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Abstract
Background: The effect of neurotrophic factors in enhancing stroke-induced neurogenesis in the
adult subventricular zone (SVZ) is limited by their poor blood-brain barrier (BBB) permeability.

Intranasal administration is a noninvasive and valid method for delivery of neuropeptides into the
brain, to bypass the BBB. We investigated the effect of treatment with intranasal transforming
growth factor-β1 (TGF-β1) on neurogenesis in the adult mouse SVZ following focal ischemia. The
modified Neurological Severity Scores (NSS) test was used to evaluate neurological function, and
infarct volumes were determined from hematoxylin-stained sections. Terminal deoxynucleotidyl
transferase-mediated dUTP nick end labeling (TUNEL) labeling was performed at 7 days after
middle cerebral artery occlusion (MCAO). Immunohistochemistry was used to detect
bromodeoxyuridine (BrdU) and neuron- or glia-specific markers for identifying neurogenesis in the
SVZ at 7, 14, 21, 28 days after MCAO.

Results: Intranasal treatment of TGF-β1 shows significant improvement in neurological function
and reduction of infarct volume compared with control animals. TGF-β1 treated mice had
significantly less TUNEL-positive cells in the ipsilateral striatum than that in control groups. The
number of BrdU-incorporated cells in the SVZ and striatum was significantly increased in the TGF-
β1 treated group compared with control animals at each time point. In addition, numbers of BrdU-
labeled cells coexpressed with the migrating neuroblast marker doublecortin (DCX) and the
mature neuronal marker neuronal nuclei (NeuN) were significantly increased after intranasal
delivery of TGF-β1, while only a few BrdU labeled cells co-stained with glial fibrillary acidic protein
(GFAP).

Conclusion: Intranasal administration of TGF-β1 reduces infarct volume, improves functional
recovery and enhances neurogenesis in mice after stroke. Intranasal TGF-β1 may have therapeutic
potential for cerebrovascular disorders.
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Background
Neurogenesis persists in the mammalian subventricular
zone (SVZ) throughout adulthood. Under physiological
conditions, neural stem cells from the SVZ migrate to the
olfactory bulb through the rostral migratory stream (RMS)
and differentiate into granule and periglomerular neurons
[1]. Several studies have shown that stroke can induce
neurogenesis in the adult SVZ [2,3]. Growth and neuro-
trophic factors, usually administered by the invasive
intracerebral route, have been shown to enhance neuro-
genesis after stroke [4]. This suggests that they have the
ability to modify endogenous neural stem cells and their
potential for self-repair after ischemia.

Although neurotrophic factors contribute to adult neuro-
genesis, it is difficult for these large peptides (5–30 kDa)
to be transported across the blood-brain barrier (BBB)
into the central nervous system (CNS) [5]. Intracerebrov-
entricular (ICV) and intraparenchymal administration are
not clinically practical because of the diffusion limita-
tions, invasiveness, cost and safety concerns [5]. Intrana-
sal administration of growth factors provides an effective,
non-invasive method for bypassing the BBB to deliver
drugs to the brain along the olfactory and trigeminal neu-
ral pathways [5,6]. One recent study has demonstrated
that intranasal fibroblast growth factor-2 (FGF-2) or
heparin-binding epidermal growth factor-like growth fac-
tor (HB-EGF) increase neurogenesis in the normal adult
mouse brain [7], but the effect of intranasal neurotrophic
factors on neurogenesis in animals after stroke has not
been investigated.

Transforming growth factor-β1 (TGF-β1) is a versatile
cytokine capable of modulating multiple functions, such
as cell growth and differentiation, inflammation and cell
repair [8-10]. It also has been shown to protect neurons
from various injuries, including hypoxia/ischemia, excito-
toxic injury and neurotoxins [11-13]. Even though endog-
enous TGF-β1 expression can be up-regulated following
stroke [14], ischemia-mediated elevation of TGF-β1 is
insufficient and transient [15]. Whether or not TGF-β1
plays a role in the regulation of neurogenesis after brain
ischemic damage remains unknown. As a peptide with
large molecular weight and short plasma half-life [16],
exogenous TGF-β1 cannot cross the intact BBB and may
cause organ fibrosis following intravenous injection
[17,18]. Intrathecal administration of TGF-β1 in mice or
overexpression of TGF-β1 in the CNS in a transgenic
mouse model affect the cerebrospinal fluid circulation,
resulting in communicating hydrocephalus [19,20].

Our previous studies demonstrated that intranasal TGF-
β1 enters the CNS where it alters gene expression [21].
Intranasal insulin-like growth factor-1 (IGF-1) has been
reported to reduce infarct volume after middle cerebral

artery occlusion (MCAO) and improve functional recov-
ery [22,23]. In this study, we investigated the effects of
intranasal TGF-β1 on infarct volume and neurogenesis in
the adult mouse SVZ following focal cerebral ischemia.

Results
TGF- 1 improves neurological functional outcomes
To evaluate the neurological functional outcomes of TGF-
β1 treatment, we applied the modified Neurological Sever-
ity Scores (NSS) test. No significant differences in NSS
between control and TGF-β1 groups were observed before
MCAO. All animals subjected to MCAO showed severe
behavior deficits 1 day after ischemia, and there was a pro-
gressive improvement over time until 28 days after insult.
However, TGF-β1-treated mice had significantly lower NSS
at days 4, 7, 14, 21 and 28 after stroke, compared with the
saline-treated group (P < 0.05) (Fig. 1).

TGF- 1 reduces infarct volume after MCAO
The infarct volumes measured by hematoxylin-stained
sections are shown in Fig. 2.Quantitative assessment of
infarct size revealed a significant reduction in infarct vol-
ume in mice receiving TGF-β1 compared to the control
group at days 7, 14, 21 and 28 after MCAO (P < 0.05).

TGF- 1 decreases cell death after MCAO
Terminal deoxynucleotidyl transferase-mediated dUTP
nick end labeling (TUNEL) staining was preformed to
confirm the antiapoptotic effect of TGF-β1. At 7 days after
MCAO, a large number of TUNEL positive cells with con-
densed nuclei were observed in the lesioned striatum of

Modified Neurological Severity Scores (NSS)Figure 1
Modified Neurological Severity Scores (NSS). 
Improved NSS were shown in mice treated with TGF-β1 (n 
= 4) than in control groups (n = 6) after middle cerebral 
artery occlusion (MCAO). Data are presented as mean ± 
SEM. *P < 0.05 vs. control.
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the control groups (Fig. 3A), whereas TGF-β1 treated mice
had significantly less TUNEL-positive cells in the ipsilat-
eral striatum (Fig. 3B). Quantitative analysis showed an
~42 % of reduction of the number of TUNEL-positive cells
after intranasal administration of TGF-β1 (Fig. 3C).

TGF- 1 increases BrdU- labeled cells in SVZ and striatum
To determine whether TGF-β1 affects the amounts of pro-
genitors in the SVZ, bromodeoxyuridine (BrdU), the thy-
midine analog incorporated into the DNA of dividing
cells during S-phase was used to label dividing cells.
Quantification of BrdU incorporated cells in the ipsilat-
eral SVZ revealed that BrdU-labeled cells increased tempo-
rally, peaking at day 7 after stroke and declined thereafter.
On day 7 post-ischemia, significantly more cells were
labeled with BrdU in the SVZ of TGF-β1 -treated mice (Fig.
4B) than in that of the control mice (Fig. 4A). Significant
differences were also observed between the two groups at
days 14, 21 and 28 after MCAO (P < 0.05). Moreover, the
number of BrdU labeled cells in the SVZ stabilized after
day 21 with numerous BrdU-immunopositive cells

present at 28 days after intranasal administration of TGF-
β1 (Fig. 4C). Similar BrdU labeling was observed in the
injured striatum of both groups. However, in the ipsilat-
eral striatum at 7 days after surgery, intranasal TGF-β1
gave rise to more BrdU-positive cells (Fig. 4E) compared
with saline-treated animals (Fig. 4D). Mice treated with
TGF-β1 showed markedly increased numbers of BrdU-
labeled cells at each time point, while the number of
BrdU-positive cells remained at basal level in the control
group (P < 0.05) (Fig. 4F).

TGF- 1 stimulates neurogenesis in ischemic brain
To further ascertain the phenotype of BrdU-labeled cells
in response to TGF-β1, we performed double immunos-
taining with antibodies against BrdU and other specific
cell marker proteins, i.e. doublecortin (DCX), neuronal
nuclei (NeuN) and glial fibrillary acidic protein (GFAP).

Confocal microscopy showed that BrdU immunoreactiv-
ity in ipsilateral SVZ and striatum was associated with the
expression of DCX (Figs. 5A–F), but no BrdU immunopo-

Effects of TGF-β1 on infarct volume at 7, 14, 21 and 28 days after ischemiaFigure 2
Effects of TGF-β1 on infarct volume at 7, 14, 21 and 28 days after ischemia. Intranasal TGF-β1 treatment group (n = 
4) has reduced infarct volume (B) compared to the control group (A) (n = 6) at 7 days after MCAO. Measurement of infarct 
size revealed that intranasal administration of TGF-β1 significantly reduced infarct volume at days 7, 14, 21 and 28 after MCAO 
compared to the saline-treated groups (C). Data are presented as mean ± SEM. *P < 0.05 vs. control.
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sitive cell was double-labeled with NeuN or GFAP at early
metaphase after ischemia in both groups. At day 7 in the
control group, 35 ± 4 % and 41 ± 6 % of BrdU-labeled
cells were co-labeled with DCX in the SVZ and striatum,
respectively. The number of BrdU-DCX double-labeled
cells declined to 21 ± 4 % and 28 ± 5 % at 14 days, respec-
tively (Figs. 5G and 5H). In contrast to the control ani-
mals, almost complete overlap between BrdU and DCX
labeling was found either at 7 days and 14 days in both
regions of TGF-β1 treated mice (Figs. 5G and 5H).

At 28 days following the insult, 76 ± 8 % and 87 ± 11 %
BrdU-incorporated cells expressed NeuN in the SVZ and
striatum after intranasal administration of TGF-β1 (Figs.
6A–G), while in the mice treated with saline, only 12 ± 3
% in the SVZ and 16 ± 2 % in the striatum were co-
expressed NeuN (Fig. 6D). However, there were only a few
BrdU-positive cells co-labeled with GFAP in the control
group (Figs. 6H–J).

Discussion
The major finding of this study is that intranasal adminis-
tration of TGF-β1 reduces infarct volume, improves func-
tional recovery and enhances neurogenesis in the adult
mouse SVZ after transient focal ischemia.

Because the delayed administration of neuroprotective
agents following ischemia is usually ineffective [4], we
adopted early post-ischemia intranasal treatment in this
study. Our data showed that there is a significant reduc-
tion in infarct volume in mice treated with TGF-β1, which
is consistent with previous findings [24]. TUNEL labeling
indicated that ischemia induced DNA degradation was

also decreased after intranasal administration of TGF-β1.
Simultaneously, TGF-β1-treated animals exhibited pro-
gressive improvement on the NSS test compared with con-
trols. All these support the hypothesis of a
neuroprotective role for intranasal TGF-β1 in stroke. In
addition to its function as a neuroprotective agent, TGF-
β1 is a key regulator in development and cell cycle control
[8,25], suggesting that the functional recovery after stroke
may be mediated by some other mechanisms. To our
knowledge, this is the first time that the effect of intranasal
TGF-β1 on neuroprotection and ischemia-induced neuro-
genesis in the SVZ was evaluated.

Adult neurogenesis consists of one or more of the follow-
ing processes, including proliferation, survival, migration
and differentiation [26]. It is known that the number of
BrdU immunoreactive cells in the SVZ increased with a
peak at 7 days after ischemia, and then decreased gradu-
ally [27]. The loss of BrdU-positive cells may be attributed
to dilution of BrdU, apoptosis, and cell migration. In the
present study, we demonstrated that intranasal treatment
with TGF-β1 significantly increased BrdU-labeled cells
both in the SVZ and striatum ipsilateral to the ischemia at
each time point from 7 days after stroke. Despite the sub-
sequent dilution of BrdU-labeling due to continued divi-
sion or death of labeled cells, we also observed an increase
in BrdU-positive cells at day 21 and day 28 after MCAO.
Apart from enhancing survival of newborn cells, the
increased number of BrdU-labeled cells in the injured
striatum of TGF-β1-treated animals may result from an
accelerated migration of nascent neurons from SVZ. Dif-
ferent from ICV administration, TGF-β1 may localize high
concentration in the striatum [21] rather than adjacent

TUNEL labeling in ipsilateral striatum at 7 days after MCAOFigure 3
TUNEL labeling in ipsilateral striatum at 7 days after MCAO. TGF-β1 treated mice (n = 4) display less TUNEL-posi-
tive cells (B) than control groups (n = 6) following brain ischemia. Quantitative analysis showed reduction of the number of 
TUNEL-positive cells after intranasal administration of TGF-β1 (C). Scale bars = 20 μm. Data are presented as mean ± SEM. *P 
< 0.05 vs. control.
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SVZ after intranasal administration, and lead to enhanced
migration from SVZ into ischemic region. As expected,
double immunostaining showed that after treatment with
TGF-β1, most BrdU-labeled cells were co-labeled with
DCX, a microtubule-associated protein expressed in
migrating neuroblasts, which confirmed the previous
assumption. Furthermore, we found an increased number
of BrdU/NeuN double-labeled cells in the SVZ and
affected striatum of TGF-β1 treated group at the anaphase
after stroke, whereas only a few cells were GFAP positive,
which suggest that intranasal administration of TGF-β1
also promoted progenitor's differentiation towards a neu-

ronal lineage. Taken together, above findings indicate that
stroke-induced neurogenensis is facilitated after intrana-
sal administration of TGF-β1.

Endogenous TGF-β1 is distributed in the proliferative
zone, and its two receptors TβRI, TβRII are expressed by
migrating neurons and radial glia [28]. Recently, we
reported that intranasal administration of TGF-β1 may
exert its biological effects by regulating gene expression of
TβRI and TβRII, but did not affect mRNA level of TGF-β1
itself, suggesting that the enhanced neurogenesis by TGF-
β1 might be mediated through its receptors [21]. It is

Enhancement of BrdU incorporation by intranasal administration of TGF-β1 in adult mouse brain after MCAOFigure 4
Enhancement of BrdU incorporation by intranasal administration of TGF-β1 in adult mouse brain after 
MCAO. Some BrdU-immunopositive cells were detected in the SVZ (A) and the striatum (D) of the control groups at 7 days 
after focal cerebral ischemia. BrdU-labeled cells were increased in the SVZ (B) and the striatum (E) by TGF-β1 intranasal treat-
ment (n = 4) at 7 days after focal cerebral ischemia. Quantitative analysis showed that intranasal administration of TGF-β1 sig-
nificantly increased the number of BrdU immunopositive cells in the SVZ (C) and the striatum (F) at 7, 14, 21 and 28 days after 
MCAO compared with that in the control groups (n = 6). Scale bars = 15 μm. Data are mean ± SEM. * P < 0.05 vs. control.
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known that neurogenesis is linked to the cell cycle, and
neural stem cells may assume their particular neuronal or
glial fates by exiting the cell cycle [29]. In addition, mod-
ification of molecular morphogens and signals in the
microenvironment of developing brain affects stem cell
survival and differentiation [30]. TGF-β1 promotes exit
from the cell cycle exit by upregulating the expression of
the cell cycle protein, p21 [25]. Exogenous administration
of TGF-β1 may interact with the endogenous system [31],
upregulate cell adhesion molecule (CAM) expression
[32], increase the potency of other neurotrophic factors
involved in neurogenesis [33], modulate their action, and
affect the signaling of classic neurotrophins [34], and thus

enhance stroke-induced neurogenesis. The exact
mechamisms for the effects of TGF-β1 on neurogenesis are
still remain to be proven.

In concert with our results, a recent report showed that
TGF-β1 also increased neurogenesis both in the hippoc-
ampal dentate gyrus of the adrenalectomized rats and in
neural stem cells cultures even at physiological concentra-
tions [35]. Interestingly, some data from in vivo and/or in
vitro studies indicate an adverse role of TGF-β1 in regulat-
ing neurogenesis. Wachs et al. reported that TGF-β1
induced a long-term inhibition of neurogenesis in the lat-
eral ventricular wall and the dentate gyrus after 7 days of
ICV infusion to adult female Fischer-344 rats [36]. Buck-
walter et al. observed that chronic overproduction of TGF-
β1 also inhibited age-related neurogenesis in the hippoc-
ampus of aged transgenic mice [37]. These discrepancies
may be related to the dose of TGF-β1. In contrast to other
neurotrophins, TGF-β1 has been shown to produce a
marked effect in a concentration-dependent manner. In
developing cortex, cell migration was promoted by TGF-
β1 at low concentrations whereas at high concentrations
it impaired migration [31]. The decision of whether a
community of progenitors undergoes predominantly neu-
rogenesis or apoptosis is dependent on the concentration
of TGF-β1 [38]. It is likely that the effect of TGF-β1 on neu-
rogenesis is also dose-dependent, related to the concentra-
tion achieved in the brain and also to the period of time
that it remains elevated.

As a non-invasive method which bypasses the BBB, intra-
nasal administration is an alternative drug delivery strat-
egy for targeting the brain [6]. Using this method,
neuropeptides can be delivered to the brain directly from
the nasal cavity for the time and treatment period needed.
Two possible mechanisms shown to directly deliver drugs
from the nasal mucosa to the brain along the neural path-
way are the extracellular and the intracellular routes.
Extracelluar transport along perineuronal and perivascu-
lar channels has been proposed to explain delivery of
drugs to the brain within minutes [5,6], whereas intracel-
lular delivery requiring internalization of the drug within
the neurons followed by axonal transport takes more than
a few hours for drug distribution within the brain [39].
We previously reported that TGF-β1 concentrations were
significantly increased in several brain regions within 30
minutes after intranasal administration, while no increase
was detected in the plasma and peripheral organs, sug-
gesting that intranasal TGF-β1 is mainly transported into
the CNS via extracellular neuronal pathways. Moreover, it
was observed that the concentration of TGF-β1 following
nasal delivery was sustained for at least 6 hours in some
brain regions, such as striatum, thalamus, hippocampus
and cortex, suggesting long-term stability of TGF-β1 tissue
concentration when given via the nasal route [21]. Thus,

BrdU and DCX expression in adult mouse brainFigure 5
BrdU and DCX expression in adult mouse brain. Dou-
ble immunofluorescence staining show most of BrdU-immu-
noreactive cells in the ipsilateral SVZ (A-C) and striatum (D-
F) co-labeled with DCX after intranasal administration of 
TGF-β1 (n = 4) at 14 days following stroke. Quantitative data 
of BrdU and DCX-immunoreactive cells in the ipsilateral SVZ 
and striatum of TGF-β1 treated groups at 14 days after 
MCAO are shown in (G) and (H), respectively. Scale bars = 
25 μm in A-C; 20 μm in D-F. Data are mean ± SEM. * P < 
0.05 vs. control.
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intranasal administration of TGF-β1 represents a promis-
ing modality for facilitating neuroprotection, neurogene-
sis and recovery of function after stroke. Whether direct
neuroprotection, neurogenesis, or both contribute to the
reduction of infarct volume and the improvement in neu-
rological function requires future investigation.

Conclusion
Our study shows that neuroprotection, neurogenesis in
the SVZ and functional recovery of the adult mouse brain

are enhanced by intranasal TGF-β1 and may contribute to
long-term repair following brain ischemia. Intranasal
TGF-β1 may be an effective strategy for treating cerebrov-
ascular disorders.

Methods
Focal cerebral ischemia procedure
Animal experiments were approved by the Animal Care
Committee (Institute of Science and Technology, Jiangsu
Province, China). All procedures were performed under

Double immunofluorescence staining for BrdU, NeuN and GFAPFigure 6
Double immunofluorescence staining for BrdU, NeuN and GFAP. The majority of BrdU-incorporated cells expressed 
NeuN in the ipsilateral SVZ (A-C) and striatum (E-G) at 28 days after stroke while only a few BrdU-positive cells colabeled 
with GFAP (H-J). Intranasal administration of TGF-β1 increased the number of BrdU and NeuN-immunoreactive cells in the 
ipsilateral SVZ and striatum (D) at 28 days after stroke. Scale bars = 15 μm in A-C; 10 μm in E-J. Data are mean ± SEM. * P < 
0.05 vs. control.
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the guideline published in the NIH guide for the Care and
Use of Laboratory Animals (National Institutes of Health
Publication No. 85-23, revised 1985). Every effort was
made to minimize pain and discomfort.

Adult male C57BL/6 mice (n = 50) weighing 25–30 g
(Model Animal Research Center of Nanjing University)
were used for all experiments. Mice were anesthetized
with chloral hydrate (10 %, 400 mg/kg, intraperito-
neally). Stroke was induced by intraluminal middle cere-
bral artery occlusion (MCAO) with a monofilament
according to Zea Longa [40]. In brief, the right common
carotid artery, the right external carotid artery and the
internal carotid artery were exposed via a midline inci-
sion. A 8-mm long 8-0 monofilament, with its tip
rounded by heating near a flame, was advanced from the
external carotid artery stump into the right internal
carotid artery to occlude the origin of the right middle cer-
ebral artery. Ninety minutes after occlusion, the filament
was withdrawn to allow reperfusion. The rectal tempera-
ture was maintained at 37.0–37.5°C with a heating pad
throughout the surgical procedures.

Intranasal administration
Animals were randomly divided into control (n = 30) and
TGF-β1 groups (n = 20). Recombinant human TGF-β1
(PeproTech Inc, USA) was dissolved in normal saline to a
final concentration of 50 μg/ml. Intranasal administra-
tion was performed as described previously with some
modifications [22,23]. Two hours after MCAO, mice were
re-anesthetized with chloral hydrate (10 %, 200 mg/kg,
intraperitoneally) and placed on their backs. A total vol-
ume of 20 μl solution per mouse containing 1 μg TGF-β1
or saline was given as 2 μl drops into the left and right
nares, alternating sides at 2 minutes intervals over a
period of 20 minutes. The mouth and the opposite naris
were shut during the administration. A second series of
doses was given 24 hours after initiating MCAO.

BrdU administration
BrdU (50 mg/kg, ip; Sigma, St. Louis, MO, USA) was dis-
solved in saline and given intraperitoneally twice daily at
8 hour intervals for three consecutive days, starting 24
hours after initiating MCAO.

Behavioral testing
Each mouse was subjected to the NSS test to evaluate neu-
rological function before and at 1, 4, 7, 14, 21, 28 days
after the onset of MCAO [41], and the scores were assessed
by another investigator who was unaware of the experi-
mental groups. NSS is a functional evaluation composite
of motor, sensory, reflex and balance tests. The score was
graded from 0 to 18 (normal score, 0; maximal deficit
score, 18). Severe injury is indicated by a score of 13 to 18,
moderate injury 7 to 12, and mild injury 1 to 6. In the

severity scores of impairment, one point is scored for the
inability to perform the task or lacking proper response
for a given reflex.

Tissue preparation and infarct volume measurement
At 7, 14, 21 or 28 days after stroke, mice (n = 6 in control
group and n = 4 in TGF-β1 group at each time point) were
deeply anesthetized with chloral hydrate and perfused
transcardially with 150 ml saline, followed by 150 ml 4 %
paraformaldehyde in 0.01 M phosphate-buffered saline
(PBS) at 4°C. Brains were post-fixed in 4 % paraformalde-
hyde for 6 hours and cryoprotected in 30 % sucrose solu-
tion overnight. Twenty micrometer coronal sections,
spaced 200 μm apart, encompassing the SVZ were cut
with a cryostat and stored at -80°C.

Every 40th coronal section from total brain was stained
with hematoxylin. The infarct area, and the contralateral
intact hemispheric area were measured by a blinded
observer using the NIH Image program. The infarct vol-
umes were calculated by multiplying the interval thick-
ness and presented as a percentage of the intact
hemisphere, as described previously [42].

TUNEL labeling
The brains were carefully removed at 7 days after MCAO.
Five 20 μm coronal sections per brain were cut on a cryo-
stat. TUNEL staining was preformed using a Roche assay
kit (In situ Cell Death Detection Kit; Roche, USA), accord-
ing to the manufacturer's protocol.

Immunohistochemistry
Five to seven DAB-stained, 20 μm sections per animal
were taken to evaluate the number of BrdU-labeled cells.
For BrdU immunostaining, brain sections were treated
with 50 % formamide, 280 mmol/L NaCl and 30 mmol/
L sodium citrate at 65°C for 2 hours, incubated in 2 mol/
L HCl at 37°C for 30 minutes, rinsed in 0.1 mol/L boric
acid (PH 8.5) at room temperature for 10 minutes. After
incubating in 3 % H2O2 for 30 minutes, sections were
blocked in PBS containing 2 % goat serum, 0.3 % Triton
X-100, and 0.1 % bovine serum albumin for 1 hour, fol-
lowed by incubation with mouse monoclonal anti-BrdU
antibody (1:800; Sigma) at 4°C overnight. Biotinylated
goat anti-mouse secondary antibody (1:500; Jackson
ImmunoResearch, West Grove, PA, USA) was applied for
2 hours at room temperature, then washed and incubated
with peroxidase-conjugated streptavidin solution (1:500;
Jackson ImmunoResearch, West Grove, PA, USA) for 30
minutes. Reaction product was detected with 3, 3'-diami-
nobenzidine- tetrahydrochloride (DAB, Sigma).

For double immunofluorescent staining, sections were
pretreated for BrdU immunohistochemistry as described
above. The following primary antibodies were used in this
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study: mouse monoclonal anti-BrdU antibody (1:800;
Sigma), sheep polyclonal anti-BrdU antibody (1:800,
Biodesign, Saco, ME), mouse monoclonal anti-NeuN
antibody (1: 600, Chemicon, Temecula, CA, USA), guinea
pig polyclonal anti-DCX antibody (1:3000, Chemicon),
mouse monoclonal anti-GFAP antibody (1:800, Chemi-
con). The secondary antibodies were fluorescein isothio-
cyanate-conjugated goat anti-mouse IgG (1:100, Jackson
ImmunoResearch), rhodamine-conjugated donkey anti-
sheep IgG (1:100, Jackson ImmunoResearch), Cy3-conju-
gated goat anti-guinea pig IgG (1:100, Jackson Immu-
noResearch). Sections were mounted with Vectashield
Mounting Medium H-1000 (Vector Laboratories, Burlin-
game, CA, USA).

Cell counting
Sections were viewed under high power (200×) on an
Olympus BX51 microscope with Nikon digital camera,
and the images were visualized on a computer monitor.
The numbers of TUNEL-positive cells were counted in the
impaired striatum of each animal. For BrdU-staining, only
the cells with BrdU clearly localized and confined to the
nucleus were considered as BrdU-reactive cells. All of the
BrdU-positive cells in the lateral ventricle wall (SVZ) and
striatum ipsilateral to the injury were counted. Results are
presented as the average number of TUNEL or BrdU-posi-
tive cells per section.

Double-labeled cells with BrdU and a phenotype-specific
marker (DCX, NeuN, or GFAP) in brain sections were
identified using a confocal laser-scanning microscope
(Leica TCS SP2, Germany). Only the cells in which BrdU
staining was strong and clearly distributed throughout the
nucleus were counted. Results are expressed as percent-
ages of BrdU-labeled cells.

Statistical analysis
Values for all animals of each group were averaged and
standard errors of mean (SEM) were calculated for each
endpoint. Statistical analysis was carried out by using two-
way analysis of variance (ANOVA), followed by pairwise
Student's t-test for modified NSS. Infarct volume and cell
numbers comparisons were performed with Student's t-
test. Probability values of < 0.05 were considered signifi-
cant.

Abbreviations
MCAO: middle cerebral artery occlusion; SVZ: subven-
tricular zone; TGF-β1: transforming growth factor β1;
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stream; CNS: central nervous system; BBB: blood-brain
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