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Abstract
Background:  The delta(δ)-opioid receptors belong to the G protein-coupled receptors and in
vitro studies have shown that δ-opioid receptors undergo an internalization process in response to
agonist stimulation. The immediate consequence is the disappearance of receptors from the plasma
membrane. This adaptation process reveals the cell's capacity to desensitize after a strong agonist
stimulus. This process, if it occurs in vivo, could contribute to the tolerance phenomenon observed
after opiate treatment. To study the mechanisms underlying regulation of the δ-opioid receptors
in vivo, the effects of an application of the drug dermenkephalin, a potent and selective agonist of
the δ-opioid receptor, were analysed in the rat spinal cord.

Results:  Using immunocytochemistry and electron microscopy, we observed in control rats that
membrane labelling was strictly localized at the interface between two neurites. Fifteen minutes
after dermenkephalin stimulation, the plasma membrane labelling was associated with invaginated
areas. Thirty minutes after stimulation, labelled vesicles were found in the cytoplasm confirming the
internalization process.

Conclusions:  The present findings support the view that δ-opioid receptors are internalized in
response to prolonged exposure to dermenkephalin in vivo and confirm the presynaptic localization
of δ-opioid receptors in the dorsal horn of the rat spinal cord.

Background
The G protein-coupled receptors constitute a large fami-

ly of receptors widely distributed in the mammalian cen-

tral nervous system (CNS). Classical neurotransmitter

receptors such as muscarinic acetylcholine receptors

(mAChR), adrenergic, dopaminergic, serotoninergic as

well as neuropeptide receptors belong to this family (1).

In vitro studies in transfected cells show that following

receptor activation by an agonist that induces signal

transduction, G protein-coupled receptor undergoes

phosphorylation, endocytosis, and dissociation from

their ligand in the endosome, and finally the receptors

are recycled to the plasma membrane (2, 3,4). The del-

ta(δ)-opioid receptor is a member of the seven trans-

membrane superfamily of G-protein coupled receptors

(5, 6). In vitro studies, carried out on NG108-15 neuro-

hybrid cells which express large numbers of δ-opioid re-
ceptors, show that these receptors undergo a rapid

agonist-induced desensitization that occurs within min-

utes and down-regulation that occurs more slowly over

several hours (4, 7). The internalization of receptor-ago-

nist ligand complex has been detected with similar kinet-

ics to those of down-regulation (8, 9). These findings

raise two related questions: 1) can δ-opioid receptors be
internalized in vivo by the same agonist-induced endo-

cytosis observed in vitro? and if this is the case, 2) does

Published: 06 December 2000

BMC Neuroscience 2000, 1:1

This article is available from: http://www.biomedcentral.com/1471-2202/1/1

(c) 2001 Gastard, licensee BioMed Central Ltd

Received: 26 May 2000
Accepted: 06 December 2000

http://www.biomedcentral.com/1471-2202/1/1


BMC Neuroscience (2000) 1:1 http://www.biomedcentral.com/1471-2202/1/1
the internalization process have the same kinetics re-

ported from in vitro studies?

We examined the effect of dermenkephalin, a specific δ-
opioid agonist, in order to mimic the effect of a strong

and constant activation by an agonist, on the distribution

of the δ-opioid receptors, in the dorsal horn of the rat spi-
nal cord. We used a monoclonal anti-idiotypic antibody

(anti-Id mAb) raised against the δ-opioid receptors (10),
and detected by electron microscopic immunocytochem-

istry. In the present work, we demonstrate that δ-opioid
receptor undergo rapid agonist-induced endocytosis in

the CNS.

Results
Light microscopy revealed that the regional distribution

of anti-Id mAb immunoreactivity in control rats receiv-

ing saline solution, was comparable to previous studies

using unoperated rats (10, 11, 12, 13). A high concentra-

tion of immunoreactivity was localized in the superficial

layers of the dorsal horn (Fig. 1a). In addition, labelling

was found around the central canal (layer X) (Fig. 1b),

and in the ventral horn. Ultrastructural study of lamina I

and II showed that immunoreactivity was mainly local-

ized at appositions between two neurites; axo-dendritic

(Fig. 2a) and axo-axonic appositions (Fig. 2b) were not-

ed. Some neurites displayed multiple labelling sites at

appositions with dendrite and/or axon as shown in Fig.

3. We never observed staining directly at the level of a

synaptic differentiation. However, synaptic differentia-

tions were occasionally near or in continuity with sites of

axo-dendritic labelling (Fig. 2a). Occasionally the label-

ling was at the interface between a neurite and a glial

process in laminae I and II of the spinal cord. In all cases,

it was not possible to associate the membrane labelling

with one or the other profile due to the localization of the

labelling strictly in the extracellular space. A few intrac-

ellular labellings were also found, mainly associated with

rough endoplasmic reticulum (RER) and Golgi appara-
tus in the soma of labelled cells (not shown; see 12).

For rats receiving the cocktail of peptidase inhibitors, at

the ultrastructural level we observed a pattern of label-

ling comparable to that described in rats receiving a sa-

line solution (not shown). No visible redistribution of

anti-id mAb immunoreactivity was observed in response

to kelatorphan and thiorphan.

Fifteen minutes after dermenkephalin administration,

the ultrastructural analysis showed a pattern of labelling
quite different from that observed in the control rats in

lamina I. At the level of labelling, the plasma membrane

was noticeably invaginated (Fig. 4a and 4). Most of the

labelling was associated with axon terminals (Fig. 4a).

Dendritic labelling was also found (Fig. 4b) but was less

abundant. The rest of the labelling was associated with

unidentifiable profiles. In lamina II, labelling was associ-

ated with both invaginated and flat plasma membrane.

In sections from the four animals studied after 30 min-

utes of stimulation, immunoreactivity was observed in-

tracellularly. In lamina I, large vesicles (120 nm-150 nm)

were labelled in the cytoplasm close to the plasma mem-

brane (Fig. 4c). Labelled microtubules were also found

(Fig. 4d). No extracellular labelling associated with the
plasma membrane was found in this lamina. In lamina

II, cytoplasmic labellings (mainly labelled vesicles) as

well as membrane labellings not restricted to the invagi-

nated area, were found.

Discussion
In this study, we provide morphological evidence that δ-
opioid receptors are endocytosed in response to der-

menkephalin in vivo. The choice of dermenkephalin as

Figure 1
Light microscopy pictures of the anti-Id mAb immunoreactiv-
ity: In (a) at the level of the dorsal horn in cervical segment of
the spinal cord, the labelling is particularly intense in laminae I
and II as well as at the level of the dorsolateral funiculus. In
(b) at the level of the central canal at the same cervical level,
the immunoreactivity is mostly localized at the level of the
lamina X. Scale bar = 200 µm.
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agonist in this study was determined by the intrinsic

quality of this ligand. Isolated from the skin of the frog

Phyllomedusa sauvagei (14), this natural peptide shows

the highest affinity for the δ-opioid receptor (0.47 nM)

and a selectivity of 4,000-fold greater for the δ- than the

µ-opioid receptors, even when compared to the other

very potent deltorphin I (isolated from the frog Phyl-

lomedusa bicolor, 15) which has an affinity of 0.60 nM

and a selectivity of 3,570 fold greater δ/µ. Both peptides,
along with the dermorphin and the deltorphin II also iso-
lated from amphibian skin, possess an unique feature

among peptides synthesized by animal cells in having a

D-amino acid residue, providing a very strong resistance

to enzymatic degradation to these ligands. Considering

our experimental conditions, particularly using a single

in vivo injection, the dermenkephalin seemed the most

suitable agonist ligand to specifically stimulate the δ-opi-
oid receptor and provoke a possible internalization of the

receptor due to its affinity as well as to its strong resist-

ance to degradation.

The selectivity of the rat monoclonal anti-idiotypic anti-

body used as primary antibody to recognize the δ-opioid
receptor (anti-Id mAb) in the present report has been

thoroughly investigated in previous studies (10, 12, 13).

First, the anti-Id mAb raised against an anti DADLE (10,

11) totally inhibited the δ-agonist ligand/anti-ligand in-

Figure 2
Electron microscopic localization of the anti-Id mAb labelled
sites in lamina I of the rat spinal dorsal horn after an intrathe-
cal injection of NaCl (Control rat). In (a) immunoreaction
(arrowhead) was found at the interface between a glomeru-
lar C terminal (C), probably from a primary afferent, and a
dendrite (D). Note the presence of synaptic differentiations
(arrows) at proximity of the labelling but not at the level of
the immunoreactivity. The labelling is strictly localized at the
interface between the two neurites and cannot be associated
with one or the other neurite. In (b), immunoreaction local-
ized between two axons (A1 and A2). Scale bars = 500 nm.

Figure 3
Immunoreactions found in lamina I of the spinal dorsal horn
in control rats showing multiple labellings at the level of the
same neurite. Two immunoreactive zones (arrowheads) are
present between an axon (A1) and a dendrite (D), and at the
interface between two axons (A1 and A2). In both cases, no
synaptic differentiation was noted. Labelling is strictly local-
ized to the extracellular space between the two neurites.
Scale bars = 500 nm.

Figure 4
Immunoreactivity observed in the lamina I of the rat dorsal
horn after dermenkephalin stimulation. In (a) and (b) after 15
minutes under dermenkephalin stimulation, labelled axons
(A) or dendrites (D) were observed. Dense immunoreactive
zones (arrowheads) were associated with invagination of the
plasma membrane. In (c) and (d), after 30 minutes stimula-
tion, immunoreactivity was found in the cytoplasm of the
neurites. Labelling was associated with large vesicles close to
the plasma membrane (c). Labelled microtubules were also
found (d). Scale bars = 500 nm.
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teraction, showing a good anti-idiotypic activity. Second,

it was able to label the δ-opioid receptor expressed by the
NG 108-15 cell line and inhibited 3H-DADLE binding to

this same cell line. The anti-Id mAb was also able to pre-
cipitate a 52,500 Da molecule in the NG 108-15 cells.

Third, in rat spinal cord (12), we found that preincuba-

tion of fixed tissue with specific δ-opioid ligands (DA-

DLE, Met-enkephalin, dermenkephalin and naltrindole

at 10-9 M) totally prevented the antibody labeling, show-

ing a good competition between ligands and the anti-Id

mAb. Fourth, we also found previously in rat spinal cord

that anti-Id mAb has an hundred-fold greater affinity for

δ-opioid receptors than µ-opioid receptors (12). Taken
together, these data show that anti-Id mAb is a reliable

tool to specifically detect the δ-opioid receptor using im-

munocytochemical techniques.

In the present study, we found in our control group the

same pattern of labelling seen by earlier studies in unop-

erated rats (10,11,12) suggesting that saline injection, at

the level of the spinal cord, does not provoke a visible re-

distribution of the δ-opioid sites at the plasma mem-
brane. No labelling associated with an invaginated

plasma membrane was found in our experimental con-

trol rats.

In rats receiving the cocktail of peptidase inhibitor (i.e.

without dermenkephalin), no modification of the δ-opio-
id receptor distribution was noted compared with our

control rats (receiving only NaCl). A previous study

showed that kelatorphan in addition to blocking the deg-

radation of the exogenous peptide by suppressing the

aminopeptidase activity, markedly increased the sponta-

neous release of endogenous Met-enkephalin in vivo and

in vitro (16). Thiorphan is a potent enkephalinase inhib-

itor (17). Nevertheless, it seems that under our experi-

mental conditions, even if more enkephalin was released

by the kelatorphan, and this enkephalin was selectively

protected from degradation by thiorphan, no receptor
endocytosis was observed in response to endogenous

enkephalin. However, no nociceptive stimulation was

applied in our protocol, and we therefore can not exclude

the possibility that insufficient enkephalin was released

to provoke the internalization of the δ-opioid receptor.
Another hypothesis poses the question of whether the in-

ternalization process is agonist-selective. In a study car-

ried out in vivo on guinea pig ileum (18), the authors

showed a rapid endocytosis of the µ-opioid receptor in
neurons in response to etorphine stimulation but not af-

ter morphine administration. This shows that using a

high-affinity agonist such as morphine, it is not possible

to trigger the endocytosis process. The authors suggest

that morphine has low intrinsic activity at µ-opioid re-
ceptor compared for instance to the lower affinity µ ago-
nist [D-Ala2,N-MePhe4,Gly5-ol]enkephaline (DAMGO)

which is able to trigger an internalization process. This

differential agonist-selective response for the same re-

ceptor could participate in mechanisms regulating cellu-

lar adaptation to ligands. We do not know if endogenous

enkephalins are able to induce the endocytosis of δ-opio-
id receptors in vivo. A recent study carried out on organ-

otypic cultures and neuromuscular preparations,

demonstrated a possible internalization process of µ-
opioid receptor by endogenously released enkephalins

after electrical stimulation (19). Our data presented here

show clearly that without any kind of stimulation the en-

dogenously released enkephalins (even protected by

enkephalinase inhibitors) were not able to induced an in-

ternalization of the δ-opioid receptors in the rat spinal
cord. Nevertheless, a more specific study should be con-

ducted in order to answer this question.

By contrast, application of dermenkephalin induced an

internalization of the δ-opioid receptor within 30 min-

utes. Dermenkephalin is markedly increased in potency

in the presence of peptidase inhibition -more than one

hundred fold with a cocktail of bacitracin, bestatin, and

captopril- as in Kramer's study (20), and to a greater ex-
tent with kelatorphan and thiorphan as used in the

present study. This suggests that the effect observed after

dermenkephalin application, associated with the pepti-

dase inhibition, is probably stronger than the potency of

dermenkephalin alone. It seems that the δ-opioid recep-
tor was internalized to a greater extent in the lamina I

than in the deeper layers. This could be due to a gradient

of diffusion in the tissues of dermenkephalin.

Our results show a majority of labelling associated with

axons, confirming the reports that δ-opioid receptors
mainly have a presynaptic localization in the dorsal horn

of the rat spinal cord (12, 21, 22, 23). On the other hand,

association of labelling with a dendrite is consistent with

the existence of a postsynaptic δ-receptor population in
lamina I and II. This is in agreement with data obtained

after unilateral dorsal rhizotomy which showed residual
and presumably postsynaptic δ sites (21).

We cannot exclude the possibility that labelled vesicles

found in the cytoplasm after 30 minutes of stimulation,

may correspond to receptors in the process of expression

to the plasma membrane. Studies using direct antibodies

raised against the δ-opioid sites has shown immunoreac-

tivity mostly associated with large dense core vesicles in

the normal rat dorsal horn (22, 23). Intracellular label-

ling was also found in our control rats but the association

of labelling was mainly with RER and Golgi apparatus in

soma, probably corresponding to receptors in the proc-

ess of synthesis or recycling. This observation confirms

findings described in our recent study where somatic la-

belling was detected (13). Also, a few labelled vesicles

have been outlined in our previous study (12), but the

frequency of this association was slight and not compa-
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rable with those described in the present study after

stimulation by dermenkephalin. The differences found

in the distribution of the labelling (membrane labelling

versus intracellular labelling) between our study and the
direct antibody study (23) may be due to the intrinsic

characteristic between an anti-idiotypic antibody raised

against the binding site of the receptor and a direct anti-

body recognizing a fragment of the receptor. Taken to-

gether, the data suggest that immunoreactive vesicles

found in our study are the result of an internalization of

the δ-opioid receptors in response to the stimulation by

dermenkephalin.

Our results indicate that δ-opioid receptors undergo rap-
id agonist-regulated endocytosis which is similar to that

exhibited by a variety of peptide hormones and growth

factors (24, 25) as well as certain G protein-coupled re-

ceptors, like β-adrenergic receptors (4), neurotensin re-
ceptors (26), or substance P receptors (27). In adrenergic

receptors, which have been characterized in detail, rapid

endocytosis appears to be required for resensitization of

receptors following agonist-induced phosphorylation
(28). For opioid receptors, the fate of the internalized re-

ceptors is still uncertain. In vivo studies have shown that

[3H] lofentanyl, a mu agonist, is internalized in axon ter-

minals of rat vagus nerve and transported retrogradely in

the nodose ganglion (29). A more recent study carried

out in rat spinal cord slices found a possible internaliza-

tion of µ-opioid receptor after stimulation by DAMGO

(30). In vitro studies carried out on NG108-15, a neuro-

hybrid cell expressing δ-opioid receptors, showed inter-
nalization after the application of opioid agonists in bath

medium, like DADLE or etorphin (9, 31). The internal-

ized receptors are then compartmentalized in particular

into lysosomes and Golgi apparatus (32). More recently,

in vitro studies carried out on δ-opioid receptors,
showed that following a rapid internalization in response

to an agonist stimulation, the endocytosed receptors

were recycled back to the plasma membrane (33). It

seems that the internalization/recycling process is a nec-

essary step in the resensitization of the receptor. In vivo,

due to the current experimental conditions, the fate of

internalized receptors remains to be examined.

Our findings demonstrate that dermenkephalin, after in

vivo administration, can induce an internalization of the

δ-opioid receptor at the level of the spinal cord. The ef-
fect of the reduction of receptor number at the plasma

membrane might be a rapid decrease of the physiological

response to the stimulus. These results bring an impor-

tant confirmation that data obtained in an in vitro sys-

tem for G protein-coupled receptor internalization (3)

are relevant to the CNS in vivo. The consequences on re-

ceptor expression (recycling and/or degradation) remain

to be established.

Materials and methods
Experiments were performed on twelve male 200-300

gm Wistar rats, housed in controlled environmental con-

ditions (22 ± 1°C, 12 h alternate light-dark cycles, food
and water ad libitum) for at least one week before being

used for the experiments. Three groups of four animals

were used: two groups received dermenkephalin and one

control group received 0.9% NaCl. Two additional rats

received a cocktail of peptidase inhibitors (i.e. without

dermenkephalin) in NaCl for 15 and 30 minutes to check

if the endogenous enkephalins protected by kelatorphan

and thiorphan could, by themselves, induce receptor in-

ternalization.

Under deep urethane anesthesia (1.5 g kg-1 body weight),

the cisterna magna was opened. A catheter was inserted

intrathecally in the subarachnoid space to the level of the

fourth or fifth cervical segment. The two experimental

groups received intrathecally 10 µl of a mixture contain-

ing 10 µM of thiorphan and 20 µM of kelatorphan (to de-

lay the degradation of the peptide ligand) and 10 µM of

dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-
NH2, Sigma, a selective δ agonist (14, 34)), in 0.9% NaCl.

Control rats received 10 µl 0.9% NaCl. A few minutes af-

ter injection, the catheter was gently removed. Fifteen or

30 minutes after the intrathecal injection, the rats were

perfused with 100 ml of 0.9% NaCl containing 0.1% so-

dium nitrite as washing solution followed by about 800

ml of fixative containing 4 % paraformaldehyde in Sö-

rensen buffer (0.1 M, pH 7.4). The procedure for the ul-

trastructural localization of δ-opioid receptors was
carried out as previously described (12). Briefly, trans-

verse sections of cervical and thoracic cord (50 µm) were

cut with a vibratome. A rat monoclonal anti-idiotypic an-

tibody (anti-Id mAb; 8 mg/ml;), generated against an

anti- D-Ala2-D-Leu5-Enkephalin (DADLE) antibody and

displaying affinity for δ-opioid receptors (10, 12), was
used as the primary antibody. The sections were incubat-

ed with the anti-Id mAb at 1:500 dilution in Sörensen

buffer containing 3% normal sheep serum overnight at

4°C, followed by an incubation with biotinylated anti-rat
IgG (1:200 dilution for 1 hour, Vector Laboratories) and

then with avidin-biotin-horseradish peroxidase complex

(ABC-HRP, Vector Laboratories) for 1 hour. After rins-

ing, the peroxidase activity was revealed with 3,3'-diami-

nobenzidine (Sigma, 15 mg/50 ml Tris-HCl in the

presence of 0.01% hydrogen peroxide). Finally, the sec-
tions were postfixed with 2% osmium tetroxide, dehy-

drated and flat embedded in araldite. Semithin and

ultrathin sections were cut and contrasted with lead cit-

rate and examined with a JEOL X100 electron micro-

scope.
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