Poster presentation

Open Access

Resonant response of a Hodgkin-Huxley neuron to a spike train input Lech S Borkowski

Address: Quantum Physics Division, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland Email: Lech S Borkowski - lsb@amu.edu.pl

from Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Berlin, Germany. 18–23 July 2009

Published: 13 July 2009

BMC Neuroscience 2009, 10(Suppl 1):P250 doi:10.1186/1471-2202-10-S1-P250

This abstract is available from: http://www.biomedcentral.com/1471-2202/10/S1/P250 © 2009 Borkowski; licensee BioMed Central Ltd.

Introduction

Experiments show that neurons have a tendency to respond to signals tuned to a resonant frequency [1]. In order to understand the general properties of a resonant response of a neuron, we study the silent Hodgkin-Huxley neuron driven by periodic input. The current arriving through the synapse consists of a set of spikes $I_p(t) \sim g_{syn}$ $\Sigma(t/\tau) \exp(-t/\tau) C(t) (V_a - V_{syn})$, where g_{syn} is the synapse conductivity, τ is the time constant associated with the synapse conduction, V_a is the maximum membrane potential and V_{syn} is the reversal potential of the synapse.

Results

See Figures 1 and 2.

Figure I

The phase diagram for typical HH model parameters [2]in the limit of small synaptic conductivity. There is a well-pronounced minimum at $T_i = 17.5$ ms. The resonant nature of the response can be seen also at multiples of this value, at $T_i \approx 34$ ms and $T_i \approx 50$ ms. Near the resonance the system has the tendency to mode locking with high values of k, where $k = T_o/T_i$ is the ratio of the output ISI to the input ISI. For example near the main resonance frequency we find narrow regions with k = 5, 6 or 9. Areas with bistable solutions are shown in grey. We expect the resonance at $T_i = 17.5$ ms to survive in the presence of noise.

Figure 2

In the limit of small T_i the distinction between the firing spikes and subthreshold oscillations disappears and the output signal decreases to 0 for sufficiently large g_{syn} . Broken line in the figure indicates a transition to nonfiring behavior. In the area below this transition the amplitude of the spikes gradually increases. Solid lines are borders of the mode-locked states with different values of k. Properties of this model are similar to the HH model with a sinusoidal driving current at intermediate values of input ISI T_i = 5–12 ms. However the results in both the high and the low frequency regime are qualitatively different. In the case of a sinusoidal input there is only one resonance frequency and reported values of k are lower [3].

Acknowledgements

Part of the numerical computation was performed in the Computer Center of the Tri-city Academic Computer Network in Gdansk, Poland.

References

- Hutcheon B, Yarom Y: Resonance, oscillation and the intrinsic frequency preference of neurons. Trends Neurosci 2000, 23:216-222.
- Hasegawa H: Responses of a Hodgkin-Huxley neuron to various types of spike-train inputs. Phys Rev E 2000, 61:718-726.
- Lee SG, Kim S: Bifurcation analysis of mode-locking structure in a Hodgkin-Huxley neuron under sinusoidal current. *Phys Rev E* 2006, 73:041924.

