Skip to main content
Figure 7 | BMC Neuroscience

Figure 7

From: Neural mechanisms of interstimulus interval-dependent responses in the primary auditory cortex of awake cats

Figure 7

A: Scheme for a sequence of EPSPs and IPSPs (broken curves) in the AI neuron elicited by a single afferent stimulation (based on [27]). Temporal interaction between the PSPs may form four phases (solid curves) in the following order: fast excitatory (FE), fast inhibitory (FI), slow excitatory (SI), and slow inhibitory (SI) periods. Numerals represent latency-to-peak (mean ± SD). Identical time scale is applied to A-C. B: Predicted firing responses (vertical lines) elicited by paired stimuli of various ISI. When the 2nd stimulus is given during period FE (ref., A; same as followings) (-1), it would readily elicit firing responses. However, the discharge clusters elicited by the 1st and 2nd stimulus may merge together so that stimulus-locking responses, if any, would be weak. When the 2nd stimulus is given during period FI (-2) or SI (-3), it would hardly elicit firing responses and, consequently, stimulus-locking responses. When the 2nd stimulus is given during period FE (-4), it would readily elicit firing responses. The discharge clusters elicited by the 1st and 2nd stimulus may be clearly separated each other by period FI leading to intense stimulus-locking responses. C: The tMTF that derived from the prediction in B (broken curve) and the tMTF that was schematically drawn from the data of the synchronization type with band-pass tMTF (solid curve; based on Table 1). Regions α-δ correspond to those in Figure 1A-1. Enhancement of GABAA-ergic inhibition may shift the FI-SE transition point afterward (A, horizontal arrow) thus prolonging β-γ border (C, horizontal arrow).

Back to article page