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The mechanisms for the emergence and transmission of
synchronized oscillations in Parkinson’s disease (PD)
still remain debated. In a previous publication [1], we
argue that the external globus pallidus (GPe) has a cru-
cial role in desynchronising and synchronizing the basal
ganglia. While neural activity of the healthy GPe shows
almost no correlations between pairs of neurons, promi-
nent synchronization in the b frequency band arises
after dopamine depletion. Intrinsic factors of the GPe,
in particular its internal connections, could be take
major roles in this synchronisation process.
We introduce pallidal gap junctional coupling as a possi-

ble mechanism for synchronization of the GPe after dopa-
mine depletion. In a confocal imaging study, we show the
presence of the neural gap junction protein Cx36 in the
human GPe, including a possible remodeling process in
PD patients. Dopamine has been shown to down-regulate
the conductance of gap junctions in different regions
of the brain [2,3], making dopamine depletion a possible
candidate for increased influence of gap junctional
coupling in PD.
To see what effect electrical coupling in the GPe could

have, we incorporate gap junctions in a small conductance-
based model of the basal ganglia. In both GPe and GPi, gap
junctional coupling has clear effects on synchrony.
Especially numerous coupling with sufficient strength in
the GPe is able to synchronize the whole basal ganglia.
Next, we focus on dynamics inside the GPe. Phase-
response curve analysis is used to describe the susceptibil-
ity of GPe neurons to synchronize with input, depending
on electrical coupling to other GPe neurons. Additionally,
we simulate the effect of gap junctions on synchrony in a

larger network of the GPe, including biologically realistic
cell models and inhibitory synaptic coupling.

Conclusions
We hypothesize that strong gap junctional coupling in the
GPe disturbs the self-desynchronization in this nucleus
and leads to long-range synchronization. Pallidal gap junc-
tions, which are potentially modulated by dopamine, could
be a powerful trigger of synchrony in Parkinson’s disease.
We stress that also gap junctions in other nuclei such as
the striatum may play important roles.
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