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Abstract

Background: The morphological development of neurons is a very complex process involving
both genetic and environmental components. Mathematical modelling and numerical simulation are
valuable tools in helping us unravel particular aspects of how individual neurons grow their
characteristic morphologies and eventually form appropriate networks with each other.

Methods: A variety of mathematical models that consider (I) neurite initiation (2) neurite
elongation (3) axon pathfinding, and (4) neurite branching and dendritic shape formation are
reviewed. The different mathematical techniques employed are also described.

Results: Some comparison of modelling results with experimental data is made. A critique of
different modelling techniques is given, leading to a proposal for a unified modelling environment
for models of neuronal development.

Conclusion: A unified mathematical and numerical simulation framework should lead to an
expansion of work on models of neuronal development, as has occurred with compartmental
models of neuronal electrical activity.

Background

A highly distinctive feature of neurons is their morphol-
ogy. Neurons exhibit long processes, or neurites, that are
fundamental to the formation of the connected networks
of neurons that constitute a nervous system. One neurite,
the axon, forms the output electrical signalling pathway of
a neuron. A typical axon has a main trunk from which
shorter side branches, or collaterals, emerge to form
points of contact with appropriate target neurons. Axons
may be extremely long, up to about one metre in humans,
for example. The remaining neurites of a neuron are den-
drites, which form complex tree-like structures and are the
recipients of most synaptic contacts from the axons of

other neurons. Different types of neuron can be distin-
guished by the structure of their dendrites, which can be
characterized in terms of segment lengths and diameters,
the number of terminals (unbranched tips), the number
of branch points, and topological factors such as symme-

try [1-3].

Much of the research in the field of computational neuro-
science has been directed at understanding the electrical
signalling properties of neurons, with a particular empha-
sis on the impact of complex neuronal morphology on
signal integration (e.g. [4-7]). This uses so-called "com-
partmental" models of neurons [8] which are based upon
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solving a well understood partial differential equation
(PDE) for membrane voltage over space and time, where
space is one dimensional along the length of neurites.
Powerful numerical techniques for integrating this equa-
tion and for coping with the branched structures of neu-
rons have been developed [9,10]. Sophisticated computer
simulation packages, such as NEURON [11]http://
www.neuron.yale.edu and GENESIS [12]http://www.gen
esis-sim.org, make the creation of electrical signalling
models a near user-friendly experience. Such packages
provide graphical interfaces for both model construction
and for the display of results.

However, this research into electrical signalling ignores
the fascinating problem of how a neuron's complex mor-
phology is created during nervous system development.
Mathematical modelling and numerical simulation are
invaluable tools to help us unravel the processes underly-
ing morphological development. The sorts of model that
have been investigated vary widely and are typically
aimed at a particular aspect, such as target finding by
axons, rather than describing the entire development of a
neuron. Consequently, no uniform mathematical or
numerical techniques have yet emerged to lead to the
building of the sort of user-friendly software available for
modelling electrical signalling. In this review we consider
arange of modelling endeavours exploring aspects of neu-
ronal morphological development. In conclusion we sug-
gest the features of a computer simulation package that
could ease the pain of creating new models of neuronal

(a) Initiation
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development and eventually allow the exploration of
whole neuron development.

Methods

Overview

This review is largely about methods for modelling neuro-
nal development, rather than the latest research results.
We will, however, point out the major findings of various
models along the way. The review is not exhaustive of all
theoretical work on neuronal development (for a compre-
hensive overview see [13]), but concerns mathematical
models aimed at understanding the biophysics of the out-
growth of neurites. Most models consider only specific
aspects of neurite outgrowth, and so in turn we will look
at models of (1) neurite initiation (2) neurite elongation
(3) axon pathfinding, and (4) neurite branching and den-
dritic shape formation.

Neurite initiation and differentiation

The first problem concerns how neurites form from an ini-
tially spherical neuronal cell. Then, subsequent to initia-
tion, there is a process of differentiation in which one of
the neurites becomes the axon, and the remaining neur-
ites form the dendrites. These stages of growth are illus-
trated in Figure 1. Mathematical modelling of these
processes has been undertaken by Hentschel and col-
leagues over the last decade [14-18]. They investigated
how initial neurite outgrowth could be established by a
positive feedback mechanism triggered by small inhomo-
geneities in the cell surface [14,15,18]. Calcium is
assumed to be the morphogen that promotes cell out-

P (b) Differentiation

i

Neurite initiation and differentiation. (a) Cell surface inhomogeneities cause instabilities that lead to the formation of
broad lamellipodia that condense into short neurites. (b) Competition for a growth-permitting chemical produced in the cell
body can lead to the fastest growing neurite becoming the only outgrowing neurite, characteristic of axonal differentiation.
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growth. In an excitable membrane model, local mem-
brane potential is modulated by the influx of sodium
through voltage-dependent sodium channels. Calcium
influx also occurrs through voltage-dependent channels.
Small bulges in the cell surface produce focal depolariza-
tions leading to elevated sodium and calcium entry and
hightened calcium-dependent outgrowth of the bulge,
eventually leading to neurite formation. Sodium, calcium
and voltage gradients are established from the distal to
proximal ends of the neurite, in accord with experimental
evidence.

The model was simulated using a cellular automata
approach in which the cell interior is divided into 1 um?
blocks and the cell surface is described by a linked list of
1 um segments of membrane. Each segment contains
information about the local transmembrane potential,
the conductance of sodium and calcium and their sub-
membrane concentrations. The concentrations of sodium
and calcium in each cytoplasmic block are calculated on
the basis of a quasi-equilibrium assumption. Growth pro-
ceeds by the addition or subtraction of segments from the
cell surface. Full details of the simulation procedure are
given in [18]. Further outgrowth of neurites is assumed to
be rate-limited by the availability of a particular, but
unspecified chemical at each neurite tip [16-18]. This
chemical is produced in the cell body and transported by
diffusion and active transport to the end of each neurite
emanating from the cell body. This scenario was modelled
by a set of coupled ordinary differential equations (ODEs)
describing the chemical concentration in the cell body; c,,
and in each of n neurite terminals, ¢, to ¢,, and the lengths
of each neurite, [, to I,. The equations are:
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where T;is the transfer rate of chemical from the soma to
a neurite tip, D is the diffusion constant, A is the cross-sec-
tional area of a neurite, V, is the volume of the soma, V;is
the volume of a neurite tip, and F is a growth-dependent
active transport rate. The elongation rate of a neurite is
proportional (&) to the concentration in the tip, ¢, and
chemical is consumed in the tip at a rate proportional (G)
to the elongation rate.

A "winner-take-all" dynamic instability can emerge if one
neurite has a slightly larger initial growth rate. This leads
to greater consumption of the chemical at this neurite tip
and the subsequent capturing of more chemical by this
neurite than by the others. This quickly leads to rapid
growth by this one neurite, with all other neurites having
only very slow growth. This is characteristic of the differ-
ential growth of the neurite that becomes the axon in real
neurons. This model is able to reproduce the results of a
number of axotomy experiments in which severing of the
nascent axon at different lengths, relative to the other neu-
rites, results in either the axon reestablishing itself or
another neurite becoming the new axon [18]. Such com-
petitive effects between neurites have also been investi-
gated in similar ODE models of the growth of branched
dendritic structures [19-21].

Neurite elongation

Following initiation, neurites elongate and branch, reach-
ing lengths of tens to hundreds of micrometres for den-
drites, to over a metre or more for long axons. Modelling
has been used to explore just how neurites elongate and
the biophysical constraints on the lengths that may be
achieved. This work has centred around the dynamics of
cytoskeleton construction, particularly of the microtu-
bules that form the major supporting scaffold within neu-
rites [19,22-24]. Elongation is assumed to be a function of
the amount of available free tubulin at the growing tip of
a neurite, which is assembled onto the ends of microtu-
bules, extending the internal cytoskeleton. The constraints
to growth are the production rate of tubulin and its trans-
port from its site of synthesis, typically assumed to be the
cell body (but see Alvarez et al [25]), to the neurite tip by
diffusion and active transport. An illustration of this
model is given in Figure 2. The most mathematically
sophisticated treatment of this problem is the continuum
model developed by McLean and colleagues [23,24] in
which a PDE describes the tubulin concentration along
the length of a single, unbranched neurite. This model
essentially consists of the following four equations:

Jc Jdc 9%c
+

Zta—=D——
AR Pw R Y
dl
s ()
ac
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The free tubulin concentration at a point x in the neurite
attime ¢ is given by ¢(x, t). The length of the neurite at time
t is given by I(t). Space x lies in the domain 0 to . Tubulin
moves by active transport (a) and diffusion (D), and
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Neurite elongation. Construction of the microtubule cytoskeleton is a rate-limiting factor in neurite elongation. The rate of
construction is determined by the production and transport of tubulin along a neurite, and the assembly of tubulin onto the

ends of microtubules at the neurite tip.

degrades with rate g. Synthesis of tubulin in the cell body
atrate €,c, results in a flux of tubulin across the boundary
at x = 0. Assembly of tubulin onto microtubules results in
a flux of tubulin across the boundary at x = | (assembly
flux €;and return flux ¢;) and a change in length (assem-
bly rate r, and disassembly s,).

This model is a generalisation of previous ODE and alge-
braic treatments of this scenario [19,22]. Its solution, both
analytically and numerically, is complicated by the fact
that it is of the moving boundary type ie the spatial
domain changes over time due to changes in the length, I.
A stable and accurate numerical solution has been pro-
posed in which the spatial domain is discretized into a
fixed number of N grid points and integration is carried
out on a spatially-transformed domain in which x lies
only in 0 to 1 [26]. Transforming back into the real length
domain results in the grid points growing further apart as
the length increases.

Steady-state analysis has revealed that growth can proceed
in three different regimes, as determined by the relative
proportions of construction, due to the synthesis and active
transport of tubulin and its assembly onto microtubules,
and dissipation, due to tubulin diffusion, degradation and
its disassembly from microtubules [23,24]. If construc-
tion dominates dissipation, then large growth results. If
dissipation dominates construction then only short
lengths are achieved. Moderate growth ensues if construc-
tion and dissipation are approximately balanced. The
transition between growth regimes is highly nonlinear.
Growth in the large and short regimes is quite damped

and is determined by active transport in the large regime
and diffusion in the short regime. Oscillations in length
can occur in the moderate regime where growth is affected
by both the active transport and diffusion of tubulin [26].
The ODE models described so far only prescribe concen-
trations at a small number of points, typically the cell
body and neurite tips (but see work on compartmental
models, described below). Numerical solution of this
PDE model enables the visualisation of tubulin concen-
tration over space and time, to any desired resolution, as
the neurite grows [23].

Aspects of this model have been the subject of more
detailed treatments. Active transport of tubulin is here
assumed to proceed with a flux proportional to the local
concentration. In reality, tubulin dimers undergo periods
of active transport when they are attached to the molecu-
lar motors, interspersed with periods of free diffusion. A
PDE reaction-diffusion-transport model that covers this
scenario, and considers both uni- and bidirectional
motors for the active transport of intracellular organelles
has been investigated by Smith and Simmons [27].

Modelling has also been directed at examining the
detailed process of microtubule assembly. Monte Carlo
simulation of the reaction and diffusion of individual
tubulin dimers near the tip of a microtubule has been
used to investigate the outgrowth dynamics of a microtu-
bule and the sources of variability that might underly the
observed dynamic instability in which a microtubule may
switch from elongation to retraction and vice versa [28]. A
mean field approach has been used to determine the dif-
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fusion-limited rate of microtubule assembly, with the
conclusion that observed assembly rates are not limited
by the diffusion of free tubulin [29].

The growth cone at the tip of a neurite also plays a signif-
icant part in neurite elongation and is not explicitly
included in the microtubule assembly models. However,
microtubules extend into the growth cone and interac-
tions between the growth cone and microtubules are sig-
nificant for neurite outgrowth. Microtubules exhibit so-
called dynamic instability, the random alternation
between microtubule growth and shrinkage. This process
plays an important role in the motility of growth cones
and their finger-like protrusions, the filopodia. The vol-
ume of a growth cone is so small that growing or shrink-
ing microtubules are expected to cause fluctuations in the
concentration of free tubulin. Monte Carlo simulations
have shown that these fluctuations have a significant
effect on microtubule dynamic instability [30]. They
shorten microtubule growth and shrinkage times and
change their distributions from exponential to non-expo-
nential, gamma-like, which, interestingly, allow optimal
search behaviour by microtubules [31]. Thus, growth
cone volume, via its influence on the fluctuations in the
concentration of free tubulin, can affect dynamic instabil-
ity and, consequently, growth cone motility.

The growth cone exerts tension on the trailing neurite
which influences microtubule assembly rates. Precisely
how tension affects assembly has been the subject of a
number of modelling studies (reviewed in [32]). Physical
considerations essentially lead to a description in which
the rate of microtubule assembly is an inverse function of
the elastic tension, F, on the microtubules due to stretch-
ing of the neurite:

% =g exp(—kF)c; — s, (9)

where [ is microtubule length, 7, is the unmodified assem-
bly rate and s, is the disassembly rate (assumed not to be
a affected by tension). Tension from the growth cone can
relieve this elastic tension (lowering F) and thus promote
assembly and outgrowth. In the PDE model described
above, all tensions are assumed to be constant through-
out. A description that considers variation of tension over
time needs the inclusion of a hetergeneous environment
that is detected by the advancing growth cone. Such mod-
els have been formulated for studying axon guidance, as
described below.

The growth cone itself contains a complex actin cytoskel-
eton. It has been proposed that this cytoskeleton, when
supporting lamellipodia at the leading edge of the cone,
undergoes a caterpillar like movement to propel the

growth cone along [33]. A more detailed modelling study
of actin cytoskeleton dynamics in lamellipodia support-
ing cell movement is reported in [34].

Axon pathfinding

A fundamental feature of the outgrowth of an axon is its
ability to follow a path to an appropriate target. This
requires the axon's growth cone to sense environmental
cues and to be able to turn towards the desired direction,
or away from an incorrect location. Modelling efforts have
been directed at the growth cone's ability to sense external
chemical gradients [35], its turning ability [32,33,36], and
the formation of nerve tracts in which groups of related
axons bundle together and travel to a remote target region
[37,38]. Related work, which will not be covered here,
includes the problem of topographic map formation in
which the topography of the sending region of neurons is
preserved in the pattern of connections formed by the
arriving axons over the target region [39].

The most fully worked example of axonal elongation and
direction finding is that of Aeschlimann [32,36].

She considers the outgrowth of a single, unbranched axon
in a two-dimensional external environment containing
chemical gradients and glial cells (Figure 3). Elongation
and bending of the axon is determined by visco-elastic
stretching and nonelastic extension due to microtubule
assembly. Direction finding and steering is the function of
filopodia extending from a circular growth cone at the
axon tip. Filopodia elongate to a fixed maximum length,
then retract. Retracting filopodia exert tension on the
growth cone, which in turn influences axon elongation.
The direction of elongation is determined by the vector of
forces generated by the distribution of filopodia on the
surface of the growth cone. The probability that a new
filopodium will emerge at a point on the surface is deter-
mined by the local submembrane calcium concentration,
which is influenced by existing filopodia. A filopodium
can detect a chemical gradient along its length [35] or
physical contact with an external glial cell, with both sig-
nals resulting in an influx of calcium into the growth cone
at the base of the filopodium. This results in a positive
feedback, with the calcium concentration being increased
most around existing filopodia sensing the largest gradi-
ents, and in turn increasing the probability of new filopo-
dia emerging in this area. Localised groups of filopodia
contribute strongly to the tension vector and can thus
cause the growth cone to turn towards and grow along the
maximum external concentration gradient of an attracting
chemical. This complex model contains many compo-
nents and includes a coupled ODE description of neurite
elongation and probabilistic descriptions of filopodium
formation.
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Axonal pathfinding. Detection of chemoattractants in the external environment by filopodia produces tension on the
growth cone in particular directions. The growth cone will turn towards and grow along the dominant direction. If similar
forces are exerted on opposite sides of the cone, the tension may be enough to split the cone into two, leading to the forma-

tion of daughter branches.

Maskery et al [40] use a much simpler model of axonal
pathfinding in which a growth cone undergoes stochastic
changes in direction or is repulsed by external cues to
demonstrate that guidance by external cues is most effec-
tive when growth is at a transition between being domi-
nated by stochastic or deterministic effects.

Models of how groups of growing axons form bundles, or
fascicles, have been explored by Hentschel and van Ooyen
[37]. In their most efficient (de)bundling model, a diffus-
ible signal released by the target region provides long-
range axon guidance. Bundling of the axons occurs due to
a diffusible chemoattractant released by the axonal
growth cones, causing the axons to grow towards each
other. Debundling of the axons as they come near the tar-
get occurs due to a chemorepellant released by the axonal
growth cones, with the amount of chemorepellant being
a function of the concentration of the target-released
attractant. Debundling must occur for the axons to spread
out and innervate the full extent of the target region. The
chemoattractant and repellant released by the axonal
growth cones remain hypothetical. They could plausibly
be mediated by contact interactions between growth cone
filopodia, rather than be diffusible molecules [37].

The two dimensional implementation of this scenario
involves treating each target cell and each growth cone as
a point source for attractant or repellant. The quasi-steady-
state concentration gradient of each chemical from each
source is calculated and summed. The change in position,
r,, of each growth cone, ¢, is then calculated as a function
of the two attractive and one repulsive gradients:

%1 = 2V P (5 (1), £) + AV (1 (6),8) = AV (1 (0), ) (10)

where Vp, is the concentration gradient of growth cone (¢)
or target (¢) attractant, or growth cone repellant (r) and 4,
is the associated growth rate constant.

Segev and Ben-Jacob [41,42] have used a similar model-
ling approach to explore more general chemotactic effects
in neuronal network formation in a 2D environment. In
their models single axons grow out from each soma, with
their direction of growth being determined by a variety of
attractive and repulsive environmental cues. In particular,
each soma is assumed to emit a repulsive signal. Once an
axon reaches a specified length it emits a pulse of an
attractive signal. A soma then responds by itself emitting
an attractive signal if it detects an above-threshold con-
centration of growth cone attractor. As a consequence a
growth cone is then attracted to the nearest soma. This
model was used to investigate the patterns of network
connectivity that could result from various initial spatial
distributions of somas. In some simulations spatial distri-
butions of glial cells that emitted chemotactic signals were
also present. Validation of these models awaits new meas-
ures for characterizing and distinguishing between differ-
ent network organisations.

Neurite branching and dendritic shape formation

Neurites do not just elongate, they also make repeated
branches. Branch formation is either due to a bifurcation
of the growth cone, or the interstitial formation of a new
branch part way along an existing neurite. Growth cone
bifurcation seems to largely underly the formation of
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many different types of dendrite [43]. Interstitial branch-
ing is important for the formation of axon collaterals [43]
and also for the creation of short oblique branches in cer-
tain dendrites [44]. We will concentrate here on mathe-
matical models that consider the biophysics of growth
cone bifurcation and the implications for the creation of
the dendritic structures that characterize different neuro-
nal types. The models can be divided into those that
describe external influences on the growth cone and those
that consider internal constraints on cytoskeletal con-
struction and stability. There is also a range of statistical
models that are aimed at the reconstruction of realistic
dendrites, without necessarily describing the develop-
mental process (see for example [45,46]). Such models
will not be considered here.

Models of branching due to external influences consider
tension on the growth cone due to filopodia sensing cues
in different directions in the environment [47,48]. If there
is sufficient tension in opposing directions on different
sides of the growth cone, then the cone splits apart to
form two daughter branches, which proceed to elongate
in the direction of the sensed cues (Figure 3). These mod-
els consider growth along a plane, equivalent to an iso-
lated neuron growing in culture. The external
environment is populated by attracting cues, which are
either point sources or continuous chemical gradients. A
number of filopodia radiate from a point growth cone,
with direction and tension dependent on the pattern of
external cues. A tension threshold determines when the
growth cone branches as it elongates through the environ-
ment. The micro-details of the internal actin cytoskeleton,
its stability and how it is rearranged following a branching
event are not considered in these simple models. The out-
put of these models is comparable to data on branching
angles and segment lengths from cells grown in tissue cul-
ture [49].

Theoretical studies indicate that dendritic branching
angles may follow a principle of neurite volume minimi-
sation [50], or equivalently, equilibration of tension
forces on growth cones [51]. Network formation may
refine branch angles to minimise neurite lengths [52]. Sta-
tistical analysis also indicates a strong tendency for neur-
ites to grow away from their parent cell body, thus
influencing branching angles [53]. Models of internal
constraints are similar to the models of elongation based
on the construction of the microtubule cytoskeleton. In
addition to considering the rate of neurite elongation due
to microtubule assembly, these models also consider the
stability of the resultant microtubule bundles as deter-
mining the likelihood for a neurite tip to bifurcate. As
with the external models, an explicit model of the growth
cone and its actin cytoskeleton currently are not included.

The basic model considers whether the production and
transport of an unspecified branch-determining substance
imparts constraints on branching [54]. Statistical models
of dendrite formation indicate that the probability of a
neurite bifurcating is modulated as the tree grows and is a
function of the number of terminals in the tree and the
number of branch points between a particular terminal
and the cell body (centrifugal order) [3]. The basic model
shows that modulation of branching probability as a
function of the number of terminals and their centrifugal
order can arise from variations in the availability of a
branch-determining substance at each terminal due to the
diffusion and active transport of that substance from its
site of production in the cell body. Such a substance can
plausibly be identified as tubulin, or possibly a microtu-
bule-associated protein, such as MAP2, that influences the
stability of microtubule bundles in dendrites.

More sophisticated models describe both elongation and
the branching rate explicitly as functions of tubulin and
MAP2 concentrations at a terminal (Figure 4) [55,56].
Both tubulin and MAP2 are assumed to be synthesised in
the cell body and transported by diffusion and active
transport along the growing dendrites. At a terminal, the
amount of free tubulin and MAP2, and the phosphorlyat-
ion state of MAP2 determine the elongation and branch-
ing rates. Dephosphorylated MAP2 acts as a cross-linker
between microtubules, stabilising the bundles and pro-
moting microtubule assembly. Phosphorylated MAP2, on
the other hand, loses its cross-linking ability and destabi-
lises the microtubule bundles, thus increasing the likeli-
hood of a bifurcation event. (De)phosphorylation of
MAP2 is a Michaelis-Menten function of the calcium con-
centration, with small changes in calcium possibly result-
ing in a large shift in the balance between phosphorylated
and dephosphorylated MAP2. Calcium entry is assumed
along the length of the dendrite (putatively through volt-
age-gated channels). The biochemical (de)phosphoryla-
tion pathways, involving at least CaMKII and calcineurin,
are not explicitly modelled. The elongation and branching
rates are given by:

dl

E=rgBlcl -5 (11)
B

By =k, — (12)

h+5

where ¢; is the concentration of free tubulin at a neurite
tip, B; is the concentration of dephosphorylated and
microtubule-bound MAP2, P, is the concentration of
phosphorylated MAP2 and P, is the probability of
branching.
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Neurite branching. Construction and stability of the microtubule cytoskeleton may determine both elongation and branch-
ing rates. Microtubule bundles are cross-linked by microtubule-associated proteins, such as MAP2. Dephosphorylated MAP2
stabilises the bundles and promotes microtubule assembly, and hence elongation. Phosphorylated MAP2 loses its cross-linking
ability, destabilising the bundles and thus increasing the likelihood of neurite branching.

This complex model of elongation and branching has
been implemented as a coupled system of ODEs, with
their numerical solution following a 'compartmental”
approach, as has been used for solving the voltage equa-
tion for simulating electrical activity. In this approach, a
neurite is divided into a number of short compartments,
with chemical concentrations being calculated for the vol-
ume of each compartment. Chemicals move between
compartments due to bulk diffusion and active transport.
As a neurite elongates, new compartments are added
when needed. New compartments are also created when a
branching event occurs. Various strategies for when and
where new compartments are added have been investi-
gated [57]. As with PDE models, this approach also allows
visualisation of concentration gradients along the length
of neurites, in contrast to ODE models that only consider
concentrations in the cell body and in neurite terminals
[19,20,37,54]. Work is needed to reconcile this compart-
mental approach with the numerical solution of the PDE
model of neurite elongation [23,24,26].

Results and Discussion

Modelling results and experimental data

All of the models described here are aimed at understand-
ing the biophysics of various processes underlying the
morphological development of a neuron. They seek to

support explanations for the rate and direction of out-
growth, segment lengths, branching angles and the
branching structure of dendrites and axons. Different
models have been successful at matching experimental
data for some but not all of these features at the same
time.

Much of the work draws its motivation from statistical
models of neurite outgrowth, with the aim of providing
biophysical explanations for statistical phenomena. Den-
drites exhibit correlations between segment diameters,
lengths and segment branching probabilities [1,2,44].
Complex models of neurite elongation and branching
[55,56] predict variations in calcium concentration over
time at neurite tips that could alter the balance between
elongation and branching through effecting the phospho-
rylation state of MAP2. These models can produce the
trends in segment lengths and branching formation seen
in real dendrites. Statistical branching probabilities seem
to be a function of the size and topology of the growing
dendrite [3] and it has been demonstrated that such a
dependency could arise through constraints on the trans-
port of growth determining substances, such as tubulin,
throughout the growing tree [54,58]. Tight matches to
experimentally measured dendritic topologies have been
achieved with this model. Limitations on intracellular
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transport are also predicted to result in competition for
outgrowth between neurites [16,19,20]. An aspect that
remains to be captured in biophysically-based models is
how the diameter of a neurite segment evolves.

Predictions have been made about the requirements and
limitations of extracellular signals for axon guidance and
bundling [35,37,40-42]. Temporal and spatial require-
ments for attractive and repulsive cues to achieve appro-
priate target finding are suggested, but remain to be
confirmed experimentally. For example, debundling may
require axonal growth cones to release a repellant as they
near their target region [37]. Release of an attractant by a
growth cone in a target region that in turn triggers attract-
ant release by target cells may be required for appropriate
network connection formation [41,42]. A particular fea-
ture of a number of the models is the role of calcium as a
second messenger and the importance of spatial inhomo-
geneities in calcium concentration within a cell. This
includes submembrane calcium hotspots in the cell body
driving neurite initiation [14,15], submembrane calcium
hotspots at the tip of a growth cone influencing filopo-
dium initiation and ultimately growth direction [32], and
changes in calcium concentration at a neurite tip altering
the phosphorylation state of MAP2 and ultimately the
balance between elongation and branching [55,56]. Cal-
cium imaging is beginning to provide data to confirm or
deny these models and to help generate new models [18].
Also, no explicit description is attempted in these models
of the precise biochemical pathways which lead from cal-
cium to the end effect. Detailed second messenger path-
way modelling is a feature of systems biology and
sufficient data is available to attempt more detailed mod-
elling here [59].

In summary, biophysically-based models are making pre-
dictions about the nature of intracellular and extracellular
constraints that could determine the neuronal morpholo-
gies and network topologies seen experimentally. Such
models consider the dynamics of cytoskeleton construc-
tion, the effect of tension on neurite outgrowth, and the
temporal and spatial requirements for chemotactic sig-
nals.

Modelling techniques

A major feature of models of neuronal development is the
necessity to calculate quantities that vary over space as
well as time, with the significant complication that the
spatial domain itself varies with time. The natural mathe-
matical specification of such problems is the partial differ-
ential equation (PDE). The formulation and numerical
solution of PDE models for which the spatial domain
changes with time are of the moving boundary type and
are more difficult to deal with than models with a fixed
spatial domain. Nonetheless a PDE model for neurite

elongation has been developed [24], but awaits extension
to cover a fully branched neuritic structure. In this model,
space is one dimensional along the interior of the neurite.
Full details of the numerical solution of this model are
given in [26].

A two dimensional PDE model of an external environ-
ment of arbitrary geometry and containing various point
sources of chemical gradients has been formulated and
solved numerically [38]. The moving tips of growing neu-
rites have a spatial location within this environment, but
the neurite itself has no spatial extent. This framework can
be used to model axon guidance in response to both dif-
fusible and non-diffusible, membrane bound molecules.
It also allows for the (hypothetical) possibility that
growth cones secrete diffusible molecules upon which
they respond themselves. The internal state and geometry
of the growth cone, which may affect how the growth
cone responds to chemical gradients, can also be incorpo-
rated. Thus, a wide range of axon guidance models,
including those involved in topographic mapping, can be
implemented and explored. The framework could easily
be extended to include neurite branching due to external
influences.

While the mathematical rigour provided by the PDE
approach is highly desirable, the flexibility of a "compart-
mental" approach using a system of coupled ODEs is also
potentially very useful. This is particularly evident in sim-
ulation software for modelling electrical activity in neu-
rons (e.g. NEURON and GENESIS) in which nonlinear
models of ion channel activity are easily incorporated and
coupled to the underlying membrane voltage equation.
Spatially inhomogeneous distributions of ion channels
are easily handled, as are "point processes", such as syn-
apses, that only occur at particular locations. The natural
extension of this approach to the scenario of a neuron
undergoing morphological development is the addition
or deletion of new membrane "compartments" over time
[57]. This means that new points are added (or deleted) to
the spatial grid on which calculations are made, and exist-
ing points are fixed in space. This contrasts to the spatial
grid used to numerically solve the PDE model of neurite
elongation [26] in which the grid contains a fixed number
of points but the mesh is stretched in space to account for
growth, effectively moving each point in space over time.
Fixing as many points as possible in space is useful when
modelling the interaction of an outgrowing neurite with
its environment, which may contain chemical gradients,
fixed chemical markers and other growing neurites, for
example. Exact spatial relationships between objects then
are more easily maintained, such as the contact point of a
synapse on a neurite. The "compartmental" approach can
also allow for the easy incorporation of new ODE, alge-
braic or probabilistic equations describing new intra- or
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extracellular components in a spatially inhomogeneous
way.

Towards a unified modelling environment for neuronal
development

From both a conceptual and a mathematical point of view
it is possible to envisage a unified scenario that encom-
passes many of the individual models described above.
Most of the models lie within the framework of a two-
dimensional external environment coupled with a one-
dimensional intracellular space. The external environ-
ment contains either point sources or continuous chemi-
cal gradients of attractors and repellors. Physical barriers,
such as other cells, could also be present. The intracellular
space describes the concentration of various chemicals
along the length of neurites as determined by their sites of
production and their transport by diffusion or active
motors. Exceptions to this description are the two-dimen-
sional intracellular space used to model neurite initiation
[15] and growth cone locomotion [33]. A description that
would combine these features would consist of a neuronal
model with one spatial dimension along the intracellular
length of neurites, possibly with two dimensional descrip-
tions of the cell body and growth cones. The neuronal
model would interact with a two dimensional description
of the extracellular environment which may contain
chemical gradients and other cells that could be detected
by and influence the development of a neuron. The intra-
cellular quantities of interest are the spatial concentration
profiles of mo lecules involved in neurite outgrowth, such
as tubulin. Sites of synthesis or influx and the one dimen-
sional diffusion and active transport of molecules must be
specified. Reactions between molecules may take place at
predefined points or along the length of the neurite.
Sources of attracting or repelling chemical factors and
their static, or quasi-static gradients must be specified in
the external environment. Growing neurons and other
cells, such as glia, must occupy space in the external envi-
ronment, thus allowing physical contact between cells.

Appropriate numerical schemes for implementing the
required 2D external environment [38,41] and the ID
intracellular environment [26,57] are available. Extending
these schemes to include a 3D external environment
should be conceptually straightforward, but would
increase the computational burden considerably. The
state vector approach employed by [38] to describe the
interaction between growth cones and the external envi-
ronment provides the framework required for combining
complex models of cytoskeleton construction [55,56]
with growth in an environment. It will, however, be nec-
essary to account for interaction between a neurite and the
environment at any point along the neurite, not just at the
growth cone. Extra complexity also arises if it is necessary
to take account of the space-filing of a developing neuron.

This is certainly required to accurately describe growth in
a multicellular environment. In this case both the internal
and external spatial grids must be adaptable or deforma-
ble. The typical time scale for neuronal growth driven by
chemical concentrations is on the order of minutes to
hours. Growth is also known to be affected by electrical
activity and synapse formation. These effects are only
implicit in the models described here [18,55,56]. Explicit
modelling of electrical activity requires a time scale of
micro- or at most milli-seconds. It is not feasible to con-
template modelling neuronal development, which may
proceed for days, on this time scale. So the inclusion in a
model of the effect of explicit electrical activity on the
developmental process would require an adaptive
approach in which the model switches from development
to modelling short periods of electrical activity. A calcula-
tion of the average effects of electrical activity could then
be carried forward into the next period of developmental
modelling.

Thus an appropriate unified modelling environment
needs to encompass both varying spatial and temporal
scales and inhomogeneities in the components of a given
model. Appropriate and diverse mathematical techniques
are required for calculating quantities at different scales of
interest. These techniques are available individually, but a
numerical simulation package that incorporates all
required techniques to implement the unified modelling
environment outlined here remains to be built.

Conclusion

Mathematical modelling and numerical simulation are
powerful tools to help us understand neuroscientific
experimental data and ultimately the operation of the
nervous system. User-friendly simulation software has led
to an enormous body of work on modelling electrical
activity in morphologically complex neurons and net-
works of neurons. Mathematical models of aspects of
nervous system development are more disparate in nature
but there is some commonality of themes and mathemat-
ical techniques, as reviewed here. Powerful simulation
environments are beginning to be developed and this will
hopefully lead to an expansion in the use of mathematical
modelling to understand development of the nervous sys-
tem.
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