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Abstract
Background: Low frequency repetitive transcranial magnetic stimulation (rTMS) has been
proposed as an innovative treatment for chronic tinnitus. The aim of the present study was to
elucidate the underlying mechanism and to evaluate the relationship between clinical outcome and
changes in cortical excitability. We investigated ten patients with chronic tinnitus who participated
in a sham-controlled crossover treatment trial. Magnetic-resonance-imaging and positron-
emission-tomography guided 1 Hz rTMS were performed over the auditory cortex on 5
consecutive days. Active and sham treatments were separated by one week. Parameters of cortical
excitability (motor thresholds, intracortical inhibition, intracortical facilitation, cortical silent
period) were measured serially before and after rTMS treatment by using single- and paired-pulse
transcranial magnetic stimulation. Clinical improvement was assessed with a standardized tinnitus-
questionnaire.

Results: We noted a significant interaction between treatment response and changes in motor
cortex excitability during active rTMS. Specifically, clinical improvement was associated with an
increase in intracortical inhibition, intracortical facilitation and a prolongation of the cortical silent
period. These results indicate that intraindividual changes in cortical excitability may serve as a
correlate of response to rTMS treatment.

Conclusion: The observed alterations of cortical excitability suggest that low frequency rTMS may
evoke long-term-depression like effects resulting in an improvement of subcortical inhibitory
function.

Background
Subjective tinnitus is characterized by the perception of

sound or noise in the absence of any internal or external
acoustical stimulation. For 1–2% of the general popula-
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tion, this condition causes a considerable amount of dis-
tress and interferes seriously with the individual's ability
to lead a normal life [1].

The advent of modern neurophysiological and imaging
tools has greatly benefited our understanding of the
abnormal functioning of the central nervous system as a
major cause of chronic tinnitus [2,3]. This is illustrated by
a) an enhanced activation of the central auditory system
in subjects suffering from tinnitus [4-7], b) the modula-
tion of tinnitus perception by electrical stimulation of the
auditory cortex [8,9] and c) changes in the tonotopic map
of the auditory cortex visualized with magnetic source
imaging [10,11]. These results have been complemented
by evidence of dysfunctional thalamocortical processing
in tinnitus [12-15]. Additional support for these findings
comes from MRI studies demonstrating changes of tha-
lamic structural plasticity in affected subjects [16]. Tinni-
tus-related hyperexcitability in specific brain regions
along with dysfunctional neuroplasticity in critical corti-
cal circuits have paved the way for addressing auditory
phantom perceptions with rTMS based protocols: This
method uses an electromagnet placed on the scalp that
generates magnetic field pulses of very short duration
(100–300 μs) and approximately 1.5–2.0 T in strength.
After passing largely undistorted through the scalp and
scull, the magnetic field induces an electrical current in
superficial cortical neurons, which in turn results in neu-
ronal depolarisation [17]. When used in the low-fre-
quency range, rTMS modulates brain activity both in
directly stimulated regions and in functionally connected
brain areas [18,19]. Thereby it may modulate neuroplas-
ticity in cortical circuits and thalamocortical networks
alike [20,21]. rTMS has also been shown to effectively
reduce auditory hallucinations in patients with schizo-
phrenia [22,23]. Extending these studies to tinnitus, we
have demonstrated that PET- and MRI-guided neuronavi-
gated low-frequency rTMS over the hyperactive auditory
cortex can alleviate symptom severity in this phantom
sensation [24] as well. A subsequent controlled trial of 14
patients with chronic tinnitus confirmed a significant
reduction in tinnitus severity scores after five days of
active rTMS as compared to sham treatment [25]. In the
majority of patients these beneficial effects remained sta-
ble up to six months post rTMS intervention, suggesting
the possible induction of long-lasting neuroplastic
changes [21,26].

The objective of the present study was to evaluate whether
subjective effects of altered tinnitus sensation after rTMS
treatment are accompanied by changes in objective data
assessing cortical excitability. For this purpose we used
transcranial magnetic stimulation (TMS) to serially assess
multiple parameters of motor cortical excitability in
patients who participated in a sham controlled crossover

trial of rTMS [25]. Our testing included (a) motor thresh-
old (MT), which reflects membrane related neuronal
excitability; (b) the cortical silent period (CSP), i.e. a cor-
relate of inhibitory function within cortical and subcorti-
cal structures; (c) intracortical inhibition (ICI) and (d)
intracortical facilitation (ICF), i.e. two tests of intracortical
inhibitory and excitatory mechanisms [27].

As has been shown by our group and by other investiga-
tors, changes in cortical excitability may serve as a corre-
late of response to treatment [26,28-32]. Related
parameters are sensitive to practice-dependent and deaf-
ferentation-induced plastic change in human cortex
[33,34] and hold promise for elucidating the underlying
mechanisms [35]. Dense functional connections between
the central auditory system and the sensorimotoric system
are well-known [36,37], and make tinnitus amenable to
triggering or modulating by input from sensorimotoric
systems [38-42]. To judge by its occurrence in the majority
of tinnitus patients [43,44], somatosensoric modulation
seems to represent a fundamental attribute of tinnitus [3].
These functional connections may provide the physiolog-
ical basis for the detection of changes in auditory process-
ing by measuring motor cortex excitability [26,45-47].

Results
All patients completed the study and adverse effects were
not observed. At baseline, no statistically significant dif-
ferences between the verum and sham condition could be
found. Considering the low power for detecting such
effects with the given small number of observations, this
does not necessarily mean that there are no carry-over
effects, but at least in the present context they cannot be
detected. The treatment response was variable and ranged
from no effect to a marked reduction in tinnitus com-
plaints (table 1). After sham treatment, only a slight and
transient reduction of tinnitus was observed (fig 1). Sepa-
rate analysis of variance models for the absolute levels of
tinnitus and for the intracortical excitability data over
time show no statistically significant effect for any of the
measurements. Therefore, further statistical analysis is
focused on the change of correlation over time. Following
active stimulation, the multiple correlation of excitability
change and reduction of tinnitus strengthened from day 5
to day 11 (fig 1). The changes of different parameters of
cortical excitability over days are displayed in figures 2, 3
and 4. On day 11 correlation coefficients of verum and
sham treatment differed significantly (p = 0.046). Explor-
atory analysis of the influence of different excitability
parameters revealed that the reduction in TQ was corre-
lated with an increase in ICI (r = 0.74, p = 0.015; by defi-
nition, lower values of ICI correspond to enhanced ICI)
with a trend towards increased ICF (r = -0.58, p = 0.080)
and increased CSP (r = -0.61, p = 0.063) (fig 4). In con-
trast, after sham stimulation, no significant correlation
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was noted between tinnitus change and altered excitabil-
ity parameters (ICI r = 0.26, p = 462; ICF r = -0.114, p =
0.754; CSP r = 0.03, p = 0.932) (see fig 4).

Discussion
The above findings from serial measurements of motor
cortex excitability in ten patients suffering from chronic
tinnitus confirm the interplay of physiological parameters
and a subjective reduction in tinnitus complaints after
rTMS treatment. This interplay was specific to the verum
intervention and has several implications for the etiology
and treatment of the condition. However, the results have
to be considered with caution, because the small number
of subjects increases the danger of overfitting when calcu-
lating the multiple correlation coefficients, upon which
interpretation is based.

The observed alterations of cortical excitability could be
either directly induced by TMS treatment or mediated
indirectly, e.g. by changes of patients' motor behaviour
after TMS-induced tinnitus improvement. However,
changes in tinnitus complaints occurred both in the active
and the sham condition, whereas the correlation between
tinnitus improvement and alterations of excitability was
present only in the active condition. This favours the
notion of a direct relationship between rTMS treatment
and alterations of cortical excitability. This interpretation
is in line with recent studies suggesting that intraindivid-
ual changes in cortical excitability may serve as a correlate
of response to treatment [26,28-32]. Thus our results give
further support to functional connections between the
central auditory system and the motor cortex in tinnitus
patients as previously described both at the structural level
[36] and at the functional level in affected subjects
[38,42,45]. Reactivation of the extralemniscal auditory
pathway along with the consecutive activation of non-
auditory brain areas in some forms of tinnitus [3] may

make tinnitus pathophysiology amenable to investigation
by measuring motor cortex excitability.

The observed changes in the excitability pattern might
reflect neurobiological effects of rTMS that are associated
with tinnitus improvement and thus may help to identify
the underlying mechanism. Both TMS-induced tinnitus
reduction as well as the correlation with cortical excitabil-
ity were most pronounced six days post active rTMS (fig
1). This delay in clinical and cortical response could
reflect the temporal dynamics of rTMS-induced neuro-
plastic changes, as has been suggested previously [26].
Sustained stimulation effects have already been shown in
animal experiments, in which electrical stimulation with
1 Hz administered daily for two weeks induced long-term-
depression that outlasted the treatment by at least two
weeks [48]. With regard to these delayed stimulation
effects, the interval of 9 days between stimulation condi-
tions may have been too short to rule out potential carry-
over effects. To safeguard against this potentially con-
founding factor, we included treatment order in the statis-
tical analysis and tested for baseline differences between
stimulation conditions. However, it has to be considered
that, due to the small number of patients, the ability to
detect such effects is limited.

With respect to different parameters of cortical excitabil-
ity, tinnitus improvement after low frequency rTMS was
related to an extension of the cortical silent period and an
increase in both intracortical inhibition and intracortical
facilitation. Similar neurophysiological effects have been
described after application of GABAB agonists [49,50]. In
accordance with our findings, prior TMS studies have also
demonstrated an extension of the cortical silent period
after low frequency rTMS in healthy controls [51], in
patients with writer's cramp [52] and schizophrenic
patients with auditory hallucinations [29]. Prolongation

Table 1: Demographic and clinical data

Gender Age (yr)1 Handedness Tinnitus 
Latera-lity2

Side of PET 
activation3

Duration 
(months)4

Order of 
stimula-tion5

Tinnitus score 
before active 
rTMS6

Tinnitus score 
before sham 
rTMS6

ΔTQ Active 
rTMS7

ΔTQ Sham 
rTMS7

m 61 R L > R L 90 A, S 45 37 -7 2
m 48 R L > R L > R 12 A, S 42 40 -4 -5
w 48 R L R 36 S, A 65 57 -6 +8
m 61 R L = R L 140 A, S 74 67 -10 -1
m 59 R L L 30 A, S 30 16 -7 -4
m 49 R L = R L > R 28 S, A 41 49 -1 -4
m 20 R L = R L 6 S, A 40 34 -5 +2
m 29 R R L > R 17 S, A 28 25 0 +3
w 41 L L L > R 60 A, S 60 61 +2 -1
m 60 L R R 48 S, A 47 52 +1 -6

1age in years at study begin;
2 tinnitus laterality as reported by the patient; L: left R: right;
3 side of hypermetabolic activity in the FDG PET (the side of increased activity was target for rTMS stimulation);
4 duration of tinnitus in months at study begin;
5 the order of stimulation according to randomization: "A, S" stands for active rTMS first and sham rTMS second and "S, A" for the inverse order;
6 Tinnitus scores as revealed by the Tinnitus Questionnaire of Goebel and Hiller (TQ) [73];
7 ΔTQ: treatment response, indicated as the difference between tinnitus scores on day 11 and day 1 for active rTMS and sham rTMS, respectively.
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Changes in tinnitus score and in multiple correlation coefficient during active and sham rTMSFigure 1
Changes in tinnitus score and in multiple correlation coefficient during active and sham rTMS. a) mean reduction 
in tinnitus scores(ΔTQ) after active and sham rTMS is demonstrated. Error bars represent standard errors. b) multiple corre-
lation coefficient between changes of excitability (ΔE) and changes in tinnitus score (ΔTQ) after active and sham stimulation. 
Clinical effect (ΔTQ) and correlation of ΔTQ and ΔE were strongest on day 11 (i.e. 6 days post intervention).
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Alteration of cortical excitability parameters at day 5Figure 2
Alteration of cortical excitability parameters at day 5. x axis: Tinnitus scores on day 5 compared with day 1 (Negative 
values correspond to a reduction in tinnitus severity); y axis: a) Changes of the cortical silent period (CSP), b) intracortical inhi-
bition (ISI 2–5 ms) and c) intracortical facilitation (ISI 7–20 ms) relative to baseline. Negative scores for inhibition correspond 
to an increase in intracortical inhibition.
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Alteration of cortical excitability parameters at day 8Figure 3
Alteration of cortical excitability parameters at day 8. x axis: Tinnitus scores on day 8 compared with day 1 (Negative 
values correspond to a reduction in tinnitus severity); y axis: a) Changes of the cortical silent period (CSP), b) intracortical inhi-
bition (ISI 2–5 ms) and c) intracortical facilitation (ISI 7–20 ms) relative to baseline. Negative scores for inhibition correspond 
to an increase in intracortical inhibition.
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Alteration of cortical excitability parameters at day 11Figure 4
Alteration of cortical excitability parameters at day 11. x axis: Tinnitus scores on day 11 compared with day 1 (Nega-
tive values correspond to a reduction in tinnitus severity); y axis: a) Changes of the cortical silent period (CSP), b) intracortical 
inhibition (ISI 2–5 ms) and c) intracortical facilitation (ISI 7–20 ms) relative to baseline. Negative scores for inhibition corre-
spond to an increase in intracortical inhibition. Reduction of the tinnitus score after active rTMS treatment is accompanied by 
a prolongation of the silent period, an increase in intracortical inhibition and an increase in intracortical facilitation.
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of the cortical silent period is believed to reflect improved
inhibitory function within cortical and subcortical struc-
tures, including the thalamus [27,53]. In light of this
research, the clinical improvement induced by rTMS may
be related to enhanced GABAB inhibitory function at the
subcortical level. Strong support for the notion that low
frequency rTMS modulates thalamocortical networks
comes from a recent neuroimaging study, which has dem-
onstrated neuroplastic changes in the temporal cortex and
in the thalamus after 1 Hz rTMS [21]. Finally, animal stud-
ies testify to the inhibition of relay cells mediated by
GABAergic neurons in the reticular nucleus (RTN) of the
thalamus following electrical stimulation of corticotha-
lamic fibers [54,55]. This inhibition can reach wide parts
of the thalamus, including auditory thalamic neurons
[56,57]. Thus, similar to electrical stimulation, low fre-
quency rTMS may reduce cortical excitability by activating
inhibitory GABAergic neurons in the thalamic reticular
nucleus.

TMS-induced modulation of corticothalamic pathways
may also explain the alteration of intracortical excitability
(ICI and ICF) observed: Stimulation of corticothalamic
pathways in animals has been shown to induce long-term
depression (LTD) within the auditory cortex via activation
of type1-metabotropic glutamatergic receptors [58]. Such
induction of LTD entrains moderate activation of N-
methyl-D-aspartate (NMDA)-mediated excitatory circuits
[58]. Enhancement of N-methyl-D-aspartate (NMDA)-
transmission, in turn, is reflected by increased ICF accord-
ing to pharmacological studies [33,59].

In this context, the association observed between
increased ICF and reduced tinnitus after low frequency
rTMS may reflect NMDA-mediated LTD induction. This
hypothesis is supported by TMS studies in humans, which
demonstrated the induction of neuroplasticity by low fre-
quency rTMS. When areas of locally increased excitability
were stimulated, 1 Hz rTMS had a pronounced down-reg-
ulating effect, which outlasted the stimulation period,
suggesting long-term depotentiation as the most relevant
biological factor behind rTMS effects [33,60].

In the present study, the use of a neuronavigation system
ensured that rTMS was performed exactly over hypermet-
abolic brain areas. As metabolic hyperactivity of the pri-
mary auditory cortex in tinnitus patients is presumed to
reflect enhanced synaptic transmission associated with
disinhibition, low frequency rTMS may have selectively
depotentiated enhanced synaptic weights [61].

Conclusion
Low frequency rTMS over the hyperactive auditory cortex
has repeatedly been shown to reduce tinnitus sensations
[24-26,62,63], however treatment results have been diffi-
cult to predict in individual subjects. In the study pre-
sented here, we delineate an association between clinical
improvement and alteration of cortical excitability. The
changes observed in different parameters of cortical excit-
ability are consistent with the hypothesis that clinical
effects of low frequency rTMS are dependent on corticoth-
alamic processing [21].

Our findings may help to explain the variability in clinical
outcome on the basis of an individual response in cortical
physiology [64,65]. With regard to future interventions,
measurements of cortical excitability with ppTMS hold
promise as a neurophysiological marker of rTMS induced
neuroplasticity. This should allow tailored treatment
strategies to develop that take differences in genetic back-
ground and behavioural state into account, both of which
affect the induction of neuroplastic changes [66-68].

We are aware of the limitations of our data, as they result
from a pilot study with a relatively low number of sub-

FDG-PET of patient #1Figure 5
FDG-PET of patient #1. [18F] deoxyglucose (FDG) posi-
tron emission tomography (PET) had been performed in each 
patient before treatment. The area of hypermetabolic activity 
in the temporal cortex was chosen as target for TMS treat-
ment. Here the FDG PET of patient #1 is displayed, where a 
transversal slice through the temporal brain region shows 
unilaterally increased metabolic activity in projection to the 
left auditory cortex.
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jects. Further investigations with longer observation peri-
ods and larger collectives including healthy controls will
be necessary to replicate our findings.

Methods
Patients
We studied ten patients (8 men, 2 women, mean age 47.7
years; SD 14.2) suffering from mild to severe unilateral or
bilateral chronic tinnitus, who participated in a sham con-
trolled rTMS treatment trial. Imaging and clinical results
for all patients have already been reported elsewhere
[7,25]. Patients were diagnosed by certified specialists in
otorhinolaryngology and audiology. Tinnitus severity was
assessed using the specific tinnitus questionnaire devel-
oped by Hallam and modified by Goebel and Hiller [69].
This questionnaire is suitable for repeated use with short
intertest intervals [69]. Tinnitus duration was at least 6
months (mean duration 46.7 months; SD 41.1), the mean
tinnitus-score was 46.8 (SD 14.9) (table 1). Patients with
concomitant anticonvulsant drug treatment, unilateral
hearing loss (defined as 15 dB minimum difference com-
pared to the other ear) or middle ear pathologies were not
included. All patients gave their written informed consent
to take part in the study, which was approved by the local
ethics committee.

Functional and structural imaging for target detection
Functional neuroimaging data was assessed by [18F] deox-
yglucose (FDG) positron emission tomography (PET)
measurements (ECAT EXACT 47, Siemens). External

acoustic stimulation was eliminated by plugging both ears
hermetically.

Only patients with a focal increase of FDG uptake in the
region of the primary auditory cortex were included in this
study (fig 5; table 1). Fusioning with structural MRI-data
(MPRAGE, T1 weighted, 1.5 T Magnetom Symphony MR
Scanner; Siemens) demonstrated that the area of
increased activation was located within the superior tem-
poral gyrus in all patients. This area was selected as a target
for rTMS application (fig 6).

rTMS treatment
A neuronavigational system used for neurosurgery was
further developed and adapted for TMS (Vectorvision,
BrainLAB AG, Heimstetten, Germany), to determine the
coil localisation for stimulation, This technique offered
the option to navigate the coil according to the patients'
individual neuroimaging data and allowed real time visu-
alisation of the magnetic field in relation to brain areas of
interest. The focus of the magnetic field was directed at the
area of the auditory cortex which showed maximal activa-
tion by FDG-PET, thus ruling out potentially confounding
factors such as individual differences in skull-brain rela-
tions or variable location of cortical activation [24,70].

Patients were blinded to stimulation conditions and
treated in a randomized cross-over design with 5 consecu-
tive days of active treatment and 5 consecutive days of
sham stimulation, separated by 9 days without TMS treat-
ment. On each study day 2000 stimuli with a frequency of
1 Hz were administered using a MAGSTIM system and a
figure-of-eight coil. For sham stimulation, a specific sham-
coil system was used (MAGSTIM Co., Whitland, Dyfed,
UK). Stimulation intensity was set at 110% motor thresh-
old [25].

Measurement of cortical excitability
Motor-evoked potentials (MEP) of the abductor digiti
minimi (ADM) muscle of the right hand were recorded
with surface electrodes, using a conventional EMG
machine (Medelec MS 91A, England) with bandpass of 20
Hz tod 10 kHz. The signal was digitised at a frequency of
5 KHz and transferred into a laboratory computer for off-
line analysis.

TMS was performed using a Bistim module, which was
connected to two Magstim 200 stimulators (Magstim Co.,
Whiteland, Dyfed, UK). The figure-of-eight coil (outer
diameter of each wing 90 mm) was held with the junction
of the two wings tangential to the skull and the handle
pointing backwards and ~45° away from the midline.
Thus, the current induced in the brain was directed about
perpendicularly to the assumed line of the central sulcus
and therefore was optimal for activating the corticospinal

Site of stimulation on a 3-D brain reconstructionFigure 6
Site of stimulation on a 3-D brain reconstruction. The 
red area approximates the magnetic field on the brain sur-
face, as computed by the neuronavigation system.
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pathways transsynaptically. The optimal coil position for
stimulation was defined as the position above the left
motor cortex for eliciting MEP of maximal amplitude in
ADM with a slightly suprathreshold stimulus.

By reducing the stimulus intensity in steps of 1%, we
defined the resting motor threshold (RMT) as the lowest
intensity at which at least 4 of 8 consecutive MEPs were ≥
50 μV in amplitude while the muscle being investigated
was at rest. Audio-visual electromyographic feedback was
provided to assess muscle relaxation. Active motor thresh-
old (AMT) was determined as the lowest stimulation
intensity that evoked a MEP ≥ 250 μV during voluntary
abduction of the small finger in a minimum of 4 out of 8
consecutive trials. A constant level of voluntary contrac-
tion was maintained by audiovisual feedback of the EMG
activity.

Cortical silent period (CSP) was measured in 10 trials at a
stimulus intensity of 150% RMT with an inter-sweep
interval of 5 s in the moderately active ADM (voluntary
abduction with 30% of maximal force, monitored by
audio-visual electromyographic feedback). CSP duration
was defined as the interval between the end of the MEP
and first reappearance of voluntary EMG activity. The
measurements were made off-line on the non-rectified
recording of every individual sweep and then averaged.

Intracortical excitability was measured using the paired-
pulse paradigm consisting of a first subthreshold condi-
tioning pulse followed by a second suprathreshold test
pulse. The intensity of the first stimulus was set to 90%
AMT, while the intensity of the suprathreshold test pulse
was adjusted to produce an unconditioned MEP of ~1 mV.
Inter-stimulus intervals (ISI) of 2, 3, 4, 5, 7, 8, 10, 15 and
20 ms were tested. Three blocks of trials were performed,
each consisting of four randomly intermixed conditions
presented 10 times each: the unconditioned test pulse and
three conditions with the conditioning stimulus occurring
at different intervals before the test pulse. The interval
between sweeps was 4 s. The effect of conditioning stimuli
on MEP amplitude at each ISI was determined as the ratio
of the average amplitude of the conditioned MEP to the
average amplitude of the unconditioned test MEP per-
formed in the same block of trials.

Since it was known from previous studies that the condi-
tioning stimulus has a suppressive effect on the control
MEP at short ISIs (2–5 ms) and a facilitatory effect at
longer ISIs (7–20 ms) [71], intracortical inhibition (ICI)
and intracortical facilitation (ICF) were calculated across
these intervals respectively [45,72].

Tinnitus complaints and motor cortex excitability were
assessed at baseline (day 1), immediately after the last

rTMS session (day 5) and three and six days post TMS
treatment (days 8 and 11) for both stimulation condi-
tions.

Statistical analysis
Prior to conducting analyses on treatment effects, baseline
values of excitability and tinnitus measures were com-
pared by paired t-tests to check for potential carry-over
effects. While the main interest is in analyzing the connec-
tion of change in intracortical excitability (ΔE) to change
in tinnitus complaints (ΔTQ), first the absolute levels
were analyzed using a separate analysis of variance mod-
els (ANOVA) including the explanatory factors "condi-
tion" (verum vs. sham) and "time" and their interaction
together with the factor "treatment order". To test for a
relationship between ΔTQ and ΔE, we performed a multi-
ple correlation analysis, i.e. we regressed ΔTQ on the ΔE
parameters for each measurement time separately and
extracted the R2, which corresponds to the squared multi-
ple correlation coefficient. This analysis was done sepa-
rately for the active and the sham condition, to give
multiple correlations for days 5, 8, and 11, separately for
the verum and sham conditions. By contrasting these, the
detection of contingency patterns caused by active treat-
ment with the sham condition as a baseline was allowed
for. For exploring patterns specific to single excitability
measures, post hoc correlation analyses were performed.
A MANCOVA testing for differences in ΔE between the
verum and the sham condition, as well as consideration of
all excitability measures simultaneously, provided signifi-
cance screening to determine the measures to undergo
post hoc analysis. We used a general linear model with
multiple responses based on verum – sham differences in
ΔE (baseline, day 11) with predictors "treatment order"
(for adjustment) and the verum-sham difference in ΔTQ
(baseline, day 11). Depending on the result, we con-
ducted post-hoc separate correlation analyses of single
excitability parameter (ΔECSP, ΔEICI, ΔEICF) and ΔTQ for
the verum condition to analyze in which direction the dif-
ferent excitability parameters changed.
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