O
BIVIC Neuroscience BioMed Centa

Methodology article

Recording long-term potentiation of synaptic transmission by
three-dimensional multi-electrode arrays
Maksym V Kopanitsa, Nurudeen O Afinowi and Seth GN Grant*

Address: Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK

Email: Maksym V Kopanitsa - mvk@sanger.ac.uk; Nurudeen O Afinowi - na2 @sanger.ac.uk; Seth GN Grant* - sg3@sanger.ac.uk
* Corresponding author

Published: 30 August 2006 Received: 23 May 2006
BMC Neuroscience 2006, 7:61  doi:10.1186/1471-2202-7-6 Accepted: 30 August 2006
This article is available from: http://www.biomedcentral.com/1471-2202/7/61

© 2006 Kopanitsa et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Multi-electrode arrays (MEAs) have become popular tools for recording
spontaneous and evoked electrical activity of excitable tissues. The majority of previous studies of
synaptic transmission in brain slices employed MEAs with planar electrodes that had limited ability
to detect signals coming from deeper, healthier layers of the slice. To overcome this limitation, we
used three-dimensional (3D) MEAs with tip-shaped electrodes to probe plasticity of field excitatory
synaptic potentials (fEPSPs) in the CAl area of hippocampal slices of 129S5/SvEvBrd and C57BL/6]-
TyrC-Brd mice.

Results: Using 3D MEAs, we were able to record larger fEPSPs compared to signals measured by
planar MEAs. Several stimulation protocols were used to induce long-term potentiation (LTP) of
synaptic responses in the CAIl area recorded following excitation of Schiffer collateral/
commissural fibres. Either two trains of high frequency tetanic stimulation or three trains of theta-
burst stimulation caused a persistent, pathway specific enhancement of fEPSPs that remained
significantly elevated for at least 60 min. A third LTP induction protocol that comprised 150 pulses
delivered at 5 Hz, evoked moderate LTP if excitation strength was increased to 1.5% of the baseline
stimulus. In all cases, we observed a clear spatial plasticity gradient with maximum LTP levels
detected in proximal apical dendrites of pyramidal neurones. No significant differences in the
manifestation of LTP were observed between 129S5/SvEvBrd and C57BL/6)-TyrC-Brd mice with the
three protocols used. All forms of plasticity were sensitive to inhibition of N-methyl-D-aspartate
(NMDA) receptors.

Conclusion: Principal features of LTP (magnitude, pathway specificity, NMDA receptor
dependence) recorded in the hippocampal slices using MEAs were very similar to those seen in
conventional glass electrode experiments. Advantages of using MEAs are the ability to record from
different regions of the slice and the ease of conducting several experiments on a multiplexed
platform which could be useful for efficient screening of novel transgenic mice.

Background 1949, Hebb provided a theoretical framework for this
The dynamically changing strength of connections  hypothesis [4] and in the 1960s this concept gained cru-
between neurones was proposed to be a mechanism for  cial experimental support when it was discovered that
memory formation more than a century ago [1-3]. In  neurones can alter their firing properties upon experienc-
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ing particular patterns of external stimulation, i.e. they
exhibit synaptic plasticity [5]. A classical example of syn-
aptic plasticity is long-term potentiation (LTP) discovered
in the dentate gyrus more than three decades ago [6]. Tra-
ditionally, LTP is defined as a prolonged enhancement of
synaptic responses of a neurone or a neuronal ensemble
after short periods of high-frequency stimulation [7].
Properties of LTP such as permanence, associativity and
input specificity suggested that it could be a physiological
basis of certain types of memory [8-11]. The straightfor-
ward relationship between LTP and memory has recently
been questioned [12], however in the amygdala and hip-
pocampus, learning has been found to involve increases
of the synaptic output [13,14]. As LTP and cognitive func-
tions often rely on common membrane ion channels and
signalling pathways [15-17], in vitro studies of synaptic
plasticity are vital for characterisation of mutant animals
with potential cognitive disturbances [18,19]. Mutant
mice have become a standard tool for dissection of the
molecular basis of LTP especially since pharmacological
reagents are available to only a subset of synapse proteins.
The Genes to Cognition programme aims to systemati-
cally study LTP in 100 mutant mouse lines where compo-
nents of synaptic complexes are disrupted [20]. With large
scale mouse mutagenesis programs now in progress [21],
some with the aim of disrupting all genes in the mouse
genome (European Union Conditional Mouse Mutant
Program) [22], it is essential to have rapid and scalable
tools for studying LTP in hundreds (or perhaps thou-
sands) of mutant mouse lines.

Another problem is the absence of standard experimental
procedures in the LTP field. Most common LTP experi-
ments performed in the synaptic pathway between CA3
and CA1 pyramidal neurones of the hippocampus rely on
a multitude of induction protocols (A. Howell, M. Mar-
shall, S. Grant, manuscript in preparation). Moreover,
information about the position of stimulating and record-
ing electrodes with respect to each other and in relation to
the laminar structure of the hippocampus is lacking in
many reports making their cross-comparison difficult.

Such problems can be at least partially overcome when
multi-electrode arrays (MEAs) are employed [23]. They
have become popular tools for recording spontaneous
and evoked activity from excitable tissues [24-28]. For the
purposes of LTP analysis, an orderly arrangement of MEA
electrodes allows for a precise geometrical assignment of
stimulation and recording sites. Current commercial
hardware permits the operation of several MEA set-ups by
a single computer effectively increasing the output and
minimising the number of animals needed for long-term
LTP experiments. Several reports have demonstrated the
possibility of inducing LTP in hippocampal slices using
MEAs [29-34]. However, no systematic study of different
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induction protocols using MEA technology has yet been
published. Furthermore, in all these studies, planar MEAs
were employed that could not record activity from the
deeper, presumably healthier layers of the slice. In this
study, we present our data on the LTP of extracellular field
potentials recorded by MEAs with three-dimensional tip-
shaped electrodes which allow the recording of larger sig-
nals and injection of stronger currents in slice tissue [35].
We show that there is a gradient of the degree of LTP in
stratum radiatum (SR) of the CA1 area of hippocampal
slices of 129S5/SvEvBrd (129S5) and albino C57BL/6]-
TyrC-Brd (C57) mice. These strains were chosen as they are
mainstays of large scale mouse knockout programmes
[36]. In this work, we test three different LTP-inducing
protocols and investigate sensitivity of LTP to the inhibi-
tion of N-methyl-D-aspartate (NMDA) receptors.

Results

Properties of field excitatory postsynaptic potentials in
CAl area of the hippocampus recorded by 3D MEAs

To record evoked field excitatory postsynaptic potentials
(fEPSPs), we placed 350 uM thick brain slices containing
the hippocampal region over an 8 x 8 3D MEA with an
inter-electrode distance of 100 um (Fig. 1A). Monopolar
stimulation of Schiffer collateral/commissural fibres was
performed through an electrode located on the border
between areas CA1 and CA3. Biphasic positive-negative
(100 ps/phase) voltage steps up to 3.7 V applied to the
stimulation electrode evoked fEPSPs that could be
recorded across the entire CA1 area. Fig. 1B demonstrates
a characteristic laminar profile of fEPSPs recorded by a
column of electrodes aligned perpendicular to stratum
pyramidale (SP). Large negative deflections of the extracel-
lular potential in SR represent synaptic activation of apical
dendrites of pyramidal cells (electrodes 2-4 in Fig. 1).
Responses in stratum lacunosum-moleculare (SLM) were
usually smaller (electrode 1, Fig. 1). In contrast to apical
dendritic zones, the initial membrane response showed
positive polarity in SP and above the layer of pyramidal
cell bodies (Fig. 1B, electrode 5). At maximum stimula-
tion strengths, a fast negative deflection, a population
spike [37], was often seen overriding the slower positive
wave (Fig. 1B, electrode 5). We did not observe popula-
tion spikes consistently in all slices probably due to the
limited maximum voltage step (<3.7 V) that could be
applied thorough MEA electrodes (see Additional File 1).
Stronger stimulation led to large Faradaic effects on elec-
trodes causing artefacts. A distinctive feature of MEA
recordings was that negative fEPSPs did not just return to
the baseline, but were followed by a slow positive wave
(Fig. 1B). Such positivities are usually attributed to close-
ness of a recording electrode to the pyramidal cell layer
(e.g. [14]), however in our case late positive waves were
consistently observed in deeper parts of SR (Fig. 1B).
Moreover, a reverse fEPSP waveform, positive and then
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Figure |
Laminar profile of fEPSPs in CAl area of the hippocampus recorded by a multi-electrode array. A) A 350 um

thick hippocampal slice was placed over 8 x 8 3D MEA and a suitable electrode (red circle) was selected for stimulation of
Schiffer collateral/commissural fibres. A column of electrodes (yellow circles) aligned in parallel with the direction of apical
dendrites of CAl pyramidal neurones was chosen to record synaptic responses in stratum lacunosum-moleculare (electrode 1),
stratum radiatum (electrodes 2—4) and stratum pyramidale/stratum oriens (electrode 5). Layers of cell bodies are delineated by
green dashed line. Distance between electrodes was 100 pm. B) Waveforms of fEPSPs recorded by electrodes 1-5 in response
to a voltage step (biphasic positive/negative 3.5 V pulse, 100 ps/phase) applied to stimulation electrode. Initial small, negative

deflections are the stimulus artefacts.
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negative, was usually recorded in stratum oriens (SO), sug-
gesting that this secondary wave was a passive conse-
quence of the synaptic activation. Similar positive
shoulders have been observed in other studies that
employed MEAs (e.g. see Fig. 4B in [31] or Fig. 1A in [38]).

In the search for possible regional differences between
fEPSPs, we analysed input-output (I/O) relationships for
19 hippocampal slices obtained from ten 129S5 mice.
Slices were placed on MEA100 3D arrays so that there
were at least three recording electrodes in SR, with the
most proximal one being within 50-80 um from SP. Two
other electrodes, designated as medial and distal, were
therefore 100 and 200 pm further down from a proximal
one along a line perpendicular to SP. I/O curves demon-
strate that true saturation of the synaptic strength could
not be obtained for any location (Fig. 2A). The steepest
rise of the I/O relationship was noted for distal fEPSPs
(Fig. 2B). The recording location interacted with the stim-
ulus strength (F(14,5,) = 8.15; P < 0.0001). Bonferroni/
Dunn's post hoc tests revealed that proximal fEPSPs were
significantly smaller (P < 0.01) than responses recorded in
either medial or distal locations for stimulus strengths
between 0.5 to 2.5 V (Fig. 2A). At 3V, proximal fEPSPs dif-
fered only from the medial fEPSPs (P < 0.05) and at 3.5 V
there were no differences between recording locations.

Similar results were obtained for I/O relationships in 13
slices from C57 mice (data not shown).

Long-term potentiation of synaptic responses in SR varies
with recording location

We used a theta-burst stimulation protocol (TBS) to
induce LTP of fEPSPs in SR of the CA1 area [39]. Baseline
stimulation was set to evoke fEPSPs at about 40% of the
maximum response attained in the proximal region of SR.
During TBS, stimulus strength was increased to 125% of
the baseline value. As shown in Figures 3 and 4, ampli-
tudes of fEPSP remained enhanced 60 min after three
trains of TBS (F(; 5, = 127.89; P < 0.0001). Recording
location had a significant effect on the potentiation
(F(2,44)= 63.23; P < 0.0001), whereas strain did not inter-
act with the recording location (F(, 44) < 1; not significant).
In slices from both strains, fEPSPs recorded by proximal
electrodes, demonstrated the largest potentiation com-
pared to pre-TBS value (12985: 190 + 45 %; {(1,)=-7.16; P
< 0.001 and C57: 205 + 51%); t(;) = -6.75; P < 0.0001).
Medial fEPSPs increased to a lesser extent, but remained
above pre-TBS level (129585: 136 + 19 %; t(;,)=-6.33; P <
0.001 and C57: 137 + 10%; tao) = -11.05; P < 0.0001).
Minimal changes were seen at the level of distal electrodes
(129S5: 110 + 12 %; t12)=-2.74;P <0.05 and C57: 111 +
13%; t(10) = -2.60; P < 0.05). Larger potentiation of the
proximal fEPSPs could be accounted for by increased pro-
pensity to generate population spikes following TBS.
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However, as illustrated in Fig. 3A, a significant increase of
the proximal fEPSP (electrode 4) was not always concom-
itant with major enhancement of the population spike
(electrode 5) which would be capable of affecting apical
dendritic regions. In fact, the maximal stimulation of the
slice, used for the experiment depicted in Fig. 3A, failed to
evoke a population spike before TBS (see Additional file
1). It must be noted however, that submaximal stimula-
tion evoked proportionally bigger responses in the middle
of SR (Fig. 2). This could be another reason for the differ-
ence in fEPSP potentiation between proximal and medial
electrodes. In particular, stimulation that elicited 40% of
the maximum proximal response evoked an fEPSP that
was approximately 60% of the maximum response
attained in the middle of SR (Fig. 2B). Consequently,
medial fEPSPs could simply have less potential to increase
before they hit a potentiation ceiling. It must be empha-
sised that percentages are given with respect to maximum
attained and not to maximum possible response. The lim-
ited amplitude of the largest possible stimulation voltage
(3.5 - 3.7 V) and the shape of 1/O relationship (Fig. 2)
suggest that chosen stimulation strengths actually elicited
smaller fractional responses than indicated. Nonetheless,
we conducted a series of LTP experiments with lower base-
line stimulation strength that evoked 40% of the maxi-
mum medial fEPSP response in six slices from 129S5
mice. In this case, potentiation of medial fEPSPs was very
small (111 + 8%) and still much less than that recorded at
proximal sites (148 + 36%; t(5)= 2.76; P < 0.05). Also, by
comparing I/O relationships recorded before and 60 min
after TBS in C57 mice (Fig. 4B), we noted that relative
potentiation of the proximal fEPSPs was greater than that
of medial fEPSPs (Fig. 4B) at each voltage pulse in the
range of 1 to 3.7 V (P < 0.01, Bonferroni/Dunn's test).
These observations led us to conclude that fEPSPs
recorded in the region of proximal apical CA1 dendrites
exhibit the maximal amount of potentiation. Therefore, in
the description of the next set of experiments, we limited
our attention only to recordings from proximal elec-
trodes.

Monitoring long-term potentiation in two-pathway
stimulation experiments

In cases when only one stimulating electrode is used for
evoking responses in slices, it is impossible to detect a
non-specific drift of baseline conditions if it happens after
tetanus. This could potentially lead to inaccurate esti-
mates of LTP. Therefore, in many classical LTP studies, a
two-pathway stimulation scheme is used, where a second
electrode stimulates a set of fibres independent from the
tetanised pathway in order to monitor stability of the slice
preparation and to ensure specificity of the induced plas-
ticity [40,41]. To adapt two-pathway stimulation proto-
cols for MEA experiments, we used 5 x 13 3D MEAs with
inter-electrode distances of 140 and 200 pm (Fig. 5A).
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Figure 2

Input/output relationships recorded in proximal, medial and distal parts of SR. A) Relationships between stimulus
strength and fEPSP amplitudes in different locations within SR were determined in 19 hippocampal slices from ten 129S5 mice.
Data on this and other Figures are presented as mean * standard deviation. B) Same data as in (A), but normalised by fEPSP
amplitude evoked by maximum 3.5 V stimulus.
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Figure 3

TBS-induced LTP in hippocampal slices from 129S5 mice recorded by 8 x 8 3D MEAs. A) Exemplar records of fEP-
SPs were obtained shortly before and 60 min after induction of LTP (blue and red traces respectively) from five CAl locations
spatially similar to those, outlined in Fig. | A. LTP was induced by three trains of TBS with intra-train interval of 20 s. There
were four pulses at 100 Hz within a burst and 10 bursts delivered at 5 Hz per train. Stimulus strength originally set at evoking
40% of the maximal proximal fEPSP was increased to 125% during TBS. Note a pronounced potentiation of proximal fEPSP
(electrode 4) in the absence of fully blown population spike in SP/SO. Slight potentiation of fEPSP was observed in the middle
of SR (electrode 3) and no potentiation was seen in distal apical dendrites (electrode 2). In SLM, fEPSPs were small, so indis-
tinctive changes were seen upon LTP induction (electrode 1). Photo of the slice from this experiment as well as waveforms of
its responses to maximal stimulation can be found in the Additional file |. B) Summary LTP data obtained while recording
simultaneously in three locations in SR in |3 slices from 129S5 mice. Only the upper part of the S.D. error bar is shown for
clarity.
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Figure 4

TBS-induced LTP in hippocampal slices from C57 mice recorded by 8 x 8 3D MEAs. A) Summary LTP data
obtained in simultaneous recordings from proximal, medial and distal locations in stratum radiatum in || slices from C57 mice.
B) Comparative changes of fEPSPs recorded from three different locations in SR before and 60 min after induction of LTP by
three trains of TBS. Ratios of post- to pre-TBS fEPSP amplitudes are plotted against corresponding stimulus strengths. Data
from two lowest stimulation strengths, 100 and 500 mV are omitted as the often produced zero or a very small response (<
100 V). Note that the post/pre-LTP ratio is always larger in proximal compared to medial region of SR (Bonferroni/Dunn's
post hoc test: ¥ — P < 0.01; ** — P < 0.001; ** — P < 0.0001). Only a half of the S.D. error bar is shown for clarity.
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Figure 5

Scheme of a two-pathway LTP experiment performedusing MEA 5 x 13 3D MEAs. A) A hippocampal slice was
placed over a 5 x |13 3D MEA and a suitable principal recording electrode (red circle) was selected in the proximal part of stra-
tum radiatum. Control (blue circle) and test (yellow circle) stimulation electrodes were then chosen on the basis of their path-
way independence and distance to the principal recording electrode (usually > 400 pum). Layers of cell bodies in the
hippocampal slice are delineated by dashed lines. Distance between electrodes is 140 and 200 um. B) Alternating stimulation of
control and test pathways was performed at baseline stimulus strength that elicited 40% of the maximum fEPSP (first column of
traces). After 30 min of stable baseline recording, HFS of the test pathway was performed by two trains of 100 stimuli given at
100 Hz each with inter-train interval of 50 s (trace in the second column). Third column depicts fEPSP recordings 60 min after
LTP induction. As follows from overlaid baseline (black) and post-LTP (red) traces in the fourth column, fEPSP amplitude in the
test pathway was enhanced, whereas control fEPSPs did not change. C) Plot of fractional fEPSP amplitudes in the control and
test pathways before and after LTP induction.
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With such an arrangement, electrodes are spread over the
entire CA1, thus it becomes easier to select electrodes that
are sufficiently apart from each other to activate inde-
pendent synaptic pathways to CA1 pyramidal neurones.
Compared with electrodes in 8 x 8 3D MEA chips, individ-
ual electrodes in 5 x 13 3D MEAs are slightly higher (35-
45 pm vs. 25-35 pum) and have lower impedance (350-
500 kQ vs. 600-900 kQ). It was therefore possible to
apply slightly stronger voltage (up to 4.5 V) and record
larger synaptic potentials. An example of a two-pathway
LTP experiment perfomed using an MEA is demonstrated
in Fig. 5. Two electrodes, one on the subicular side and
another on the CA3 side of the recording location in CA1
were chosen to activate control and test pathways respec-
tively (Fig. 5A). Following 30 min of stable baseline
responses in both pathways, tetanic high frequency stim-
ulation (HES) was delivered through the test electrode
(Fig. 5B). HES consisted of two trains of 100 pulses given
at a rate of 100 Hz with 50 s between trains. One hour
after HFS, fEPSP amplitude in the test pathway was much
larger than before tetanus, whereas no significant change
of fEPSP amplitude occurred in the control pathway (Fig.
5B,C). In some recordings we have observed small
changes in the amplitude of control fEPSPs after tetanus.
Therefore, in all cases we expressed LTP data in a normal-
ised form, dividing the fEPSP amplitude in the tetanised
pathway by the amplitude of the control fEPSP for each
time point.

As demonstrated in Fig. 6A, HFS led to pronounced LTP of
normalised proximal fEPSPs in both 129S5 and C57
strains (129S5: 191 + 39 %; 1) = -8.41; P < 0.001 and
C57: 187 + 44%; t(15)=-7.93; P<0.001). There was no sta-
tistical difference in the average amount of potentiation
between these strains. In the presence of 50 uM D,L-2-
amino-5-phosphonopentanoic acid (D,L-AP5), a compet-
itive antagonist of NMDA receptors, HFS failed to induce
post-tetanic potentiation and long-term enhancement of
fEPSPs (Fig. 6B).

Confirming the results obtained with 8 x 8 3D MEAs (Fig.
3B, 4A), TBS induced notable LTP in recordings per-
formed by 5 x 13 3D MEAs (Fig. 7A; 129S5: 182 + 38 %;
t(14)= -8.33; P < 0.001 and C57: 173 + 16%; {(g) = -13.35;
P <0.001). It should be noted that while stimulation was
raised to 125% of the baseline strength during TBS when
using 8 x 8 3D MEAs, we did not additionally increase
stimulus strength applying HFS and TBS through elec-
trodes of 5 x 13 3D MEAs. As in the case of HFS, LTP
evoked by TBS was nearly fully abolished by blocking
NMDA receptors (Fig. 7B).

A less widely used protocol to induce LTP is theta-pulse
stimulation (TPS) during which afferent fibres are excited
at a frequency of 5 Hz for 15-30 s [42,43]. Such stimula-

http://www.biomedcentral.com/1471-2202/7/61

tion pattern evokes characteristic complex spikes [44] that
bear resemblance to spontaneous theta rhythm discharges
of CA1 pyramidal neurones observed in vivo [45]. In our
experimental setting, 30 s of 5 Hz stimulation at baseline
strength did not evoke stable LTP probably due to insuffi-
cient drive to elicit reliable complex spiking (data not
shown). Nonetheless, when we increased the amplitude
of stimulation to 150% of baseline strength during TPS,
we did observe consistent complex spikes (see Additional
file 2) and persistent potentiation of fEPSPs (Fig. 8A:
12985: 138 + 20 %); t(14)= -7.43; P < 0.001 and C57: 134
+ 31%; t(15)=-3.46; P < 0.01). In conditions when NMDA
receptors were inhibited with D,L-AP5, TPS produced
only marginal changes to normalised fEPSPs (Fig. 8B: 110
+ 9% in 60 min after LTP induction) confirming this pre-
viously reported sensitivity [43,44,46].

Discussion

In our study, we sought to assess the applicability of 3D
MEAs for studies of LTP in mouse hippocampal slices. Pre-
vious attempts to use MEA platforms for recording synap-
tic activity employed planar electrodes that sample signals
mostly from the surface of the slice [29-33,47]. In con-
trast, conventional glass or metal electrode recordings are
performed usually at some depth inside the slice tissue
where neurones are presumed to be in more physiologi-
cal, non-damaged conditions. Therefore, we were particu-
larly interested in conducting LTP experiments using 3D,
tip-shaped arrays that combine benefits of MEA technol-
ogy with the possibility to record closer to the source of
the signal coming from healthier layers of the slice [35].

Basic features of fEPSPs recorded by means of 3D MEAs
were generally in agreement with previous reports on lam-
inar profiles of synaptic responses to excitation of Schiffer
collateral/commissural fibres in the CA1 area of the hip-
pocampus in vitro [48-50] and in vivo [51-53]. Large nega-
tive extracellular responses were recorded in SR that
reflected synaptic activation of apical dendrites of CA1l
pyramidal cells (electrodes 2-4 in Figs 1B, 3A). Pre-synap-
tic fibre volleys were hard to distinguish and usually more
clearly observed following stimulation of the subicular
side of CAl in two-pathway experiments (data not
shown). At submaximal stimuli (<3.0 V), fEPSP ampli-
tude was larger in the medial and distal parts of SR (Fig.
2A), possibly pointing to the site of termination of the
majority of afferent fibres. At higher strengths of stimula-
tion, there was no statistical difference between sizes of
fEPSPs recorded in the three locations within SR. The rea-
son for the latter could be generation of dendritic spikes at
proximal apical dendrites that led to disproportionably
greater increase of fEPSPs in this location [51,52,54,55].
Weak to moderate stimulation of Schiffer collateral/com-
missural fibres caused positive deflections of the extracel-
lular fields in SP and SO (electrode 5 in Figs 1B, 3A)
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Figure 6

HFS-induced LTP in hippocampal slices recorded by 5 x 13 3D MEAs. A) Identical levels of LTP evoked by HFS in
slicesfrom 129S5 (n = 12) and C57 mice (n = 14). B) HFS-induced LTP was inhibited by blocking NMDA receptors. In 5 slices
from 129S5 mice, HFS was carried out in the presence of 50 uM D,L-AP5, a competitive NMDA receptor antagonist. D,L-AP5-
treated slices demonstrated a distinctive lack of post-tetanic potentiation and significant reduction of LTP compared to
untreated slices (105 £ 7% vs. 191 + 39 %; t 5= -4.79; P < 0.001).
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Figure 7

Theta burst-induced LTP in hippocampal slicesrecorded by 5 x 13 3D MEAs. A) Summary LTP data obtained in
slices from 129S5 (n = 14) and C57 (n = 7) mice. Exploiting two-pathway paradigm, we corroborated data from one-pathway
experiments (Figs. 3B,4A) on robust LTP induced by TBS. No up-regulation of the stimulus strength during TBS was done
when using 5 X |3 3D MEAs. B) Inhibition of NMDA receptors by 50 uM D,L-AP5 led to a significant attenuation of TBS-
induced LTP in 5 slices from 129S5 mice. Average amplitude of normalised fEPSP 60 min after TBS was significantly less in D,L-
AP5-treated slices compared to untreated 12955 group (109 + 5% vs. 178 % 35 %; t,7) = -4.24; P < 0.001).
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Figure 8

Theta pulse-induced LTP in hippocampal slicesrecorded by 5 x 13 3D MEAs. A) LTP was induced by 150 pulses
given at 5 Hz in hippocampal slices from 129S5 (n = 15) and C57 (n = 13) mice. During TPS, amplitude of stimulation was 1.5%
of the baseline strength. In the first five minutes following TPS, a transient depression was seen in both control and test path-
ways (see Additional file 2). Therefore, first five records after TPS were omitted from the plot for clarity. In some cases, TPS
did not produce persistent facilitation of fEPSP amplitude that returned to baseline levels after 60 min. However, we pooled
data from all slices that exhibited pronounced complex spikes during TPS (see Additional file 2). B) Inhibition of NMDA recep-
tors by 50 pM D,L-AP5 led to a significant attenuation of TBS-induced LTP in 5 slices from 12955 mice. Average amplitude of
normalised fEPSP 60 min after TBS was significantly less in D,L-AP5-treated slices compared to untreated 129S5 cohort (110
9% vs. 138 £ 20 %; t(9) = -3.25; P < 0.01).
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indicating intracellular spread of synaptic current into the
opposing dendritic arborisation [48]. At larger stimuli, a
population spike [37] was observed in many but not all
slices (e.g. electrode 5 in Figs 1B; .Additional file 2).

In contrast to many reports that used planar MEAs for
fEPSP measurements, application of 3D MEAs permitted
routine recording of synaptic potentials of several milli-
volts in amplitude (Figs. 1B; Additional file 2), which to
the best of our knowledge were among the largest ever
reported in MEA experiments. Effective excitation of nerve
fibres through tip-shaped electrodes of 3D MEAs allowed
us to select recording electrodes at a considerable distance
from the stimulation site(s) (2400 pum, Figs. 1A, 5A).
Therefore, we were able to evoke fEPSPs that were suffi-
ciently large and at the same time could be reliably poten-
tiated in a pathway-specific manner. In our opinion,
precise information about relative positions of recording
and stimulating electrodes in a hippocampal slice is
important for comparison of results between different
laboratories. Having analysed 89 papers from a mouse
knock-out plasticity phenotype database (A. Howell, M.
Marshall, S. Grant, manuscript in preparation) which
studied LTP of fEPSPs in the CA1 area, we were surprised
to find that only ten of them mentioned the distance
between stimulating and recording electrodes. Relative
location of the recording electrode with respect to part of
SR (proximal, medial or distal) was stated explicitly only
in one of these 89 reports. It has been recognised however
that relative dendritic location of electrodes could affect
the degree of LTP in the hippocampus [29,50,56] and
neocortex [57]. Therefore, we sought to investigate
whether spatial differences in LTP existed in our prepara-
tion.

Using fairly dense 8 x 8 3D MEAs with inter-electrode dis-
tance of 100 um we compared responses from three
recording electrodes in the proximal, medial and distal
parts of the along apical dendritic area of CA1 pyramidal
cells (Fig. 1A). Applying baseline stimulation and subse-
quently TBS through one of the electrodes situated in the
mid-distal part of SR on the border between CA1 and CA3
areas, we demonstrated that the largest potentiation of
fEPSPs occurred in proximal dendritic sites within 50-80
pum of SP (Figs. 3, 4). This difference in potentiation could
not be accounted for just by the fact that for a given sub-
maximal stimulus, medial fEPSPs were larger that proxi-
mal ones (Fig. 2) and therefore less prone to potentiation.
As follows from Fig. 4B, the ratio of post- to pre-TBS fEPSP
was noticeably bigger in proximal sites. Another explana-
tion for larger LTP at proximal part of SR could be contam-
ination of proximal recording waveforms by population
spikes that originated in the cell body. It should be noted
that population spikes were not seen consistently in all
recordings (for an example, see Additional file 1) and if
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observed, they were mostly pronounced at high stimulus
strengths (Fig. 1B, electrode 5). Fig. 3A demonstrates that
larger enhancement of proximal fEPSP (electrode 4) was
recorded in the absence of a strong population spike (elec-
trode 5) able to invade apical dendrites. Nonetheless,
since amplitudes of population spikes are known to
undergo much stronger potentiation compared to fEPSPs
(so-called "E-S potentiation") [6,58-60], the fact that we
measured amplitude rather than initial slope of our
responses could lead to artificial overestimation of proxi-
mal LTP due to significant population spike contribution
to compound fEPSP. We did not attempt measuring fEPSP
slopes routinely, because our analysis software could cal-
culate slopes only between integer milliseconds making it
difficult to assign similar regions of the rising part of
fEPSP among different recordings. In order to test if con-
ventional slope calculation would yield consistently
smaller estimates of LTP compared to peak amplitude
measurements, we calculated slopes within initial one or
two milliseconds of fEPSP traces for experiments depicted
on Fig. 6A. No significant differences were observed in
estimates of LTP when using slope or peak amplitude
measurements in either 129S5 (peak: 191 + 39 %; slope:
220 + 57 %; t(31)=-1.81, P=0.097) or C57 mice (peak: 187
+ 44%; slope: 200 + 69 %; t(;3)=-1.03; P = 0.323). Simi-
larly, no large discrepancies between these two measures
of LTP have been found in other reports [61,62].

Greater LTP in proximal dendrites could be a consequence
of an altered balance between excitation and inhibition
following LTP induction. Simultaneously with LTP of fEP-
SPs, tetanic stimulation can cause long-term depression of
inhibitory signals [63]. On the other hand, since the den-
sity of inhibitory synapses is maximal in the proximal part
of CA1 apical dendrites [64], then disinhibition could
potentially have a greater effect on fEPSPs in this region.

Larger LTP at proximal as compared to distal SR recording
sites was reported in conditions when pressure ejection of
tetrodotoxin in SO was used to prevent post-synaptic spik-
ing [56]. There are several methodological differences
between the latter study and our experiments: we used
mouse whole hippocampal slices and no pharmacologi-
cal inhibitors, whereas Kolta et al. employed rat mini-
slices of CA1l area and blockers of GABA, and GABA;
receptors [56]. Nonetheless, collectively these data indi-
cate that somatic population spikes are unlikely to be
principal contributors to increased proximal fEPSPs after
LTP induction. The cause of differences in LTP expression
across SR levels may stem from a greater propensity of
proximal dendrites to generate dendritic spikes. Current-
source density analyses demonstrated that in response to
the orthodromic stimulation CA1 proximal apical den-
drites produce compound fEPSPs that contain a tetrodo-
toxin-sensitive component that precedes the population
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spike and is spatially distinct from synaptic currents
[49,52,54]. Tt has been suggested that in vivo somatic
action potentials are, in fact, initiated in proximal SR [53].
Dendritic spikes were also shown to be prerequisites of
somatic firing, because even maximal stimulation of
Schiffer collaterals failed to fire pyramidal cell bodies if
tetrodotoxin was ejected locally onto proximal apical den-
drites [65]. Of particular relevance to our data is the obser-
vation that induction of LTP leads to preferential
enhancement of the proximal dendritic current sink [50].
Taken together these studies demonstrate that voltage-
dependent conductances complement apical synaptic cur-
rents in shaping fEPSPs and amplify depolarisation and
calcium entry during tetanic trains [66-68]. There is evi-
dence about non-uniform distribution of voltage-depend-
ent channels in CA1 apical dendrites [69], however, it is
not quite clear which of them could account for the spatial
gradient of LTP observed in this and other studies [29,56].

Two-pathway stimulation experiments (Fig. 5) have con-
firmed that increase of proximal fEPSPs, as a result of LTP,
was specific to the tetanised pathway and did not reflect a
generalised heterosynaptic enhancement of post-synaptic
excitability. HFS and TBS markedly augmented fEPSPs
that stayed elevated for at least an hour (Figs. 6A, 7A). The
degree of LTP was comparable with estimates in other
reports that employed similar protocols in mouse hippoc-
ampal slices [19,70-74]. Plasticity induced by HFS and
TBS was entirely dependent on NMDA receptors, as incu-
bation with a competitive NMDA receptor blocker com-
pletely abolished LTP (Figs, 6B, 7B). This is an agreement
with published data on high sensitivity of LTP induced by
these protocols to inhibition of NMDA receptors
[71,75,76].

Brief episodes of TPS are known to evoke LTP which is
dependent on activity of protein kinase A and mitogen-
activated protein kinase ERK [42-44,71,77]. We were par-
ticularly interested in this form of plasticity as it strongly
correlated with the learning ability of rats in the Morris
water maze [46]. Also, impairment of TPS-evoked LTP
that paralleled behavioural abnormalities was found in
mutant mice lacking some intracellular signalling pro-
teins [19,78,79]. Our initial attempts to induce LTP by
150 baseline strength pulses repeated at 5 Hz however
were not successful. Most probably, this was because
monopolar stimulation through MEA electrodes was not
strong and co-operative enough at this frequency to elicit
the complex spiking required for induction of LTP [44].
Having elevated stimulus strength to 150% of the baseline
during TPS episode, we managed to evoke moderate but
persistent potentiation in most of the slices (Fig. 8A; Addi-
tional file 2). Some reports mentioned the need for some-
what larger stimulus strengths to generate reliable
complex spikes and stable LTP by TPS [79,80]. The rela-
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tively small degree of LTP observed by us might be
explained also by the difference in incubation conditions.
Most previous accounts of TPS LTP were based on hippoc-
ampal slices that were kept in interface chambers
[43,44,46,71] which could impart different metabolic
properties on brain tissue compared to submerged cham-
bers [81]. Blocking NMDA receptors with 50 uM D,L-AP5
inhibited TPS-induced LTP (Fig. 8B) which agrees with
published data [43,44,46]. Interestingly however, incuba-
tion with D,L-AP5 did not always abolish complex spiking
in our slices (data not shown), as reported by others [46].
In the presence of D,L-AP5, LTP of fEPSPs was small but
significant 110 + 9% (t(5) = -3.32; P < 0.05). As overall
TPS-induced LTP was quite modest in our experiments,
the size of this previously documented NMDA-independ-
ent component [43,44,46] was minimal.

For our study, we intentionally chose C57 and 129S5
inbred mouse strains that are often used in the creation of
genetically modified mice [82]. Several studies have pin-
pointed differences in synaptic plasticity, neurochemistry
and behavioural performance among various inbred
strains [83-87]. This variability could complicate compar-
ative phenotyping of transgenic mice obtained on differ-
ent backgrounds. For example, Nguyen and colleagues
reported that TBS and multiple trains of HFS evoke lower
levels of LTP in the CA1 area of 129/SvEms mice as com-
pared to C57 strain [84,85]. In our experimental setting,
we observed no difference in any kind of LTP between
C57 and 129S5 strains (Figs. 6A, 7A, 8A). This outcome
may seem somewhat surprising as 12985 strain is closely
related to 129/SvEms [88]. This discrepancy could be
explained by methodological variations, in particular
with regard to TBS that comprised twice as many stimuli
in our experiments compared to reports [84,85]. On the
other hand, Nguyen et al. detected differences in LTP
between 129/SvEms and C57 strains after both one [84]
and four [85] 1 s-long trains of 100 Hz, whereas we saw
similar LTP levels in C57 and 129S5 mice after two such
trains (Fig. 6A). Thus, it is hard to conclude whether dis-
crepancy between our results and findings of Nguyen et al.
are due to methodological differences or variations within
129 sub-strains [88]. Despite our experiments failed to
reveal differences in LTP among C57 and 129S5 mice,
they do not rule out the notion that inbred mouse strains
are heterogeneous with respect to synaptic plasticity [83-
87]. Clearly, more data from other strains are necessary to
determine the extent of variation of plasticity properties in
MEA experimental settings. Another ultimate test of the
sensitivity of MEA-based approach to study LTP would be
its ability to provide a clear differentiation between wild-
type and mutant mice with well established plasticity phe-
notypes. Therefore, in our future experiments, we shall
use several previously characterised knock-out mice to fur-
ther validate the utility of the MEA platform for large scale
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plasticity screening. In summary, our study has shown
that MEAs could be used to acquire large signals, compa-
rable with fEPSPs recorded by standard extracellular
recording techniques. Utilising MEAs, we were able to reli-
ably induce large and persistent LTP of fEPSPs in hippoc-
ampal slices by established stimulation protocols.
Consequently, MEAs should provide a powerful method-
ology for plasticity studies with the capacity to simultane-
ously collect information from several sites. The versatility
of MEA-based approach in stimulation of the slice tissue
by multiple electrodes makes it especially useful for syn-
aptic tagging and spike-timing dependent plasticity exper-
iments.

Conclusion

Application of 3D MEAs allowed for a detailed examina-
tion of the synaptic transmission in acute slices of the
mouse hippocampus. Simultaneous recording by several
electrodes demonstrated a spatial gradient of LTP in SR of
the CA1 area of the hippocampus and highlighted proxi-
mal regions of apical dendrites as sites where post-synap-
tic responses undergo largest plastic changes. LTP evoked
by diverse stimulation patterns using MEAs was pathway-
specific and dependent on the activity of NMDA recep-
tors. Robust performance of 3D MEAs combined with the
multiplexing potential of MEA technology proves that
MEAs could be effectively used for phenotypic characteri-
sation of transgenic animals.

Methods

Preparation of hippocampal slices

Experiments were performed on hippocampal slices
obtained from 2-4 months old 129S5/SvEvBrd and
albino C57BL/6]J-TyrC-Brd mice bred at the Wellcome Trust
Sanger Institute. Animals were killed by cervical disloca-
tion in accordance with Schedule 1 to the U.K. Animals
(Scientific Procedures) Act 1986. Whole brain was imme-
diately transferred to a beaker containing ice-cold "cut-
ting" solution of the following composition (in mM):
sucrose 110, NaCl 60, NaHCO; 28, NaH,PO, 1.25, KCI 3,
MgSO, 7, CaCl, 0.5, glucose 5, sodium ascorbate 0.6, phe-
nol red 0.015. Prior to use, this solution was thoroughly
saturated with a gas mixture of 95%0,/5%CO, to main-
tain pH level within physiological range (7.25-7.35).
Brain was allowed to chill for 2-3 min and then it was
trimmed and mounted on the stage of a Vibroslice MA752
(Campden Instruments, Loughborough, UK) with Super-
Glue in such a way, so that the blade would cut through
hemispheres at an angle of 20-30° their horizontal
planes [89]. "Cutting" solution in the temperature-con-
trolled Peltier bath was cooled to 3.5-4.0°C and con-
stantly bubbled with a mixture of 95% O, and 5% CO, .
Slices were cut at 350 um by stainless steel blades using
minimal speed of blade advancement and vibrating fre-
quency set at "6" mark. Eight to ten slices containing
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medial segments of the hippocampus with overlaying cor-
tical areas were trimmed of the remaining tissue, placed
into a well of a slice chamber (Fine Science Tools, Foster
City, CA) and kept submerged under the constant flow (2
ml/min) of fresh artificial cerebrospinal fluid (ACSF) con-
taining (in mM): NaCl 124, NaHCO; 25, NaH,PO, 1, KCI
4.4, MgSO, 1.2, CaCl, 2, glucose 10, phenol red 0.015.
When slices were being transferred to the slice chamber,
ACSF temperature was maintained at 23°C and then grad-
ually increased to 29-31°C for the rest of the incubation
period. Slices rested in these conditions for at least two
hours before experiments commenced.

Electrophysiological recording

The MEAG60O electrophysiological suite was used for fEPSP
recordings (Multi Channel Systems, Reutlingen, FRG).
Two set-ups consisting of a MEA1060-BC pre-amplifier
and a filter amplifier (gain 1100x or 550x) were run in
parallel by a data acquisition card governed by MC_Rack
3.2.1.0 software. Raw electrode data were digitised at 10
kHz and recorded on a PC hard disk for further analysis.
To record fEPSPs, hippocampal slices were placed into the
well of an MEA biochip filled with ACSF. Two types of sin-
gle-well biochips with 3D, tip-shaped electrodes were
used: 1) 8 x 8 3D MEAs that had electrode height of 25-
35 um and electrode spacing of 100 um; 2) 5 x 13 3D
MEAs with electrode height of 35-45 pm and electrode
spacing of 140 and 200 pm (Ayanda Biosystems,
Lausanne, Switzerland). The bath was grounded via an
Ag/AgCl pellet attached to the MEA amplifier ground
socket. Slice position and contact with electrodes were
secured by a nylon mesh glued to a flattened piece of plat-
inum wire. In some experiments where exact positioning
was vital, slices were immobilised by a silver ring with
attached nylon mesh that was lowered vertically by a one-
dimensional U-1C micromanipulator (You Ltd, Tokyo,
Japan). MEA biochips were fitted into the pre-amplifier
case and fresh ACSF was delivered to the MEA well
through a temperature-controlled perfusion cannula that
warmed perfusing media to 32°C. Monopolar stimula-
tion of Schiffer collateral/commissural fibres through
array electrodes was performed by STG2008 stimulus gen-
erator (Multi Channel Systems, Reutlingen, FRG). Bipha-
sic (positive/negative, 100 us/a phase) voltage pulses were
used. Amplitude, duration and frequency of stimulation
were controlled by MC_Stimulus II software. In one-path-
way experiments utilising 8 x 8 3D MEAs, one electrode in
the medial or distal part of SR near CA1/CA3 border was
chosen for stimulation. A column of recording electrodes
that was perpendicular to pyramidal cell layer was
selected in the CA1 area. The shortest normal between this
column and stimulation electrode was 400 or 500 um. In
two-pathway experiments conducted on 5 x 13 3D MEAs,
a single principal recording electrode was picked in prox-
imal part of CA1 SR. To stimulate control and test path-

Page 15 of 19

(page number not for citation purposes)



BMC Neuroscience 2006, 7:61

ways, two stimulation electrodes were assigned on the
subicular side and on the CA3 side of SR respectively. The
distance from the recording electrode to the test stimula-
tion electrode was 400-560 um and to the control stimu-
lation electrode 310-560 um. To evoke orthodromic
fEPSPs, stimulation electrodes were activated at a fre-
quency of 0.02 Hz. Maximum possible stimulation of 3.7
and 4.5V could be applied to electrodes using 8 x 8 and 5
x 13 3D MEAs respectively. Population fEPSPs of 1-4 mV
amplitude were recorded in the CA1 area depending on
the electrode location. In contrast to most recordings
obtained by conventional glass electrodes, initially nega-
tive-going fEPSPs recorded by MEAs always had a pro-
nounced positive shoulder throughout SR. We have not
investigated the source of this phenomenon in detail, but
as the waveform pattern was exactly the opposite in SO,
(i.e. initially positive deflection and then a negative wave
in response to stimulation of Schiffer collateral/commis-
sural fibres) we reasoned that this secondary potential had
a synaptic origin and was not an abnormal stimulation
artefact. Following at least 15-30 min of equilibration
period inside an MEA well, I/O relationships were
obtained and baseline stimulation strength was set to
evoke a response that corresponded to 40% of the maxi-
mal attainable fEPSP at the recording electrode located in
proximal SR. Slices that had maximum responses less
than 1 mV in the test pathway were discarded. LTP was
induced after 30 min of stable baseline responses by
applying patterned trains of stimuli to a single stimulation
electrode in one-pathway experiments or to the test elec-
trode in two-pathway trials. Three stimulation paradigms
were used: 1) TBS that comprised three trains adminis-
tered at 20 s intervals with 10 bursts given at 5 Hz per train
and 4 pulses given at 100 Hz per burst. When working
with 5 x 13 3D MEAs, baseline stimulation intensity was
not altered during TBS, however in experiments that used
8 x 8 3D MEAs, it was increased to 1.25x baseline
strength; 2) HFS that consisted of two trains administered
at a 50 s interval with 100 baseline intensity pulses given
at 100 Hz per train; 3) TPS that involved a single train of
150 pulses elicited at 5 Hz using 1.5x baseline stimulus
intensity.

Data analysis

Amplitude of the negative part of fEPSPs was used as a
measure of the synaptic strength. Differences between
groups were detected using mixed or repeated-measures
ANOVA as appropriate. Bonferroni/Dunn's post hoc tests
were done when the ANOVA F-value indicated significant
differences (@ = 0.05). LTP plots were normalised to the
average of the first five baseline points. Statistical compar-
isons of normalised fEPSP amplitudes before and after
LTP were performed by paired Student's t-test using aver-
ages of five data points just before and 60 min after LTP
induction. Unpaired Student's t-test was used to examine
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differences in LTP levels between strains and also between
D,L-AP5-treated and untreated slices. Values were consid-
ered to be different if P < 0.05. All reported values repre-
sented mean + standard deviation with n indicating
number of slices. Statistics were calculated using Statview
5.0.1 for Mac (SAS Institute, Cary, North Carolina) and
Origin 7.0 (OriginLab, Northampton, Massachusetts).

Abbreviations
129S5: 129S5/SvEvBrd mouse strain

C57: C57BL/6]-TyrC-Brd mouse strain

fEPSP: field excitatory post-synaptic potential

HEFS: high frequency stimulation

LTP: long-term potentiation

MEA: multi-electrode array

NMDA: N-methyl-D-aspartate

SLM: stratum lacunosum moleculare

SO: stratum oriens

SP: stratum pyramidale

SR: stratum radiatum

TBS: theta-burst stimulation

TPS: theta-pulse stimulation
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Additional material

Additional file 1

An example of a laminar fEPSP profile in a hippocampal slice where
no population spikes were elicited using maximal stimulation through
an MEA electrode. A) A 350 um thick hippocampal slice was held over
8 x 8 3D MEA and a stimulation electrode (red circle) was chosen to
excite Schiiffer collateral/commissural fibres. A column of electrodes (grey
circles) aligned in parallel with the direction of apical dendrites of CA1
pyramidal neurones was chosen to record synaptic responses in SLM (elec-
trode 1), SR (electrodes 2—4) and SP/SO (electrode 5). Layers of cell bod-
ies are delineated by the yellow dashed line. Distance between electrodes
is 100 um. Recordings from this slice are also presented in Fig. 3A. B)
Waveforms of fEPSPs recorded by electrodes 1-5 in response to a maximal
voltage step (biphasic positive/negative 3.5 V pulse, 100 us/phase) applied
to stimulation electrode. Note that on the border of SP and SO only posi-
tive field potential was recorded without a population spike.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2202-7-61-S1.pdf]

Additional file 2

Sample recording that demonstrates pronounced complex spiking and
robust LTP following TPS. A) Alternating stimulation of control and test
pathways was performed at baseline stimulus strength that elicited 40%
of the maximum fEPSP (left column, black traces). Following 30 min of
baseline recording, TPS of the test pathway was performed by 150 stimuli
repeated at 5 Hz and the stimulation strength was increased to 1.5x of the
baseline level. Blue traces represent waveforms of the 1%, 25th, 50th, 100t
and 150" fEPSP in the TPS series. Note, that complex spiking achieves its
maximum at approximately 50" pulse and then amplitudes of the primary
and secondary fEPSPs decrease. Right column illustrates fEPSP recordings
60 min after LTP induction (red traces) with overlaid corresponding base-
line fEPSPs (black traces). As a result of TPS, fEPSP amplitude was
enhanced in the test but not the control pathway. B) Plot of fractional
fEPSP amplitudes in the control and test pathways before and after LTP
induction. Amplitudes of fEPSPs during TPS episode, when stimulus
strength was increased, are marked in blue colour. Note a transient
depression of fEPSPs in both pathways after TPS.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2202-7-61-S2.pdf]
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