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Abstract
Background: The striatal complex is the major target of dopamine action in the CNS. There,
medium-spiny GABAergic neurons, which constitute about 95% of the neurons in the area, form a
mutually inhibitory synaptic network that is modulated by dopamine. When put in culture, the
neurons reestablish this network. In particular, they make autaptic connections that provide access
to single, identified medium-spiny to medium-spiny neuron synaptic connections.

Results: We examined medium-spiny neuron autaptic connections in postnatal cultures from the
nucleus accumbens, the ventral part of the striatal complex. These connections were subject to
presynaptic dopamine modulation. D1-like receptors mediated either inhibition or facilitation,
while D2-like receptors predominantly mediated inhibition. Many connections showed both D1
and D2 modulation, consistent with a significant functional colocalization of D1 and D2-like
receptors at presynaptic sites. These same connections were subject to GABAA, GABAB,
norepinephrine and serotonin modulation, revealing a multiplicity of modulatory autoreceptors and
heteroreceptors on individual varicosities. In some instances, autaptic connections had two
components that were differentially modulated by dopamine agonists, suggesting that dopamine
receptors could be distributed heterogeneously on the presynaptic varicosities making up a single
synaptic (i.e. autaptic) connection.

Conclusion: Differential trafficking of dopamine receptors to different presynaptic varicosities
could explain the many controversial studies reporting widely varying degrees of dopamine
receptor colocalization in medium-spiny neurons, as well as more generally the diversity of
dopamine actions in target areas. Longer-term changes in the modulatory actions of dopamine in
the striatal complex could be due to plasticity in the presynaptic distribution of dopamine receptors
on medium-spiny neuron varicosities.
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Background
The synaptic actions of dopamine (DA) in the striatal
complex, the principal target of DA neurons in the CNS,
may best be described as heterogeneous. In the striatal
complex, DA neurons synapse on and in proximity to
medium-spiny GABA neurons [1]. Medium-spiny neu-
rons (MSNs) constitute 95% of the neurons in the area
[2,3], receive feed-forward GABAergic inhibition from fast
spiking interneurons [4], and extensive excitatory input
from cortex and thalamus, and in the case of MSNs in the
ventral striatal complex, or nucleus accumbens (nAcc),
also from the amygdala and hippocampus [5]. MSNs give
rise to a profusion of local axon collaterals that ramify
within the dendritic fields of the parent cell [6], as well as
to all the efferent projections from the striatal complex
[7,8]. Since evoked GABAergic inputs are dominated by
the small population of fast-spiking interneurons
[4,9,10], discerning the function of MSN-to-MSN syn-
apses proved challenging [11]. Recently, dual intracellular
recordings in striatal slices [12] and paired whole-cell
recordings both in explant cultures [13,14] and slices
[13,15-18] have shown that MSN-to-MSN synapses func-
tion. Although the synapses appear to be weak, in num-
bers they account for two thirds of the GABAergic inputs
to a given MSN neuron [9,16], so on a network level their
function is likely to be quite significant [11,16]. The argu-
ment can be made that these synapses are a major target
of DA action. Indeed, they show potent DA modulation
via presynaptic D1-like receptors mediating facilitation
and D2-like receptors mediating inhibition [9].

The cellular and subcellular distribution of DA receptors
on individual MSNs – a critical determinant of DA action
– has been the subject of considerable debate [19]. Part of
the controversy devolves to making the distinction
between the molecular biology and the pharmacology.
Pharmacologically identified D1-like receptors comprise
D1 and D5 receptors; D2-like receptors comprise D2, D3
and D4 receptors [20]. Initial in situ hybridization studies
reported the segregation of D1 and D2 receptors to differ-
ent populations of MSNs [21,22], and this was amply con-
firmed in single cell RT-PCR studies [23], and in
expression patterns revealed in D1 and D2 BAC transgen-
ics [24]. D1 receptor expressing MSNs contain SubstanceP
and project to the ventral midbrain (the direct pathway)
where they show robust D1-mediated presynaptic facilita-
tion [25,26]. D2 receptor expressing MSNs contain
enkephalin and project to the ventral pallidum (the indi-
rect pathway) where they show D2-mediated presynaptic
inhibition [27,28].

While single-cell RT-PCR studies confirmed the lack of
D1/D2 receptor colocalization in MSNs, they also showed
about a 50% colocalization of D1-like and D2-like recep-
tors [23]. This was confirmed in double-label fluoroprobe

studies of MSNs in culture [29], where receptors were
identified pharmacologically. Other studies stand in fur-
ther counterpoint to these results. In acutely dissociated
striatal neurons, biochemical measures of DA modulation
indicated near complete D1/D2 overlap [30]. Confocal
immunocytochemical studies with D1 and D2 receptor-
selective antisera reported near complete D1/D2 colocali-
zation on MSNs identified by DARPP-32 expression [31].
While D1 and D2 receptors are differentially distributed
on the two classes of MSNs, accounting for the segregation
seen in the in situ studies, expression of the other DA
receptors, together with lower levels of receptor expres-
sion that may be functionally significant, argue against a
strict segregationist view at the functional, i.e. pharmaco-
logical level.

The strict segregationist view has been further confounded
by single-cell, axon-tracing studies that have shown that
there are no direct axonal projections from the striatum to
the ventral midbrain. Rather, all MSNs project to the pal-
lidum, with about a third terminating there, and the
remaining two thirds going on to the entopeduncular
nucleus and the ventral midbrain [32,33]. This anatomy is
consistent with physiological studies, in which MSN-to-
MSN connections were activated by antidromic activation
from the ventral pallidum. This showed that Substance P-
containing neurons are subject to D1 modulation at their
projection synapses and D2 modulation at their local syn-
apses (in the striatum), while enkephalin-containing neu-
rons are subject to D2 modulation at their projection
synapses and D1 modulation at their local synapses [9].

While the consensus is that there is about a 50% overlap
in D1- and D2-like DA receptor expression at the cell body
level, the projection synapses of MSNs show either D1 or
D2 pharmacology. Surmeier et al. [19], in a prescient
review, suggested the possibility that DA receptors might
be trafficked differentially into the axons of individual
MSNs, accounting for the differences seen between local
DA actions reported in the striatum (both pre- and posts-
ynaptic) and distal actions on MSN projection synapses.
To examine DA modulation of individual MSN-to-MSN
synapses, and to address the hypothesis that DA receptors
show differential trafficking, we used postnatal cell cul-
ture to gain access to individual, identified MSN synapses.
We have found that there is significant presynaptic DA
modulation. Moreover it is heterogeneous, consistent
with differential trafficking of DA receptors to different
presynaptic varicosities in single neurons. Part of this
work has appeared previously in abstract form [34-36].

Results
GABAergic connections of medium-spiny neurons in vitro
In postnatal cultures made from the nucleus accumbens,
the ventral component of the striatal complex, 95% of the
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neurons are medium-sized, GABAergic [37], and bear
dendritic spines [38], serving to identify them as the pre-
dominant MSN population. The GABAA antagonists Bicu-
culline (50 μM) or Gabazine (SR-95531, 10 μM) [39]
invariably inhibited the synaptic actions of these neurons,
confirming their identification as MSNs. We present data
from 82 MSNs (of a total of 166 recorded), in which cells
remained healthy throughout the experiment, with small,
stable leak currents, and in which there was satisfactory
drug perfusion (IPSCs inhibited to <5% with GABAA
blockade at the beginning and end of experiments). Input
resistances measured 503 ± 36 MΩ (mean ± s.e.m.).

Stimulating cells with a brief depolarizing command (1
msec, 30 mV) evoked unclamped axon spikes that pro-
duced autaptic IPSCs with a rise time of 3.3 ± 0.40 msec
and amplitude of 148 ± 23 nA (n = 15) (Figure 1A). Stim-
ulation of neighboring medium-sized cell bodies with a
loose patch electrode evoked IPSCs with a rise time of 1.2
± 0.3 msec and amplitude 306 ± 85 nA (n = 9) (Figure 1B).
Both the rise times (two-tailed t-test, p < 0.0005) and the
amplitudes (p < 0.05) were significantly different. This
would suggest that the faster, stronger synaptic inputs
were more proximally distributed than the slower, weaker
autaptic inputs. Autaptic IPSCs typically ran down over
the course of 10–20 minutes and then stabilized at a pla-
teau of reduced amplitude, while synaptic responses did
not run down (Figure 2A). This would argue that washout
affected mainly presynaptic mechanisms (as only autaptic
responses were subject to wash-out). Nonetheless, we
focused on autaptic responses, because they provided
access to single identified MSN-to-MSN synapses. We
never saw failures, even when responses had diminished,
so the recorded IPSCs reflect the activation of multiple
release sites.

DA modulation
DA modulated MSN-to-MSN connections, both autaptic
and synaptic responses (Figure 1, Figure 3A). We meas-
ured DA modulation as the fraction of the preceding con-
trol response, to normalize for the decrease in IPSC
amplitude over the course of experiments. However, even
when the response had plateaued at a diminished level,
DA modulation persisted. DA inhibited autaptic
responses in the majority of experiments; in the others, it
had no effect or facilitated responses (Table 1). The D1
agonist SKF38393 and the D2 agonist Quinpirole both
showed a similar picture, with inhibition predominating.
D1 activation produced slightly more facilitation. While
the agonists mimicked DA action, they generally did not
produce as robust modulation, even when applied
together at equimolar concentrations to DA.

Tests for pharmacological specificity were confounded by
the fact that the antagonists at higher concentrations

inhibited autaptic responses. To obtain larger and more
stable responses for these experiments, we used a high-
chloride intracellular solution, which flipped the IPSCs,
but did not appreciably alter the DA modulation. We
found that SCH23390 at 50 μM produced a complete
blockade (n = 3), probably due to a direct inhibition of
Ca2+ currents [40]. SCH23390 at 0.1 to 1.0 μM had a slight
(<10%) inhibitory effect on autaptic responses, but com-
pletely blocked DA actions (n = 7). Similarly, the D2
antagonist Sulpiride inhibited (but did not block) autap-
tic responses at 50 μM; at 10 μM it had only a modest or
no effect on autaptic responses (n = 6). Applied together
(Figure 3A), however, these concentrations of SCH23390
and Sulpiride completely blocked DA modulation of
autaptic responses (n = 6 of 6), arguing that the modula-
tory effects were mediated by DA receptors. DA in the
presence of the D1 receptor antagonist SCH23390 had a
similar incidence and efficacy as Quinpirole (n = 10); sim-
ilarly, DA in the presence of the D2 antagonist Sulpiride
(1 μM) resembled SKF38393 (n = 10). Overall, about
85% of cells that responded to DA showed both D1- and
D2-mediated modulation, consistent with extensive colo-
calization of DA receptors on MSN presynaptic varicosi-
ties, or at least arguing that D1- and D2-like receptors are
both present on the varicosities of single neurons (see
below).

We showed previously that the GABAB agonist Baclofen
(100 μM) produced robust presynaptic inhibition, block-
ing autaptic responses [38]. Autaptic responses were
inhibited by the other monoamines norepinephrine (10
μM) or serotonin (2 μM). These modulatory actions were
apparently independent of DA receptors, as there were
instances (n = 2) where the autaptic response was sensi-
tive to the other transmitters but insensitive to DA (Figure
3B). So, a single synaptic connection may be subject to
modulation via a multiplicity of presynaptic receptors –
both autoreceptors and heteroreceptors.

Modulation is presynaptic
Paired-pulse electrophysiology
To examine the locus of modulation, we did paired-pulse
experiments (Figure 4); an increase in paired pulse ratio
(PPR) argues for presynaptic action [41,42]. In the dra-
matic experiment shown (Figure 4A), DA reduced the size
of the IPSC to 17% of control and converted paired-pulse
depression to facilitation, producing a 2.9 fold increase in
the PPR. Overall, DA produced a 1.3 ± 0.2 fold increase in
the PPR (n = 7). The magnitude of the increase correlated
with the magnitude of DA modulation (Figure 4B).

FM1-43 destaining
To show presynaptic modulation directly, we used the
method of FM1-43 destaining [viz. [43,44]]. FM1-43 (10
μM) was loaded into vesicles by field stimulation (20 Hz;
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30 sec), and then free FM1-43 was washed away. After ini-
tial images were acquired to establish the baseline, vesi-
cles were unloaded with 4 Hz stimulation, during which
drugs were applied by local perfusion. The intensity of

staining at several synaptic sites was measured in CCD
images acquired every 1.25 sec (Figure 5). As would be
expected from its ability to completely inhibit GABAergic
IPSCs [38], the GABAB agonist Baclofen (50 μM) com-

Medium-spiny neuron autaptic and synaptic responsesFigure 1
Medium-spiny neuron autaptic and synaptic responses. A. Autaptic response inhibited by bicuculline. Using a 
standard K-gluconate-based intracellular solution, an autaptic response (left, thick black trace) was evoked by a 1 msec depolar-
izing command, which triggered an inward action current (truncated off bottom of record, at start of trace). Local perfusion 
with the GABAA antagonist bicuculline (gray trace; Bic, 50 μM) completely blocked the response (leaving a small inward tail of 
the action current). The autaptic response recovered fully (thin black trace), nearly superimposing on the initial, control trace. 
Perfusion with dopamine (DA, 1 μM) inhibited the autaptic response (right), and this recovered fully. The wash trace in the left 
panel is the same as control trace in the right panel. Cells were stimulated throughout the experiment at 0.1 Hz to avoid fre-
quency-dependent effects. Control, drug-treatment, and wash traces were collected after responses had stabilized, typically 30 
sec after drug application or wash. Averages of 10 traces are shown. The amplitude of the initial control response was 140 pA, 
which was representative of the amplitude of the autaptic responses measured. B.Synaptic current response inhibited by 
gabazine. In another experiment, a nearby neuron was stimulated with a loose-patch electrode, evoking a synaptic response 
in the recorded MSN (left, thick black trace). Local perfusion with the GABAA antagonist gabazine (10 μM) completely (gray 
trace) blocked the response (leaving the small inward tail from the stimulus artifact). Following the wash (thin black trace), the 
synaptic response nearly recovered. Perfusion with DA (1 μM) inhibited the response (right), and this recovered with a second 
wash, although not completely. Traces shown are averages of 4 or 5 responses. Synaptic responses showed greater variation in 
amplitude than autaptic responses. The amplitude of the initial control synaptic response shown here was 220 pA, which was 
somewhat smaller than the typical synaptic response.

Differential run down of autaptic vs. synaptic responsesFigure 2
Differential run down of autaptic vs. synaptic responses. A. Control responses are presented from two experiments 
done on sister cultures recorded a day apart. While the synaptic response was stable for the duration of the experiment, the 
autaptic response showed significant run-down. B. In some recordings (see Figure 7) there was a second autaptic response 
(Component 2) riding on top of the initial response (Component 1), Component 1 ran down, while Component 2 did not, sug-
gesting that Component 2 was mediated by autaptic connections made on more distal dendrites.
Page 4 of 16
(page number not for citation purposes)



BMC Neuroscience 2006, 7:53 http://www.biomedcentral.com/1471-2202/7/53
pletely arrested destaining (n = 4 of 4 experiments; data
not shown). The D1 agonist SKF38393 (1 μM) or the D2
agonist Quinpirole (1 μM) each slowed or arrested
destaining at about half of synapses in every experiment.
The majority of experiments showed inhibition and in
those experiments about half of the varicosities imaged
showed inhibition (Figure 5C). We never saw an
increased rate of destaining with SKF38393, as might be
anticipated from the electrophysiological data. Since DA
agonists produced at most a reduction to 50% inhibition
of control GABAergic IPSCs (see previous section), while
some varicosities showed arrest of FM1-43 destaining (0%
of control), this suggests that a subset of MSN varicosities
express DA receptors that may shut down release. As a
control, we examined destaining in ventral tegmental area
cultures, which lack D1 receptors, and confirmed that
SKF38393 was ineffectual (n = 3 of 3; data not shown). So,
both D1- and D2-like receptors appear to be present pres-

ynaptically and are thus positioned to modulate MSN syn-
apses.

DA receptor visualization by immunostaining
We showed previously by fluoroprobe labeling that D1
and D2 receptors are present on FM1-43-labeled presyn-
aptic varicosities [29]. To gain higher resolution images of
the distribution of DA receptors, we immunostained nAcc
cultures with either D1-or D2-selective antisera (Figure 6).
While the fluoroprobes revealed variations in postsynap-
tic membrane labeling, immunostaining showed patches
of somatodendritic DA receptors and what appeared to be
presynaptic labeling. Contrary to the fluoroprobe data
where intravaricose axons were apparently unlabeled,
immunostaining revealed not only varicosities but in
places wisps of receptor labeling on connecting axonal
segments, which by their thin, constant diameter con-
firmed axonal localization. Results shown were obtained
with antipeptide antisera to rat D1a receptor [rabbit poly-
clonal to peptide 314, 3rd intracellular loop, Ref. [45]]
and rat D2 receptor [rabbit polyclonal to peptide 53,
extracellular amino terminus, Ref. [46]]. Similar results
were obtained with antisera to human D1 receptor [clone
1-1-F11 s.E6 directed to the C-terminus, Ref. [47]] and the
rat D2 receptor [extracellular amino terminus, Ref. [48]].

DA differentially modulates two-component nAcc autaptic 
connections
In a few experiments (n = 6), stimulated action currents
reliably evoked an initial autaptic response, which we
called Component1 (Comp1), and after a fixed latency a
second, smaller IPSC (Comp2), riding on top of the initial
response (Figure 7); in one of these experiments, there
was another, still further delayed, small IPSC (Comp3).
All the components were GABAA mediated. The fixed
delay was most likely due to conduction time in a recur-
rent axon branch that traveled away from the cell for some
distance and then returned to make autaptic contacts. It
could be argued that Comp2 was due to activation of a
neighboring cell via depolarizing GABA action [49] or
electrical coupling [17]; however, the latency was too
short to accommodate an intervening synaptic connec-
tion, and did not show the variation that would be intro-
duced by the firing of an intervening cell. Moreover,
electrical coupling amongst MSNs tends to be too weak to
drive postsynaptic cells to fire [17] under normal condi-
tions [50]. Another explanation might be multivesicular
release [51], but the latency of Comp2 was too long for
this to be the mechanism.

DA differentially modulated the different autaptic compo-
nents (Figure 7A). In the majority of the experiments DA
modulation of Comp1 was the largest, but in no experi-
ment was the modulation or the multiple components the
same. The effects of selective agonists were tested success-

Neurotransmitter modulation of autaptic responseFigure 3
Neurotransmitter modulation of autaptic response. 
A. Here, a high-chloride intracellular solution was used so 
that autaptic responses were inward and larger. (A1) DA 
(gray trace) inhibited the autaptic response, here to 52% of 
control. (A2) Application of the D1 antagonist SCH23390 
(SCH) together with Sulpiride (Sulp) had no impact on the 
response (black trace), but blocked DA action (gray trace). 
(A3) In this experiment, the DA inhibition was D2-mediated, 
as Sulpiride blocked DA action completely (gray trace), while 
SCH23390 had only a modest effect. (A4) At the end of the 
experiment, gabazine (gray trace) completely blocked the 
autaptic response. B. In another cell, (B1) the autaptic con-
nection did not show DA modulation. However, (B2) Nore-
pinephrine (NE; 68% inhibition) and (B3) Serotonin (5-HT; 
78% inhibition) inhibited the autaptic response, arguing that 
DA does not act through other monoamine receptors. (B4) 
At the end of the experiment, the autaptic response was 
completely blocked by Gabazine.
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fully in experiment number 5 (Figure 7B). Exponential
extrapolation of the decay of Comp1 and subtraction to
isolate Comp2 (labeled 2') revealed that DA markedly
attenuated Comp1, with little effect on Comp2' (Figure
7B1). In contrast, the D1 agonist SKF38393 facilitated
Comp1 with no effect on Comp2' (Figure 7B2). The D2
agonist Quinpirole significantly attenuated Comp1 while
modestly facilitating Comp2' (Figure 7B3). Since the two
components must be regarded as being part of a single

synaptic connection – just separated temporally by the
conduction time due to an intervening length of axon –
DA is apparently able to modulate release sites making up
a single synaptic connection differentially.

In experiment 5, in which there was the greatest temporal
separation of the components, we were able to compare
the decay of the control responses and their rise time. As
plotted in Figure 2B, Comp1 decayed over about 10 min

Paired-pulse facilitationFigure 4
Paired-pulse facilitation. A. Paired pulses (PP1 and PP2) were delivered at a 100 msec interval in the absence (saline, black 
traces) and the presence of DA, 1 μM (gray traces). In this experiment, DA produced a dramatic inhibition to 17% of control, 
which was accompanied by about a 3-fold increase in the paired-pulse ratio (PPR), from 0.47 to 1.34. Traces shown are the 
averages of 5 traces. B. Plotting PPR vs. DA inhibition (expressed as the percent of the preceding control IPSC) for all paired-
pulse experiments (n = 8), showed that PPR increased with DA modulation, indicative of presynaptic action. The gray-filled cir-
cle, corresponds to the experiment shown in panel A.

Table 1: DA modulation of autaptic connections. Data are organized by the receptor targeted. The Incidence data give the percent of 
connections that showed modulation greater than 5%; less that a 5% modulation is reported as Neither. The Magnitude data 
(expressed as the percentage of the preceding control response) give the average size of the inhibited or facilitated IPSC for those 
connections showing inhibition or facilitation, respectively. DA or the combination of the D1 agonist SKF38393 (SKF) and the D2 
agonist quinpirole (Quin) targeted DA receptors as a class. SKF38393 or DA in the presences of Sulpiride (Sulp) targeted D1 
receptors. Similarly, Quinpirole or DA in the presence of the D1 antagonist SCH23390 (SCH) targeted D2 receptors. The other 
monoamines norepinephrine (NE) and serotonin (5-HT) were also tested. n/a, not applicable.

Incidence, % Magnitude, %

Targeted
Receptor

Drug n Inhibition Facilitation Neither Inhibition Facilitation

D1, D2 DA 29 83 10 7 49 117
SKF & Quin 4 75 0 25 88 n/a

D1 SKF 12 50 33 17 84 136
DA & Sulp 10 60 20 20 54 127

D2 Quin 14 71 21 7 66 109
DA & SCH 10 70 10 20 59 110

Monoamine NE 2 100 0 0 48 n/a
5-HT 5 80 0 20 52 n/a
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to a relative plateau at about 25% of the initial value, pre-
sumably due to washout; in contrast, Comp2 was stable
throughout most of the experiment (just over an hour),
presumably because the intervening axonal segment
retarded washout. The rise time of Comp1, 1.07 msec, was
slightly faster than that of Comp2', 1.47 msec. The smaller
amplitude and slower rise time of Comp2 would be
expected if it was mediated by synaptic varicosities that
impinged on more distal dendrites than those that medi-
ated Comp1.

Discussion
In postnatal nAcc cultures, we examined MSN-to-MSN
synaptic connections and their modulation by DA. We
focused on autaptic responses because they provided
access to single, identified synaptic connections. Autaptic
responses were subject to presynaptic DA modulation,
with D2-like receptors predominantly mediating inhibi-
tion, and D1-like receptors more often mediating facilita-
tion. The majority of connections showed both D1 and
D2 modulation, consistent with significant receptor co-
expression. In some cells, the autaptic responses had two
or three components that were differentially modulated
by DA, consistent with differential trafficking of DA recep-
tors to different presynaptic varicosities of the same cell.

Medium-spiny neuron connections in vitro
In postnatal culture, most MSN neurons show a single
autaptic GABAA mediated, Ca2+-dependent after-hyperpo-
larization [38]. Some connections had a delayed compo-
nent, with fixed latency, that we would argue was a second
autaptic connection made after the MSN axon had
traveled for some distance, introducing a conduction
delay. MSN autapses have not been reported in the intact
circuitry of the brain, and so they presumably arise in cul-
ture because of the artificial conditions, which include the
immaturity of the cells, the lack of afferentation, the lack
of normal projection targets, and the two-dimensionality
of the cultures, any or all of which presumably contribute
to the propensity of the cells to form autaptic connections.
That being stated, MSN autapses do provide a powerful
window on the synaptic capabilities of the cells, and serve
to frame hypotheses that may be tested in the intact cir-
cuitry of the striatal complex, which we have now done
[52].

Stimulating adjacent MSNs evoked a synaptic response of
larger amplitude and faster rise time that was resistant to
washout. Synaptic connections might impinge on more
proximal somatodendritic membranes, consistent with
recent observations suggesting that different populations
of GABAergic inputs can be differentially distributed over
the dendritic arbor [53]. The stability of the synaptic
response confirmed that postsynaptic GABAA receptor
sensitivity was maintained with the standard intracellular

solution we used [54]. The single autaptic response, or the
first component of the multicomponent autaptic
response, showed a progressive decrease in amplitude
over the course of about 15 min, which would be expected
if the release sites mediating the response were close to the
recording electrode in the cell soma and so subject to
washout. The second component of the multicomponent
autaptic response was typically smaller in amplitude and
slower in rise time arguing that the recurrent axon made a
more distal and thus weaker autaptic connection. Consist-
ent with this, the second component was resistant to
washout, presumably due to the functional diffusion lim-
itation of the more distal axon. Interestingly, while the
single autaptic component decreased to a fraction of its
initial amplitude, the magnitude of DA modulation did
not decrease.

The argument could be made that the single autaptic
response – or the first component of the multicomponent
response – was mediated by an autoreceptor current
mechanism, as described by Pouzat and Marty in cerebel-
lar interneurons [55]. Indeed, we observed strikingly sim-
ilar washout kinetics. However, washout of key elements
of the presynaptic machinery does not distinguish
between an autoreceptor current (where the presynaptic
varicosity is also the postsynaptic element) and an autap-
tic (axodendritic) response, but amplitude does. A com-
parison of the flipped IPSC elicited with similar high
chloride-intracellular solutions used revealed that the
autaptic responses we recorded were an order of magni-
tude larger. Given the two-dimensional neuropil of the
cultures, which should limit the numbers of proximal pre-
synaptic varicosities, we should have obtained the oppo-
site result. A further comparison with their data revealed
that second autaptic component they measured, which
they deemed to be axodendritic, was in fact larger, rather
than smaller, as we observed. The lack of evidence for
GABAA receptors at presynaptic sites, either in the intact
striatum [56] or in nAcc culture [29], argues further
against the autoreceptor current mechanism. In our FM1-
43 experiments, field stimulation that activated most syn-
apses in the culture did not evoke sufficient GABA release
to activate presynaptic GABAB receptors and arrest destain-
ing. So there would not have been sufficient GABA release
to activate presynaptic GABAA receptors, even if they were
present, arguing further against the autoreceptor current
mechanism. Therefore, the autaptic responses reported
here, and in our previous study [38], are mediated by bone
fide axodendritic autaptic connections.

Dopamine modulation
DA was the most effective DA agonist, producing on aver-
age about a 50% inhibition of autaptic responses. In rare
experiments, DA produced near complete inhibition.
However, DA was not as robust as the GABAB agonist
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Imaging presynaptic modulation by FM1-43 destainingFigure 5
Imaging presynaptic modulation by FM1-43 destaining. Synaptic vesicles were loaded (stained) with FM1-43 by field 
stimulation, and then imaged every 1.25 sec. After a control period (15 images), showing that there was limited bleaching, field 
stimulation was applied at 4 Hz; destaining was monitored at 8varicosities (thin traces). A. During this stimulation, the D1 ago-
nist SKF38393 (SKF,10 μM) was perfused (10 images). For 5 varicosities (blue traces), there was no inflection in the destaining 
curve, while in the others (red traces), the destaining was arrested, creating an inflection. The two thick traces are averages of 
the sets of effect and no-effect traces. The effect traces were offset upwards for the sake of the illustration. Once the 
SKF38393 was washed off, and the stimulation continued, destaining continued or resumed. After an interval of no stimulation, 
the remaining FM1-43 was unloaded with a 20 Hz tetanus. A total of 70 images were acquired. B. In another culture, the D2 
agonist Quinpirole (Quin, 1 μM) was applied. In this experiment all 8 varicosities showed inhibition (red traces). D2 effects typ-
ically had a greater latency; note that the plateau started roughly when the drug was washed off (presumably coincidental). C. 
Overall, the majority of experiments showed either D1 or D2 inhibition, and in those experiments about half of varicosities 
showed inhibition (expressed as mean ± s.e.m.). Facilitation, as would be reflected in an increase in the destaining rate, was not 
seen. In each of the 13 D1 agonist experiments, a minimum of 2 varicosities showed inhibition; in the 18 D2 agonist experi-
ments, 3 experiments had only one varicosity that showed inhibition. In one D1 agonist experiment and in one D2 agonist 
experiment every varicosity showed inhibition.
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DA receptor immunostaining shows a presynaptic patternFigure 6
DA receptor immunostaining shows a presynaptic pattern. A. D1 immunostaining. (A1) A field in a nAcc culture is 
shown with fluorescence superimposed on a differential interference contrast (DIC) image. Here five of six cells were D1 
immunoreactive. Note that the cell body staining did not extend reliably out onto the dendrites. Rather, punctate or linear 
staining was seen in the neuropil, consistent with staining of axons and presynaptic varicosities. Regions of interest outlined in 
red and blue are shown at 2× magnification on the right side. (A2) D1 fluorescence revealed strings of varicosities studding a 
thin process. (A3) In another region of the neuropil, continuous staining of putative-axonal processes was seen. B. D2 immu-
nostaining. (B1) A field in a different nAcc culture containing four neurons, two of which were D2 immunoreactive, is shown. 
Again, note that the cell body staining does not extend continuously out onto the dendritic processes. Rather, punctate and lin-
ear staining of putative axonal processes is evident in the neuropil. (B2) Several varicosities without clear intervening axonal 
staining are seen studding unstained dendrites. A stretch of labeled axon is seen on the lower, right corner of the field. (B3) In 
another region, there were stained varicosities studding axonal processes. Note the dearth of postsynaptic dendritic labeling.
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Baclofen, which consistently shut down the autapses [38].
DA and a combination of D1 and D2 agonists produced a
similar incidence of modulation, but equimolar DA con-
centrations produced more robust inhibition (but not
facilitation). Receptor family-selective modulation with
DA and a single antagonist was also more robust that the
corresponding single agonist. This was not due to DA act-
ing via other monoaminergic receptors [viz. [57]], as there
were clear instances where norepinephrine and serotonin

modulated MSN synaptic connections that showed mod-
est DA modulation. Moreover, the magnitude of the
monoamine inhibition was no greater than the magni-
tude of DA inhibition, so it would be unlikely that DA, a
poor serotonin or noradrenergic agonist, would have that
much effect via the heterologous receptors. More likely,
DA and the selective agonists activated different DA recep-
tor confirmations with differing potencies, as has been
described for both D1 and D2 receptors [58-61].

Dopamine modulation of multicomponent responsesFigure 7
Dopamine modulation of multicomponent responses. A. In each of six experiments with multiple components, DA 
inhibited the components differentially. In experiment number 6, there were three components and each was differentially 
modulated. Component 1 (Comp1) was measured directly; components 2' and 3' were measured from the calculated 
responses after exponential extrapolation of the preceding component (or in experiment 6, the preceding two components). 
B. Differential DA modulation is illustrated in traces from experiment 5, in which we were successful in testing the effects of 
both D1 and D2 agonists. (B1) The control response had two components (1 and 2). Comp1 was extended by exponential 
curve fitting and then subtracted from the control trace to isolate Comp2' (blue traces). The sections of the traces measured 
(for Comp1 and Comp2') are shown thickened. DA (gray thick trace) inhibited Comp1 to 33% of control, while it had no effect 
on 2' (light blue thick trace). Bicuculline (Bic) blocked both components, nearly completely. (B2) SKF38393 (SKF) facilitated 
Comp1 (gray thick trace), but had no effect on Comp2' (light blue thick trace). (B3) Quinpirole (Quin), inhibited Comp1 (gray 
thick trace) and facilitated Comp2' (light blue thick trace). The dashed line indicates the zero current baseline.
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Most MSN connections showed both D1 and D2 modula-
tion, consistent with near complete overlap in the expres-
sion of D1- and D2-like receptors on individual MSNs.
Reports of a lesser incidence of colocalization (summa-
rized in the Background) may be ascribed in part to detec-
tion issues with the different methodologies employed. It
may be argued that physiological data, reflecting the
actual function of the receptors, provide the most sensi-
tive validation [31,62]. The apparent contradictions in the
results could also be explained by differential trafficking
of DA receptors (see below).

Presynaptic DA modulation
Slice studies indicate that most DA modulation of MSNs
arises through modulation of synaptic inputs onto the
cells with only a minor postsynaptic contribution [63].
DA depresses GABAA responses via postsynaptic action,
but the magnitude was on the order of 20% [64], whereas
we observed a modulation on the order of 50%, arguing
for an additional presynaptic action. Guzman et al. [9]
provided the first evidence for presynaptic DA modula-
tion in the striatal slice. Our paired-pulse experiments
provide evidence for presynaptic modulation of MSN-to-
MSN connections in culture. Direct imaging of DA modu-
lation via inhibition of FM1-43 destaining showed that
both D1 and D2 agonists arrested destaining. Although
we cannot be certain that the varicosities we imaged all
belonged to MSNs, the sheer numbers argue that we were.
Moreover, MSNs show presynaptic modulation of their
projection synapses [25,28], so the neurons are clearly
capable of mounting presynaptic DA receptors.

Presynaptic actions of DA in the striatal complex have
been called into question by the dearth of morphological
evidence for presynaptic DA receptors [47,65-70]. How-
ever, there is extensive physiological evidence for presyn-
aptic DA receptors on three classes of synapses in the
striatal complex. Presynaptic D2 autoreceptors on DA
neuron terminals inhibit DA release [71], D2 heterorecep-
tors on corticostriatal terminals inhibit glutamatergic
inputs [72], and presynaptic D1 and D2 heteroreceptors
on MSN terminals modulate GABAergic IPSCs [present
results, and Refs. [9,73]]. DA receptors can be visualized
using fluoroprobe antagonists on FM1-43 labeled presyn-
aptic varicosities of both nAcc and striatal MSNs in post-
natal culture [29]. When exogenous DA receptors tagged
with yellow fluorescent protein (EYFP) are chemically
transfected into nAcc cultures, they take up presynaptic
positions [74]. Antipeptide antisera directed against D1
and D2 receptor epitopes mainly visualize receptors on
axonal segments and presynaptic varicosities, cell bodies,
but not dendrites. Possibly, presynaptic receptors are
more easily solubilized [viz. Ref. [75]] with the usual con-
centrations of detergent used in preparing tissue for
immunostaining, and so could account for an artifactual

underestimate of the incidence of presynaptic DA recep-
tors. Indeed, we have found that eliminating detergent
from the immunostaining protocol dramatically
enhanced presynaptic immnolabeling. In culture, the use
of detergent is unnecessary presumably because the fixa-
tion process adequately permeabilizes cells. Consistent
with this supposition, we obtained similar staining pat-
terns using antipeptide antisera directed to extracellular
and to intracellular epitopes (in the absence of detergent).

Presynaptic modulation is heterogeneous
As suggested by Surmeier et al. [19], much of the contro-
versy regarding the distribution of DA receptors on MSNs
in the striatal complex would be resolved if MSNs traffic
DA receptors to their presynaptic varicosities differen-
tially. Otherwise it is difficult to integrate anatomical
studies indicating that MSNs project sequentially rather
than in parallel to their major target areas [32,33], with
physiological studies showing D2 inhibition of MSN pro-
jections to pallidal neurons [28] and D1 facilitation on
projections to the ventral midbrain [25], and data show-
ing extensive co-expression of D1 and D2-like receptors in
MSNs [29,31,62].

To show differential trafficking directly requires studies at
the level of single cells. We have fortuitously found that
some MSNs in postnatal culture show multicomponent
autaptic responses. Since both responses share the same
presynaptic and postsynaptic elements, they should be
considered to be components of the same synaptic con-
nection. And, given that they are connections between
MSNs, they then represent the majority of intrinsic syn-
apses in the striatal complex. We cannot rule out the pos-
sibility that the autaptic connections arise aberrantly in
the absence of their projection targets, given the lack of
documented autaptic connections in the intact circuitry.
However, this does not detract from the fact that we have
access to two separate populations of presynaptic varicos-
ities that together make up a single MSN synaptic connec-
tion.

Given this fortuitous situation, we were able, in the exper-
iments with two-component autaptic responses, to test
the differential effect of DA agonists. If DA receptors were
distributed homogeneously on all the presynaptic recep-
tors of a given MSN, we would expect that both compo-
nents of the autaptic response should show the same
modulation. If the magnitude of the modulation differed,
one could argue that the distribution was relatively
homogenous, with variation in the level of expression at
different varicosities. However, we found that D1 or D2
modulation might be lacking on one connection or have
opposite effects, consistent with true differential traffick-
ing of the receptors. The discrepancy between our FM1-43
experiments, which showed that varicosities were inhib-
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ited on an all-or-none basis, and the electrophysiology,
which showed about a 50% inhibition, argues that a mix
of unaffected and strongly modulated presynaptic varicos-
ities accounts for the modulation we observed electro-
physiologically. The immunocytochemical results that
showed D1 or D2 receptors on only a subset of MSN var-
icosities argue against differential coupling to postrecep-
tor mechanisms and for differential trafficking. In recent
nAcc slice studies, we have shown that DA modulates Ca2+

influx into the varicosities of single MSNs heterogene-
ously, providing further evidence for differential traffick-
ing [52].

Conclusion
Our present culture results, building on several lines of
evidence and supported by recent slice studies, make the
strong argument that individual MSNs differentially traf-
fic DA receptors to their presynaptic varicosities. Defini-
tive support for this argument will require imaging the
distribution of DA receptors in single MSNs directly. We
cannot exclude the possibility that the presence of aber-
rant projection synapses in the intrinsic population in our
cultures accounts for the differential distribution of DA
receptors we have observed. Gaining insight into the dis-
tribution of DA receptors on the local synapses of individ-
ual MSNs holds considerable import. DA is arguably the
major modulator of information processing in the area. If
DA receptors are differentially trafficked to MSN intrinsic
synapses, and moreover if trafficking is plastic, then the
distribution of presynaptic receptors would play a crucial
role in the dynamic regulation of information processing
in the striatal complex.

Methods
Pharmacologic agents
Dopamine, DA agonists and antagonists, as well as
Gabazine (SR-95531; 2-(3-Carboxypropyl)-3-amino-6-(4
methoxyphenyl)pyridazinium bromide) were obtained
from Sigma-Aldrich. We used Gabazine to avoid the con-
found that bicuculline salts block S-K+ channels via a tetra-
ethylammonium (quaternary ammonium group) like
effect [76]. CNQX and CGP35348 were from Tocris-
Cookson. FM1-43 was from Molecular Probes/InVitro-
gen. DA and all drugs used were made up in 1000× stock
solutions, stored frozen at -80°C in aliquots, and thawed
immediately before use. In initial experiments, ascorbic
acid was included in the DA stock solution (at 10× the DA
concentration) to prevent DA oxidation; however, this
had no appreciable benefit, so the DA application experi-
ments with and without ascorbic acid were pooled.

Postnatal neuronal culture
We cultured neurons from the nucleus accumbens (nAcc)
of postnatal (P2) Sprague-Dawley rat pups (Hilltop Lab
Animals), with only minor modifications from our previ-

ously published methods [29,38]. Animal procedures
were approved by the Institutional Animal Care and Use
Committees of Columbia University and the New York
State Psychiatric Institute, and were in compliance with
the USPHS Guide for the Care and Use of Laboratory Animals.
Pups were anesthetized with ketamine/xylazine, then
chilled in ice chips, and decapitated. Brains were removed
into chilled phosphate-buffered saline. An astrocyte
feeder layer was prepared from the dorsal cortex two
weeks in advance of making neuron cultures. For this,
enzymatically-dissociated cortical cells were plated in the
~100 μL wells of glass-bottom dishes (MatTek) that had
been coated with laminin; after 1 hour, wells were vigor-
ously washed with cold medium leaving only strongly
adherent astrocytes; once these grew to near confluence,
further division was halted with fluorodeoxyuridine.

To obtain nAcc neurons, we cut the front half of the brain
sagitally along the midline and made a 2 mm thick hori-
zontal slice centered on the anterior commissure; further
cuts were made using the ventral tip of the lateral ventricle
as the medial cut to isolate the nAcc in a 2 × 2 × 2 mm
cube. This was cut further into 1 × 1 × 1 mm segments and
incubated in Papain (Worthington) at 32°C with gentle
agitation and continuous carbogenation. After 90 min,
the Papain was quenched with medium containing 10%
calf serum and the tissue cubes dissociated to single cells
by three rounds of gentle trituration in the presence of
DNAase. Neurons were resuspended in B-27 supple-
mented NeurobasalA medium (Invitrogen), with 1%
heat-inactivated supplemented-defined calf serum
(Hyclone), added to assure glial longevity, and plated
onto the pre-established monolayers of cortical astrocytes
(in the microwells). Cultures were maintained in a total
volume of 2.5 ml (which filled the whole dish), and never
fed. To prevent microglial proliferation, fluorodeoxyurid-
ine was added again after 7 days in vitro (DIV). Experi-
ments were conducted on cultures between 10 and
21DIV, a period during which numbers of synapses are
relatively stable [37].

Electrophysiology
Recordings were done at room temperature (~22°C) on
the stage of an inverted microscope (Zeiss IM35 or
Axiovert35M). The culture medium was replaced with
oxygenated extracellular solution containing 135 mM
NaCl, 3 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 10 mM glu-
cose and 10 mM N-(2-Hydroxyethyl)piperazine-N'-(2-
ethanesulfonic acid) (HEPES), pH7.35 (with KOH). Patch
pipets, 6-9MΩ, were pulled on a P-80/PC Flaming-Brown
Micropipet Puller (Sutter), and filled with either a stand-
ard intracellular solution that contained 140 mM gluconic
acid, 140 mM KOH, 0.1 mM CaCl2, 2 mM MgCl2, 1 mM
ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-
tetraacetic acid (EGTA), 2 mM ATP, 0.1GTP and 10 mM
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HEPES, pH7.25, or a high-chloride solution – transform-
ing IPSCs into larger EPSCs – that contained 130 mM KCl,
0.1 mM CaCl2, 4.6 mM MgCl2, 10 mM HEPES, 1 mM
EGTA, 4 mM ATP and 0.4 mM GTP, pH7.25.

Experiments were controlled by a Power Macintosh
(Apple Computer) using IgorPro (Wavemetrics) with Pul-
seControl XOP's [77]. Neurons were voltage clamped to -
60 mV (to resolve autaptic currents and to prevent repeti-
tive firing) using an Axoclamp2A (in continuous single
electrode voltage clamp mode) or an Axopatch 200 (Axon
Instruments/Molecular Devices). This holding potential
did not include a correction for the liquid junction poten-
tial of about -15 mV, so the actual holding potential was
about -75 mV. Membrane currents were digitized (Instru-
tech ITC-16 interface) and recorded (PulseControl) to
disk. Compensation for passive conductance and series
resistance was done by adding a scaled average of four -5
mV pulses delivered after each epoch of data acquisition
(PulseControl: Subtraction Pulses Global). Further analy-
sis of the data was done in IgorPro or Axograph (Axon
Instruments/Molecular Devices).

Drugs were applied by local perfusion via a solenoid-con-
trolled, gravity-fed Y-tube system; multiple drug-applica-
tion channels were available via a rotary fluid switch
(Rainin). Following solenoid activation, onset of drug
perfusion was rapid, but delayed by about 5 sec, which
was required for reversal of flow through the drug applica-
tion tube. When the solenoid was deactivated, drug was
rapidly removed by reverse flow through the drug-applica-
tion tube. Fast green was used in some experiments to ver-
ify proper performance of the local perfusion system; it
had no apparent pharmacologic effects at the concentra-
tion used. Drug effects were deemed significant if they
exceeded 5%. To assure that drug application was uniform
over the recorded cell, all experiments began with the
application of bicuculline or gabazine, and were not con-
tinued unless better than 95% GABA blockade was
obtained; as possible, experiments were also concluded
with a test of GABA blockade, and if the blockade was not
95% or better, the experiments were discarded.

Unclamped A-spikes were evoked with 1 msec step depo-
larizations of about 30 mV to elicit autaptic currents. Volt-
age clamp control was such that we were often able to
reestablish a brief zero-current epoch before the autaptic
response. Synaptic responses were evoked by 1 msec
depolarizing pulses delivered to the adjacent neuropil or
cell bodies via a loose patch electrode; in some cases, the
recorded cell was backfired, as was evident by an evoked
action current spike; these responses were deemed autap-
tic, as they differed in no appreciable way from responses
evoked by somatic depolarizing pulses. In contrast, synap-

tic responses showed no preceding inward current spike
and rose cleanly from the baseline with a sharp inflection.

In most experiments, cells were stimulated at 0.1 Hz.
Latencies of synaptic responses were measured from the
peak of the action current, or from the stimulus artifact if
its peak merged with the action current, to the point of
maximum inflection at the onset of the synaptic response.
Rise times were measured as the time from 10 to 90% of
the peak amplitude of the synaptic current (AxoGraph).
Five control responses were considered, then drugs was
applied by local perfusion. After about 30 sec, which were
required for responses to stabilize, five drug responses
were then averaged, and the drug washed off. Again, after
about 60 sec, when responses had again stabilized, five
responses were averaged for a post-drug control. Numeri-
cal data were expressed as mean ± s.e.m. Significance of
differences was evaluated by t-test.

In two-component responses, the second component,
Comp2' was isolated by exponential curve fitting and sub-
traction. The assumption was made that the late decay (40
– 100 msec) of Comp2 would be representative of the
decay of the first component, Comp1; indeed, in single
component responses, the decay was well fit by a single
exponential (IgorPro),

This late exponential curve fit was scaled to the amplitude
of the first component (A set to ratio of the amplitudes of
Comp1/Comp2) and shifted temporally by the interval
(Δt) between the components (t0 set to t0-Δt). This pro-
vided an extrapolation of the decay of Comp1 uncontami-
nated by Comp2, which was then subtracted from the raw
trace to yield a pure second component, Comp2'. In the
experiments considered, Comp2' decayed properly to the
baseline.

Immunocytochemistry
Cultures were processed to visualize DA receptors follow-
ing standard immunocytochemistry protocols. Briefly,
cultures were slow fixed with 4%formaldehyde (prepared
from 8% paraformaldehyde, EM Sciences, and 2× phos-
phate buffer) + 0.3% glutaraldehyde (Sigma-Aldrich).
Polyclonal antipeptide antisera to D1a and D2 receptors
(Marjorie A. Ariano, Rosalind Franklin University of Med-
icine and Science; Chemicon) were applied at 1:1000
dilution, overnight at 4°C, and then visualized using flu-
orescent secondary antisera (Chemicon). Detergent was
not used. Sequences of images were acquired (Zeiss Axio-
vert; Scanalytics IP-Lab), at 0.5 μm intervals (Ludl Z-
motor) using a Sensys chilled-CCD camera (Photomet-
rics/Roper Scientific), and digitally deconvolved to pro-
duce confocal images (VayTek Microtome). The sequence
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of images encompassing the varicosities of interest were Z-
projected and overlaid on the corresponding Nomarski-
DIC images (Fluorescence CV, IP-Lab extension).

Activity-dependent FM1-43 destaining
Synapses were loaded with FM1-43 (10 μM) by field stim-
ulation (20 V applied between platinum electrodes,
placed 1 cm apart on either side of the microwell) with a
train of 1 msec duration pulses delivered at 20 Hz for 30
sec. After 5 min to allow for endocytosis, the FM1-43 was
removed with three washes. The same imaging system as
described above was used to image FM1-43 destaining,
with the addition of a MacLab/8 (Analog Digital Instru-
ments) for automation. The MacLab was programmed to
deliver timed TTL pulses to trigger the camera, fluores-
cence shutter, stimulator, and the drug-application sole-
noid valve; pulse sequences were recorded (MacLab Chart
software) to produce a graphical log. Images were
acquired every 1.25 sec (200 msec exposure; camera gain
on high), and after a control period, destaining was initi-
ated by slow stimulation at 4 Hz. During this stimulation,
drugs were applied by local perfusion for a discrete time
interval; presynaptic inhibition would be expected to slow
or arrest destaining, while facilitation would be expected
to accelerate destaining. Stimulation was continued after
drug application to confirm that destaining resumed.
Stimulation was then stopped, and after images were
acquired to establish the new baseline, a second tetanus
(20 Hz for 20 sec) was delivered to unload remaining
FM1-43 and confirm that activity-dependent destaining
was not exhausted to rule out a floor effect. Experiments
were only analyzed if they met the following criteria: a sta-
ble plateau prior to stimulation, destaining with the onset
of stimulation, a stable post-stimulation baseline, and a
final tetanus-induced destaining. In some experiments, to
test whether stimulated GABA release might reduce the
efficacy of stimulation for loading or destaining via presy-
naptic inhibition, the GABAB antagonist CGP35348 (500
μM) was included throughout; however, this made no
appreciable difference, so experiments with and without
CGP35348 were pooled in the data tabulation.

For analysis, 10 regions of interest (ROI's) 2 μm square
were selected – nine ROI's were of individual varicosities
that were easily resolved from adjacent varicosities, and
one ROI of an area containing no varicosities for determi-
nation of background staining. The intensity of the back-
ground ROI was subtracted from the other intensity
measurements at each time point. Intensities were nor-
malized to the average intensity of the initial control
frames. There were occasional fluctuations in the intensity
of the mercury arc, which were reflected by simultaneous
jumps in the intensity in all 10ROI's; these points were
removed and the average of the two adjacent time points

used instead. Finally, traces were smoothed using a fifth
power Gaussian algorithm (IgorPro).

We used a Monte Carlo simulation to evaluate the signif-
icance of the destaining results. An ideal no-effect curve
was generated and scaled noise added to reproduce the
appearance of the actual data. We then scored four series
of 250 simulations to determine how often this noise
level produced an apparent effect. We applied the same
criteria used for the actual data, namely a readily evident
slowing of destaining shortly after the onset of drug appli-
cation and a resumption of destaining after drug applica-
tion was stopped. In the four simulations, we observed an
effect in 0.9 ± 0.3% of the traces, making p < 0.01 that the
results we observed arose by chance.
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