ORAL PRESENTATION

Open Access

Slow integration leads to persistent action potential firing in distal axons of coupled interneurons

Mark EJ Sheffield¹, Tyler K Best¹, Brett D Mensh², William L Kath^{1,3*}, Nelson Spruston¹

From Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011

The conventional view of neurons is that synaptic inputs are integrated on a timescale of milliseconds to seconds in the dendrites, with action potential initiation occurring in the axon initial segment. In a subset of rodent hippocampal and neocortical interneurons in acute slices prepared from serotonin 5b receptor (Htr5b) BAC transgenic mice [1], we found a much slower form of integration leading to action potential initiation in the distal axon. In approximately 80% of these interneurons in wild-type C57BL/6 mice (n=6 of 26), hundreds of spikes, evoked over a period of minutes, resulted in persistent firing that lasted for a similar duration.

Persistent firing was observed in response to step current injections, synaptic stimulation, sine wave current injections or in response to stimulation with natural spike trains [2]. With all of these protocols, multiple stimuli were required to induce persistent firing. While axonal action potential firing was required to trigger persistent firing, somatic depolarization was not; antidromic stimulation of the axon while hyperpolarizing the soma with current injection produced persistent firing. In addition, phase plots of persistent firing revealed that spikes had two components: an initial component represented spiking in the axon and a second component that overlapped with the current-evoked spikes, indicative of a somato-dendritic spike following an initial, axonally initiated spike.

In some recordings (n = 11), partial spikes (spikelets) were observed during persistent firing. These spikelets overlapped the first component of the full-amplitude

¹Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA spikes, with the peak of the spikelets corresponding to an inflection on the rising phase seen in the full-amplitude spikes. These observations suggest that the first component of each action potential during persistent firing is an axonal spike, which sometimes fails to evoke a somato-dendritic spike. Furthermore, in some cells (n=3), spikelets were observed if the soma was hyperpolarized during persistent firing. These spikelets were smaller than those observed without hyperpolarization, suggesting that they are caused by propagation failures at a more distal axonal location.

Using a stylized computational model constructed with the NEURON simulation environment [3] of a branching axon attached to a soma, we simulated both small- and large amplitude spikelets, as well as full-amplitude spikes, by depolarizing a branch of the axon during somatic hyperpolarization. Large-amplitude spikelets corresponded to failure of the action potential to invade the soma, whereas small-amplitude spikelets corresponded to failures at the axon branches, 40 μ m from the soma. Similar results were obtained with a full morphological model of a branching axonal arborization.

Additionally, in paired recordings, persistent firing was not restricted to the stimulated neuron; it could also be produced in the unstimulated cell (n=3). None of these pairs exhibited direct electrical coupling, and both glutamate and GABA receptors were blocked.

Consolidating these results suggests the existence of a previously unknown operational mode for some mammalian neurons. These interneurons can slowly integrate spiking, share the output across a coupled network of axons and respond with persistent firing even in the absence of input to the soma or dendrites.

© 2011 Sheffield et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: kath@northwestern.edu

Full list of author information is available at the end of the article

Acknowledgements

Grant support was provided by the US National Institutes of Health (NS-046064).

Author details

¹Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA. ²Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA. ³Department of Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA.

Published: 18 July 2011

References

- Heintz N: Gene expression nervous system atlas (GENSAT). Nat. Neurosci 2004, 7:483.
- Klausberger T, Marton LF, O'Neill J, Huck JH, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kaneko T, Watanabe M, et al: Complementary roles of cholecystokinin- and parvalbuminexpressing GABAergic neurons in hippocampal network oscillations. J. Neurosci 2005, 25:9782-9793, unpublished data, cell T82e.
- Hines ML, Carnevale NT: The NEURON simulation environment. Neural Comput 1997, 9:1179-209.

doi:10.1186/1471-2202-12-S1-O17

Cite this article as: Sheffield *et al.*: **Slow integration leads to persistent** action potential firing in distal axons of coupled interneurons. *BMC Neuroscience* 2011 **12**(Suppl 1):O17.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit