POSTER PRESENTATION

Open Access

Effects of a reduced efficacy of the KCC2 cotransporter in temporal lobe epilepsy: single neuron and network study

Anatoly Buchin^{1,2*}, Gilles Huberfeld^{3,4}, Richard Miles⁵, Anton Chizhov⁶, Boris Gutkin^{1,7}

From 24th Annual Computational Neuroscience Meeting: CNS*2015 Prague, Czech Republic. 18-23 July 2015

Epilepsy is one of the most common neurological disorders. Seizures in about 40% of patients with temporal lobe epilepsies are pharmaco-resistant [1]. In surgically removed hippocampal tissue from these patients, the KCC2 cotransporter is absent or non-functional in about 20 % of subicular pyramidal cells [2]. KCC2 normally assures the maintenance of low intra-neuronal chloride levels [3] and also regulates potassium levels [4]. Chloride concentration changes in the remaining pyramidal cells due to intensive GABAergic input during seizures could reverse the effects of GABA currents from inhibitory to excitatory [5,6]. Such changes may shift a pyramidal cell into a periodic bursting regime associated with ictal discharges. Using a detailed biophysical model of a single cell incorporating these mechanisms of ionic homeostasis and a neural network model, we show that decreasing the activity of KCC2 pump leads to repetitive seizure-like firing in the pathologic network due to increased extracellular potassium and intracellular chloride (Fig. 1). This model provides insights into how a dysregulation of pyramidal cell chloride homeostasis due to reduced levels of the KCC2 cotransporter may lead to seizures in the epileptic human subiculum.

Acknowledgements

This work has been supported by the following grants: ANR-10-LABX-0087 IEC, ANR-10-IDEX-0001-02 PSL, ERC-322721, FRM FDT20140930942. Especially we would like to thank Giri Krishnan for useful discussions.

Authors' details

¹École normale supérieure, Laboratoire des Neurosciences Cognitives, Group for Neural Theory, Paris, France. ²Peter the Great St.-Petersburg Polytechnic University, St.-Petersburg, Russia. ³Neurophysiology Department, Pitie-Salpetriere Hospital, UPMC, Paris, France. ⁴Epilepsie de l'Enfant et Plasticité Cérébrale, INSERM U1129, Paris, France. ⁵Institut du Cerveau et de la Moelle Epiniere, Cortex et Epilepsie Group, Paris, France. ⁶Ioffe Physical Technical Institute, Computational Physics Laboratory, St.-Petersburg, Russia. ⁷Higher School of Economics, Moscow, Russia.

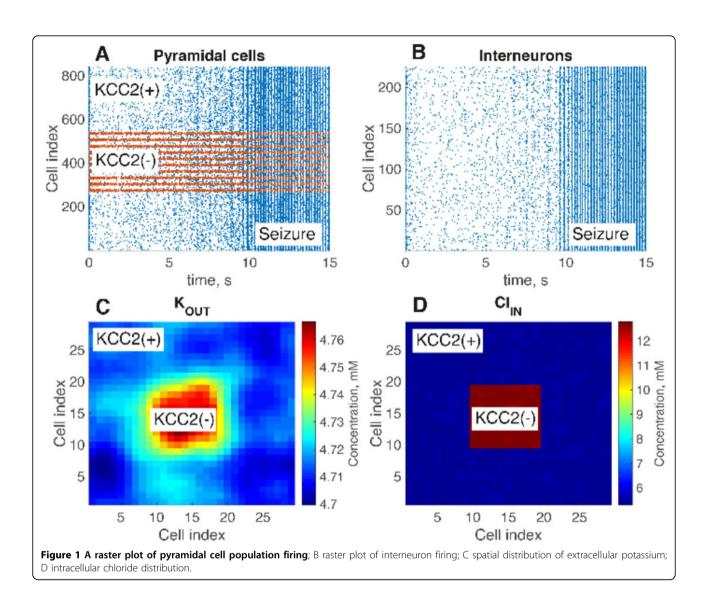
Published: 18 December 2015

References

- Beghi E, Berg A, Carpio A, Forsgren L, Hesdorffer DC, Hauser WA, Tomson T: Comment on epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). *Epilepsia* 2005, 46(10):1698-1699.
- Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R, Rivera C: Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neuroscience 2007, 27(37):9866-9873.
- Blaesse P, Airaksinen MS, Rivera C, Kaila K: Cation-chloride cotransporters and neuronal function. *Neuron* 2009, 61(6):820-838.
- Payne JA: Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+] oregulation. American Journal of Physiology-Cell Physiology 1997, 273(5):C1516-C1525.
- Khalilov I, Dzhala V, Ben-Ari Y, Khazipov R: Dual role of GABA in the neonatal rat hippocampus. *Developmental Neuroscience* 1999, 21(3-5):310-319.
- Jedlicka P, Deller T, Gutkin BS, Backus KH: Activity-dependent intracellular chloride accumulation and diffusion controls GABA-A receptor-mediated synaptic transmission. *Hippocampus* 2011, 21(8):885-898.

doi:10.1186/1471-2202-16-S1-P5

Cite this article as: Buchin *et al.*: Effects of a reduced efficacy of the KCC2 co-transporter in temporal lobe epilepsy: single neuron and network study. *BMC Neuroscience* 2015 **16**(Suppl 1):P5.


* Correspondence: anat.buchin@gmail.com

¹École normale supérieure, Laboratoire des Neurosciences Cognitives, Group for Neural Theory, Paris, France

Full list of author information is available at the end of the article

© 2015 Buchin et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

