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Learning agents, whether natural or artificial, must update
their internal parameters in order to improve their behav-
ior over time. In reinforcement learning, this plasticity is
influenced by an environmental signal, termed a reward,
which directs the changes in appropriate directions. We
model a network of spiking neurons as a Partially
Observed Markov Decision Process (POMDP) and apply
a recently introduced policy learning algorithm from
Machine Learning to the network [1]. Based on comput-
ing a stochastic gradient approximation of the average
reward, we derive a plasticity rule falling in the class of
Spike Time Dependent Plasticity (STDP) rules, which
ensures convergence to a local maximum of the average
reward. The approach is applicable to a broad class of neu-
ronal models, including the Hodgkin-Huxley model. The
obtained update rule is based on the correlation between
the reward signal and local data available at the synaptic
site. This data depends on local activity (e.g., pre and post
synaptic spikes) and requires mechanisms that are availa-
ble at the cellular level. Simulations on several toy prob-
lems demonstrate the utility of the approach. Like most
stochastic gradient based methods, the convergence rate is
slow, even though the percentage of convergence to global
maxima is high. Additionally, through statistical analysis
we show that the synaptic plasticity rule established is
closely related to the widely used BCM rule [2], for which
good biological evidence exists. The relation to the BCM
rule captures the nature of the relation between pre and
post synaptic spiking rates, and in particular the self-regu-
larizing nature of the BCM rule. Compared to previous

work in this field, our model is more realistic than the one
used in [3], and the derivation of the update rule applies
to a broad class of voltage based neuronal models, elimi-
nating some of the additional statistical assumptions
required in [4]. Finally, the connection between Rein-
forcement Learning and the BCM rule is, to the best of our
knowledge, new.
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