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The so-called cocktail party problem refers to a situation
where several sound sources are simultaneously active,
e.g. persons talking at the same time. The goal is to recover
the initial sound sources from the measurement of the
mixed signals. A standard method of solving the cocktail
party problem is independent component analysis (ICA),
which can be performed by a class of powerful algorithms.
However, classical algorithms based on higher moments
of the signal distribution [1] do not consider temporal
correlations, i.e. data points corresponding to different
time slices could be shuffled without a change in the
results. But time order is important since most natural sig-
nal sources have intrinsic temporal correlations that could
potentially be exploited. Therefore, some algorithms have
been developed to take into account those temporal cor-
relations, e.g. algorithms based on delayed correlations
[2,3] potentially combined with higher-order statistics
[4], based on innovation processes [5], or complexity pur-
suit [6]. However, those methods are rather algorithmic
and most of them are difficult to interpret biologically,
e.g. they are not online or not local or require a preproc-
essing of the data.

Biological learning algorithms are usually implemented
as an online Hebbian learning rule that triggers changes of
synaptic efficacy based on the correlations between pre-
and postsynaptic neurons. A Hebbian learning rule, like
Oja's learning rule [7], combined with a linear neuron
model, has been shown to perform principal component
analysis (PCA). Simply using a nonlinear neuron com-
bined with Oja's learning rule allows one to compute
higher moments of the distributions which yields ICA if

the signals have been preprocessed (whitening) at an ear-
lier stage [1]. Here, we are interested in exploiting the cor-
relation of the signals at different time delays, i.e. a
generalization of the theory of Molgedey and Schuster [3].
We will show that a linear neuron model combined with
a Hebbian learning rule based on the joint firing rates of
the pre- and postsynaptic neurons of different time delays
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The sources s are mixed with a matrix C, x = Cs, x are the presynaptic signalsFigure 1
The sources s are mixed with a matrix C, x = Cs, x are the 
presynaptic signals. Using a linear neuron y = W x, the 
weights W are updated following the Hebbian rule, so that 
the postsynaptic signals y recover the sources s.
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performs ICA by exploiting the temporal correlations of
the presynaptic inputs (Figure 1).
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