POSTER PRESENTATION

Open Access

Homeostasis in large networks of neurons through the Ising model - do higher order interactions matter?

Dagmara Panas^{1*}, Alessandro Maccione², Luca Berdondini², Matthias H Hennig²

From Twenty Second Annual Computational Neuroscience Meeting: CNS*2013 Paris, France. 13-18 July 2013

Homeostatic activity in large networks of neurons is a relatively scantly explored area of neuroscience, both on experimental and computational level [1]. With recent advance in recording techniques, the lack of experimental data is gradually ceasing to be the limitation. New multielectrode arrays (MEA) allow for monitoring cultures of thousands of neurons over many days with high spatial resolution [2]. However, the interpretation of multineuron recordings is not straightforward and requires methods going beyond the simplest descriptive statistics.

Here we explore a novel approach to analyzing multiunit neuronal activity recorded over a five day homeostatic experiment by employing the Ising model [3,4]. This statistical model explains the probability of multi-neuron spike patterns solely on the basis of firing rates and correlations, assuming an otherwise minimally structured distribution. Its application to a variety of recordings has helped re-evaluate the importance of neural interactions in shaping the global activity [3,4]. In addition, due to the models minimal structure, the quality of the fits can be treated as an indicator of higher-order interactions in the activity [4].

We compare the Ising model fits in the same preparation over several recordings: before, during and after CNQX application. We find that, in addition to the changes in

* Correspondence: D.Panas@sms.ed.ac.uk

¹Institute for Adaptive and Neural Computation, The University of Edinburgh, Edinburgh, EH8 9AB, UK

Full list of author information is available at the end of the article

© 2013 Panas et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

firing rates and correlations, also the quality of the fits changes significantly across recordings (Figure 1). However, while firing rates and correlations to not appear to stabilize to a baseline level, the quality of the model fit does (Figure 1). Altogether this indicates that changes to first and second order statistics cannot explain the homeostatic changes in activity; and that higher order interactions might be a significant component of homeostatic compensation. Whether homeostatic maintenance of a complex higher-order dynamics is an effect of interplay of simple mechanisms or a global homeostatic set-point remains to be investigated.

Author details

¹Institute for Adaptive and Neural Computation, The University of Edinburgh, Edinburgh, EH8 9AB, UK. ²Department of Neuroscience and Brain Technologies, Italian Institute of Technology, 16163 Genova, Italy.

Published: 8 July 2013

References

- Turrigiano G: Too Many Cooks? Intrinsic and Synaptic Homeostatic Mechanisms in Cortical Circuit Refinement. Annu Rev Neuroscience 2011, 34:89-103.
- Berdondini L, Imfeld K, Maccione A, Tedesco M, Neukom S, Koudelka-Hep M, Martinoia S: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. *Lab Chip* 2009, 9:2644-2651.
- 3. Schneidman E, Bialek W: Ising models for networks of real neurons. *Nature* 2006, **440**:1007-1012.
- Ohiorhenuan IE, Mechler F, Purpura KP, Schmid AM, Hu Q, Victor JD: Sparse coding and high-order correlations in fine-scale cortical networks. *Nature* 2010, , 466: 617-621.

doi:10.1186/1471-2202-14-S1-P166

Cite this article as: Panas *et al.*: Homeostasis in large networks of neurons through the Ising model - do higher order interactions matter? *BMC Neuroscience* 2013 14(Suppl 1):P166.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit