was re-extracted using the
same volumes of solvents as was used in the initial extrac-
tion. Supernatants were mixed together, and dried under a
stream of nitrogen or in a vacuum oven at 30°C (we did not
observe any qualitative or quantitative differences when
samples were dried under nitrogen compared with a vac-
uum oven). Dried extracts were re-suspended into 100 μl of
methanol, vortexed, centrifuged and transferred to an auto-
sampler vial insert where it was maintained at 4°C. Samples
were injected into the HPLC using an Agilent 1100 series
autosampler (Agilent Technologies, Inc., Santa Clara CA,
United States).

Quantification of hydroxycholesterols by LC/ESI/MS/MS
using multiple reaction monitoring (MRM)
Sample analysis was performed using triple quadrupole LC/
ESI/MS/MS API3000 mass Spectrometer (Applied Biosys-
tems, Thornhill, Ontario, Canada). The HPLC consisted of
an Agilent 1100 series with a quaternary pump, degasser,
autosampler and thermostatted column. The column was a
Luna 5 μM C18 100 Å 100 × 2 mm coupled to a guard
column with packing material identical to the column
(Phenomenex, Torrance, CA). Chromatography was con-
ducted in gradient elution mode using solvent A (water with
5 mM ammonium formate) and solvent B (pure methanol
with 5 mM ammonium formate) at flow rate of 0.3 ml/min.
Hydroxycholesterols were separated using the following
gradient conditions: 0.0 - 0.3 min, 85% B; 0.3 - 9 min gradi-
ent to 100% B; 9–12 min 0% B (Table 4). Injection volume
of samples was 10 μl. Quantification was conducted by
MRM using Analyst 1.4.2 software (Applied Biosystems).
Mobile phase A* (%) Mobile phase B* (%)

100 0

15 85

0 100

100 0

formate.



Bandaru and Haughey BMC Neuroscience  (2014) 15:137 Page 8 of 9
Standards for quantitative analysis and correction of
extraction efficiency
Stock solutions for 24S-hydroxycholesterol, 27-
hydroxycholesterol, and 24(R/S)-hydroxycholesterol (d6)
(internal standard) were prepared separately in CH3OH
to produce a concentration range of 10 ng/ml to
1000 ng/ml. Samples were spiked with 1 μg/ml 24(R/
S)-hydroxycholesterol (d6) that was used as an internal
control to correct for slight differences in ionization ef-
ficiency, chromatographic retention, fragmentation and
molecular interactions between hydroxycholesterol species.
Blank serum samples were used for background correc-
tion. Calibration curves were plotted using the peak area
ratios of 24S-hydroxycholesterol or 27-hydroxycholesterol
to 24(R/S)-hydroxycholesterol (d6). All stock solutions
were stored at −20°C. Calibrations were conducted using
least squares linear regression.

Standard protocol approvals, registrations, and patient consents
The collection and use of human samples was approved by
the IRB the Johns Hopkins University SOM and included
written and informed consent for the use of Serum for re-
search purposes.
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