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Abstract
Background: Protein kinase C (PKC) is known to be involved in the pathophysiology of
experimental cerebral ischemia. We have previously shown that after transient middle cerebral
artery occlusion, there is an upregulation of endothelin receptors in the ipsilateral middle cerebral
artery. The present study aimed to examine the effect of the PKC inhibitor Ro-32-0432 on
endothelin receptor upregulation, infarct volume and neurology outcome after middle cerebral
artery occlusion in rat.

Results: At 24 hours after transient middle cerebral artery occlusion (MCAO), the contractile
endothelin B receptor mediated response and the endothelin B receptor protein expression were
upregulated in the ipsilateral but not the contralateral middle cerebral artery. In Ro-32-0432
treated rats, the upregulated endothelin receptor response was attenuated. Furthermore, Ro-32-
0432 treatment decreased the ischemic brain damage significantly and improved neurological
scores. Immunohistochemistry showed fainter staining of endothelin B receptor protein in the
smooth muscle cells of the ipsilateral middle cerebral artery of Ro-32-0432 treated rats compared
to control.

Conclusion: The results suggest that treatment with Ro-32-0432 in ischemic stroke decreases the
ischemic infarction area, neurological symptoms and associated endothelin B receptor
upregulation. This provides a new perspective on possible mechanisms of actions of PKC inhibition
in cerebral ischemia.

Background
Protein kinase C (PKC) was discovered almost thirty years
ago by Takai et al [1]. It has since been shown to include
several isoforms, all of which are serine/threonine kinases
[2-4]. The PKC isoforms are divided into three subgroups;
the conventional, the novel and the atypical PKCs
depending on their structure and requirements for activa-

tion [3,5,6]. PKC is activated by a range of different stim-
uli, including growth factors and hormones [5], and it
plays a key role in several cardiovascular diseases such as
stroke and heart failure [7-9].

In previous studies, we have demonstrated that in experi-
mental ischemic stroke and subarachnoid hemorrhage
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(SAH) there is an upregulation of endothelin type B (ETB)
receptors in the cerebral arteries [10,11]. There are two
known endothelin receptors in the vasculature of mam-
mals, the endothelin A (ETA) and endothelin B (ETB)
receptor [12]. The ETB receptors are normally situated on
the endothelial cells, mediating dilatation, but in the case
of SAH and experimental ischemic stroke there is an
upregulation of contractile ETB receptors in the vascular
smooth muscle cells [10,11]. This alteration is also seen in
organ culture of middle cerebral arteries (MCA) [13]. In
both SAH and organ culture this upregulation is attenu-
ated by PKC inhibitors [13-15].

The aim of the present study was to examine if a general
PKC inhibitor, Ro-32-0432, can decrease the ETB receptor
upregulation in MCA and reduce the ischemic infarct vol-
ume after experimental ischemic stroke. Transient middle
cerebral artery occlusion (MCAO) was induced by an
intraluminal filament technique and Ro-32-0432 was
injected intraperitoneally (i.p.) in conjunction with the
occlusion. The Ro-32-0432 treatment decreased the ETB
receptor upregulation, as well as diminished the ischemic
infarct area and improved the neurological status of the
animals. Moreover, immunohistochemistry showed
enhanced expression of ETB receptor protein in the ipsilat-
eral MCA of the control rats. This enhancement was not
seen in the ipsilateral MCA of the Ro-32-0432 treated ani-
mals, which confirms the contractile results.

Results
Middle cerebral artery occlusion
In all included animals, a proper occlusion and reper-
fusion was confirmed by laser-Doppler flowmetry in the
cortex area supplied by the MCA. There was no difference
in blood flow between the control group and the Ro-32-
0432 treated group. Before occlusion MAP, pO2, pCO2,
pH and plasma glucose were measured, and there were no
differences between the groups. The body temperature
usually increases temporarily the first hours after MCA
occlusion [16], a phenomenon confirmed in this study.
There was no difference in weight loss during the reper-
fusion period. All physiological parameters in conjunc-
tion with the operation are summarized in Table 1.

The neurological scores differed between the groups; 3.83
± 0.17 in control group compared to 3.00 in the Ro-32-
0432 treated group (P < 0.05; n = 6 in control group, n =
4 in Ro-32-0432 treated group). For definition of the neu-
rological scoring system, see Table 2.

Infarct volume evaluation
Analysis of the infarct volume after staining with TTC
revealed that treatment with Ro-32-0432 significantly
decreased the size of the ischemic infarct area as compared
to the control group; control: 24.6% ± 1.7% and Ro-32-
0432: 9.1% ± 1.3% (Figure 1, **P < 0.01).

Table 1: Physiological parameters during and after MCAO.

Physiological parameters Control (n = 6) Ro-32-0432 (n = 4)

pO2 (mmHg) 97.2 ± 7.1 91.1 ± 11.5
pCO2 (mmHg) 64.33 ± 4.6 62.2 ± 9.1
pH 7.309 ± 0.032 7.369 ± 0.03
Plasma glucose (mM) 9.78 ± 1.4 10.55 ± 0.7
MAP (mmHg) 98.7 ± 5.3 103 ± 2.5
Temperature during operation (°C) 37.1 ± 0.1 37.1 ± 0.1
Temperature after operation (°C) 38.9 ± 0.2 38.4 ± 0.3
Weight loss (%) 9.9 ± 4.6 9.9 ± 1.6

P > 0.05 between the groups.

Table 2: Neurological scores after MCAO.

Score Interpretation

0 No visible deficits
1 Contralateral forelimb flexion, when hold by tail
2 Decreased grip of contralateral forelimb
3 Spontaneous movement in all directions, but contralateral circling if 

pulled by tail
4 Spontaneous contralateral circling
5 Death
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Myograph experiments
K+-induced contractions did not differ between the con-
trol group and the Ro-32-0432-treated group (1,77 ± 0,18
mN compared to 1,85 ± 0,27 mN).

The contractile response towards sarafotoxin 6c (S6c;
selective ETB receptor agonist) was decreased in the right
MCA of the Ro-32-0432 treated rats compared to the right

MCA of the control rats 24 hours after the occlusion. This
difference was significant at S6c concentrations of 10-8.5 –
10-6.5 M (Figure 2, *P < 0.05). Following S6c administra-
tion, the ETB receptors are desensitized, leaving only ETA
receptors to interact with endothelin-1 (ET-1; ETA/ETB
agonist) [17].

The contractile response towards ET-1 did not differ
between the groups. However, there was a significant
increase in the right MCA compared to the left MCA of the
Ro-32-0432 group. All values are summarized in Table 3.

Immunohistochemistry
In the control group, immunohistochemistry confirmed
an enhanced expression of ETB receptor protein in the
smooth muscle cells of the right MCA after transient
MCAO. This enhancement was abolished in the right
MCAs of the rats treated with the PKC inhibitor Ro-32-
0432. There were no differences in ETB receptor staining
between the left MCAs. n = 3 in all groups, figures are rep-
resentative for the groups (Figure 3).

Discussion
Protein kinase C has long been known to be involved in
the pathophysiology of cerebral ischemia [18]. However,
the underlying mechanisms of its involvement are still
unclear, possibly due to different roles of the PKC iso-
forms in the pathophysiology of the disease [9]. For exam-
ple, PKCδ activation in experimental cerebral ischemia
has proven to be deleterious [19-21], while the PKCγ iso-
form is potentially beneficial [22].

Here we show for the first time that i.p. administration of
Ro-32-0432, an inhibitor known for its PKC selectivity,
decreases the infarct volume and improves the neurologi-
cal score of the rats 24 hours after transient MCAO. Fur-
thermore, the contractile ETB receptor upregulation seen
in the ipsilateral MCA of the control animals is attenuated
by the Ro-32-0432 treatment. It has previously been
shown that there is an enhanced contraction of the pial
vessels overlying the penumbra, which may worsen the
ischemic damage [23]. A normalization of the vascular
responses towards endothelin may contribute to the ben-
eficial outcome of treatment with Ro-32-0432 in the
present animal model of transient MCAO.

The effect of endothelin receptor inhibition in cerebral
ischemia has been widely studied, but the results have not
been conclusive [24-26]. Our group has previously shown
that in addition to an ischemia-induced endothelin recep-
tor upregulation, there is an alteration in the vascular
angiotensin II receptor response after experimental cere-
bral ischemia [27]. This points towards a more general
receptor modification in the affected arteries. Therefore a
specific ET receptor blocker may not be the most useful

Contractile responses to S6c in the RMCA of vehicle or Ro-32-0432 treated rats after MCAOFigure 2
Contractile responses to S6c in the RMCA of vehicle or Ro-
32-0432 treated rats after MCAO. The ischemia resulted in 
S6c induced contractile responses due to ETB receptor 
upregulation, which Ro-32-0432 was able to attenuate. Val-
ues represent means ± S.E.M., n = 4–6 (for details see Table 
3).
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Ischemic infarction volume (% of total brain volume) in rats after MCAO in conjuction with treatment with vehicle (con-trol) or Ro-32-0432Figure 1
Ischemic infarction volume (% of total brain volume) in rats 
after MCAO in conjuction with treatment with vehicle (con-
trol) or Ro-32-0432. The PKC inhibition resulted in signifi-
cantly smaller infarction volumes. Values represent means % 
± S.E.M %, n = 4–6 (**P < 0.01).
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way of treatment, but rather an inhibitor of the pathways
leading to the receptor changes.

We have previously shown that inhibition of the (MAPK)
extracellular-regulated kinase 1/2 (ERK1/2) pathway has a
similar beneficial effect on ET receptor alterations,
ischemic infarction area and neurological score after
MCAO as the PKC inhibition in the present study [28].
This is also seen in organ culture, where the upregulation
of contractile ETB receptors in MCA is attenuated by both
PKC inhibitors and ERK1/2 inhibitors [13,14,29].

Since the ERK1/2 kinase can be phosphorylated and acti-
vated by PKC, this suggests a common intracellular path-
way for these kinases in the cerebral ischemia
pathophysiology. However, further studies are needed to
confirm this connection and to elucidate which of the iso-
forms of PKC that are involved. Moreover, whether the
decrease in cerebral infarct volume is due to PKC inhibi-
tion in the neuronal tissue or an effect of the attenuation
of the ETB receptor upregulation in the arteries remains to
be investigated.

Conclusion
Treatment with the PKC inhibitor Ro-32-0432 reduces the
upregulation of ETB receptors in the ipsilateral MCA 24
hours after transient middle cerebral artery occlusion. In
addition, the ischemic infarction area is decreased and the
neurological status improved by the PKC inhibition.
These results provide new insights into the beneficial
effects of PKC inhibition in cerebral ischemia.

Methods
Middle cerebral artery occlusion
Male Wistar Hannover rats weighing 350–400 g were
obtained from Harlan, Horst, the Netherlands. The ani-
mals were housed under controlled temperature and
humidity conditions with free access to tap water and
food. The experimental procedures were approved by the

University Animal Ethics Committee (M131-03). MCAO
was induced by an intraluminal filament technique, pre-
viously described by Memezawa and colleagues [30].
Briefly, anesthesia was induced using 4.5% halothane in
N2O:O2 (70%:30%). The rats were kept anesthetized by
inhalation of 1.5% halothane through a mask. A filament
was inserted into the right common carotid artery and fur-
ther advanced through the internal carotid artery until it
occluded the right MCA. To confirm a proper occlusion
and subsequently a proper reperfusion of the right MCA,
a laser-Doppler probe (Perimed, Sweden) was fixed on
the skull (1 mm posterior to the bregma and 6 mm from
the midline on the right side), measuring the blood flow
in an area supplied by the right MCA. A polyethylene cath-
eter was inserted into a tail artery for measurements of
mean arterial blood pressure (MAP), pH, pO2, pCO2 and
plasma glucose. A rectal temperature probe connected to
a homeothermal blanket was inserted for maintenance of
a body temperature at 37°C during the operation. There-
after, an incision was made in the midline of the neck and
the right common, external and internal carotid arteries
were exposed. The common and external carotid arteries
were permanently ligated with sutures. A filament was
inserted into the internal carotid artery via an incision in
the common carotid artery, and further advanced until the
rounded tip reached the entrance of the right MCA. The
resulting occlusion was made visible by laser-Doppler
flowmetry as an abrupt reduction of cerebral blood flow
with 75–90%. Immediately after occlusion, the rats were
injected i.p. with either 30 mg/kg Ro-32-0432 dissolved in
0.6 ml dimethyl-sulfoxide (DMSO) or just 0.6 ml DMSO
(control). The rats were then allowed to wake up.

Two hours after occlusion the rats were reanesthetized to
allow for withdrawal of the filament and achieve reper-
fusion. Inclusion criteria were a proper occlusion (> 75%
reduction of regional blood flow) as measured by laser-
Doppler flowmetry. Rectal temperature was measured 30
minutes before occlusion and 1 hour after reperfusion.

Table 3: Contractile properties of the MCAs.

Control Ro-32-0432

RMCA LMCA RMCA LMCA

Emax(%) pEC50 Emax(%) pEC50 Emax(%) pEC50 Emax(%) pEC50

S6c 21 ± 4 8.38 ± 0.30 3 ± 2** 6.81 ± 0.01* 7 ± 2* 7.43 ± 0.59 5 ± 3** 6.89 ± 0.16
ET-1 238 ± 19 7.62 ± 0.14 253 ± 28 7.49 ± 0.13 278 ± 11 7.54 ± 0.09 187 ± 12† 7.72 ± 0.31

Contractile responses to sarafotoxin 6c (S6c) and endothelin-1 (ET-1) in the right and the left MCA 24 hours after MCAO. Emax is expressed as 
percent of K+ induced contractions and pEC50 values represent negative logarithm of the agonist concentration producing half maximum response. 
*P < 0.05, **P < 0.01 compared to control RMCA. †P < 0.05 compared to Ro-32-0432 RMCA.
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The rats were examined neurologically immediately
before they were sacrificed, 24 hours after MCAO, accord-
ing to an established scoring system (Table 2) [31-33].

Infarction volume evaluation
The brains were sliced coronally in 2 mm thick slices, and
stained with 1% 2, 3, 5-triphenyltetrazolium chloride
(TTC) dissolved in physiological saline solution. The size
of the ischemic infarction volume was calculated using

ETB receptor protein in (A) Ro-32-0432 RMCA, (B) control RMCA, (C) Ro-32-0432 LMCA and (D) control LMCAFigure 3
ETB receptor protein in (A) Ro-32-0432 RMCA, (B) control RMCA, (C) Ro-32-0432 LMCA and (D) control LMCA. There was 
an enhanced expression of ETB receptor protein in the smooth muscle cells in the ischemic RMCA (B). Treatment with Ro-32-
0432 abolished this (A). Pictures were taken at 40× magnification.
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the software program Brain Damage Calculator 1.1 (MB
Teknikkonsult, Lund, Sweden). The swelling of the
ischemic hemisphere was approximated by the ratio of
the areas of the two hemispheres in the same slice. The
infarction area values are compensated for this swelling
before being used in the volume calculations. The infarc-
tion volume is calculated by numerical integration of the
ischemic area of each slice using the trapezium rule and is
expressed as percentage of total brain volume in the slices.

Myograph experiments
Mulvany-Halpern myographs (Danish Myo Technology
A/S, Denmark) were used for measurements of the arterial
contractile properties [34,35]. The arteries were cut into
cylindrical segments and the endothelium was removed
mechanically by rubbing it off with a thread. The seg-
ments were mounted on two 40 μm diameter stainless
steel wires and placed in the myographs. One of the wires
was connected to a force transducer attached to an ana-
logue-digital converter unit (ADInstruments, UK). The
other wire was attached to a movable displacement device
allowing adjustments of vascular tension by varying the
distance between the wires. The experiments were
recorded on a computer by use of the software program
Chart™ (ADInstruments). The segments were immersed in
a temperature-controlled (37°C) bicarbonate buffer of
the following composition (mM): NaCl 119; NaHCO315;
KCl 4.6; MgCl2 1.2; NaH2PO4 1.2; CaCl2 1.5 and glucose
5.5. The buffer was continuously gassed with 5% CO2 in
O2, resulting in a pH of 7.4. The arteries were given an ini-
tial tension of 1.2 mN, and were allowed to adjust to this
level of tension for 1 hour. The contractile capacity was
determined by exposure to a potassium-rich (63.5 mM)
buffer with the same composition as the bicarbonate
buffer solution except that NaCl was partly exchanged for
KCl. Dose-response curves for S6c and ET-1 were obtained
by cumulative application (10-12-10-6.5 M). The Emax val-
ues represent the maximum vascular contraction as
response to S6c or ET-1 and were calculated as percentage
of the contractile response towards 63.5 mM K+. The
pEC50 values represent the negative logarithm of the con-
centration which elicits half-maximum response. A mean
value of the segments of each MCA was calculated.

Immunohistochemistry
The MCAs were placed onto Tissue TEK (Gibco, UK), fro-
zen and subsequently sectioned into 10 μm thick slices in
a calibrated Microm HM500M cryostat (Microm, Ger-
many). The primary antibody used was polyclonal rabbit
antirat, diluted 1:100 (AbCam). The secondary antibody
used were donkey antirabbit Cy™3 conjugated (Jackson-
ImmunoResearch, 711-165-152) 1:100, diluted in PBS
with 10% fetal calf serum. The antibody was then detected
at the appropriate wavelength in a confocal microscopy

(Zeiss, USA). Pictures were taken at 40× magnification. As
control, only secondary antibody was used.

Calculations and statistical analyses
All data are expressed as mean values ± S.E.M. n = number
of rats. Statistical analyses were performed with a non-par-
ametric Mann-Whitney test. P < 0.05 was considered sig-
nificant.
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