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Abstract
Background: Early stages in the excitation cascade of Limulus photoreceptors are mediated by
activation of Gq by rhodopsin, generation of inositol-1,4,5-trisphosphate by phospholipase-C and
the release of Ca2+. At the end of the cascade, cGMP-gated channels open and generate the
depolarizing receptor potential. A major unresolved issue is the intermediate process by which
Ca2+ elevation leads to channel opening.

Results: To explore the role of guanylate cyclase (GC) as a potential intermediate, we used the
GC inhibitor guanosine 5'-tetraphosphate (GtetP). Its specificity in vivo was supported by its ability
to reduce the depolarization produced by the phosphodiesterase inhibitor IBMX. To determine if
GC acts subsequent to InsP3 production in the cascade, we examined the effect of intracellular
injection of GtetP on the excitation caused by InsP3 injection. This form of excitation and the
response to light were both greatly reduced by GtetP, and they recovered in parallel. Similarly,
GtetP reduced the excitation caused by intracellular injection of Ca2+. In contrast, this GC inhibitor
did not affect the excitation produced by injection of a cGMP analog.

Conclusion: We conclude that GC is downstream of InsP3-induced Ca2+ release and is the final
enzymatic step of the excitation cascade. This is the first invertebrate rhabdomeric photoreceptor
for which transduction can be traced from rhodopsin photoisomerization to ion channel opening.

Background
Phototransduction processes in invertebrates have both
similarities and differences from that in vertebrate rods.
The initial enzymatic step in all photoreceptors is the acti-
vation of G protein by rhodopsin. In the ciliary photore-
ceptors of vertebrate rods and cones, G protein activates
phosphodiesterase leading to a decrease of cGMP concen-
tration, closure of cyclic nucleotide-gated channels and
membrane hyperpolarization (for review see [1]). On the
other hand, the ciliary photoreceptors from scallops,
hyperpolarize due to an increase in cGMP which opens a

K+ selective conductance [2]. In invertebrate rhabdomeric
photoreceptors, which also depolarize in response to
light, no complete transduction cascade has been deter-
mined. It is clear that G protein activates phospholipase C
in all cases examined so far, including Drosophila [3-5],
Limulus [6,7] and squid [8,9]. PLC then hydrolyzes phos-
phatidylinositol-4,5-bisphosphate to produce inositol-
1,4,5-trisphosphate and diacylglycerol.

Subsequent steps differ among these photoreceptors. In
late stages of the excitation cascade in Drosophila,
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diacylglycerol (or metabolites) may lead to channel open-
ing [10,11]. However, understanding the final stages has
been hampered by the unavailability of a direct assay for
the light-dependent channels and varying results using
heterologous expression systems [12]. In the photorecep-
tors of Limulus ventral eye (for review see [13]), the cas-
cade involves PLC, InsP3, Ca2+ and cGMP. Light produces
an InsP3-induced Ca2+ elevation that precedes the onset of
the receptor potential [14]. Furthermore, intracellular
injection of Ca2+ mimics the light response [15-17] and
buffering intracellular Ca2+ inhibits it [16,18]. Taken
together, these results establish that InsP3-mediated Ca2+

elevation is an integral part of the excitation cascade. The
Limulus cascade ends with the opening of cGMP-gated
channels which, in this system, can be directly studied in
cell-attached and excised patches [19,20]. Photoreceptor
cells contain mRNA for a putative Limulus cyclic nucle-
otide-gated channel protein, and antibodies to the
expressed protein specifically label the light-sensitive
rhabdomeric lobe [21,22]. Furthermore either intracellu-
lar injection of cGMP [23,24] or elevation of cGMP by
inhibition of phosphodiesterase [25,26] excites the cell.
There is thus little doubt that the end of the cascade
involves cGMP-gated channels. What remains unclear is
the mechanism that couples Ca2+ release to cGMP
elevation.

Recent work demonstrated that inhibitors of guanylate
cyclase strongly reduce the response to light [27].
Although these results support the requirement for cGMP
during excitation, they do not indicate at which stage GC
is involved. In this paper, we test the hypothesis that GC
is a missing link in the cascade; i.e. that it acts downstream
from Ca2+ elevation as required if cGMP is to couple Ca2+

elevation to channel opening. Our results indicate that
this is indeed the case. Because PDE inactivation is
unlikely to be involved in excitation (see Discussion), it
appears that activation of GC is what elevates cGMP. It is
therefore now possible to a give a rather complete picture
of this complex cascade that couples rhodopsin photoi-
somerization to ion channel opening.

Results
Guanylate cyclase antagonists oppose the effects of PDE 
inhibitors
Inhibitors of PDE raise cGMP levels in the Limulus eyes
[26] and produce a depolarization of the photoreceptor
membrane [25]. GC inhibitors should counteract this
effect. To reduce PDE activity, 2.5 mM IBMX was added to
the bath for several minutes. Fig. 1A shows that this
evoked a 24 mV membrane depolarization in this cell
(control). Once the cell recovered following wash-out of
IBMX, GC inhibitor was injected. We used the competitive
GC inhibitor guanosine 5'-tetraphosphate because it can
be injected with greater ease and effects reverse more

quickly than with other antagonists [27]. GtetP was
injected until it decreased the light response by at least
80%. IBMX was then reapplied. Under these conditions,
the peak depolarization caused by IBMX of 11 mV was
54% smaller compared to what occurred before GtetP
injection (Fig. 1A, GtetP). The maximum slope of the
depolarization also decreased: during control perfusion of
IBMX, the maximum was 13.6 mV/min, and after injec-
tions the maximum slope was 6.1 mV/min. In ten experi-
ments, the average decrease of depolarization was 56 ±
24% (Fig. 1B) and the average decrease in the maximal ris-
ing slope was 60 ± 20% (Fig. 1C). These results are con-
sistent with GtetP inhibiting GC, thereby opposing the
increase in cGMP resulting from PDE inhibition.

GC inhibitors act downstream from InsP3 mediated Ca2+ 

release
In order to provide a link between light-induced Ca2+ ele-
vation and the opening of cGMP-dependent channels, GC
activity must be downstream from Ca2+ in the signaling
cascade. To determine if this is the case, photoreceptors
were excited by injecting InsP3 or Ca2+ directly into the
light-transducing lobe (the R-lobe) [6,7,15-17]. If GC is
downstream, this form of excitation should be reduced by
GC inhibitors. A similar strategy has been used previously
to characterize the ordering of other steps in the cascade
[15,18,28,29].

We first tested whether a GC inhibitor affects the excita-
tion produced by activating InsP3 receptors (Fig. 2). Cells
were impaled with two microelectrodes. One microelec-
trode contained the poorly hydrolysable analog of InsP3,
3dInsP3 (1 mM) [30] and was inserted into the R-lobe.
Previous work has shown that brief injections of InsP3 or
its analogs excite ventral photoreceptors and that the
latency of the response is lowest when the injection bolus
is close to the light-transducing membrane in the R-lobe
[6,7]. The second electrode contained 50 mM GtetP and
was positioned in the non-transducing A-lobe. Since mul-
tiple injections from this microelectrode were spread over
time, GtetP could diffuse throughout the cell. Each injec-
tion of 3dInsP3 caused a transient repeatable depolariza-
tion similar to a light response, as previously reported for
InsP3 and analogs [31-33]. Cells were then injected with
sufficient GtetP to cause a substantial decrease in the light
response (81% in Fig. 2). Injections of 3dInsP3 were inter-
spersed between light flashes. It can be seen (Fig. 2) that
the response to the InsP3 analog was also greatly reduced
(81%). In five experiments, the average inhibition of the
3dInsP3 response was 77 ± 16%, comparable to the aver-
age inhibition of the light response (89 ± 7%). After ces-
sation of GtetP injections, there was a slow recovery of
both the response to 3dInsP3 and the response to light. We
found that limiting the number of 3dInsP3 injections was
important for maintaining a consistent response and so
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gave approximately ten injections each under control,
GtetP inhibition, and recovery conditions. The 3dInsP3
used in these experiments was a hexasodium salt (6 mM
Na+ in the injection electrode). Since Na+ in high concen-
tration can inhibit the light response [34], control experi-
ments were done to test whether comparable small Na+

injections might account for the observed effect on the
light response. In five experiments, no effect of compara-
ble injections of 5 mM Na+ alone (not shown) was seen.
We conclude that the effects of GtetP are due to GtetP

rather than Na+, and that its effects are downstream from
activation of InsP3 receptors.

Similar experiments were done to test whether GtetP
inhibits responses to Ca2+ injections (Fig. 3). The response
to Ca2+ injection was strongly inhibited (Fig. 3A), indicat-
ing that GC is downstream from Ca2+ elevation. The insets
show averaged responses to Ca2+ injection (Fig. 3A) and
light (Fig. 3B) before and after GtetP-induced inhibition.
The time course of inhibition was similar for Ca2+

Guanosine 5'-tetraphosphate decreased and slowed the depolarization produced by 2.5 mM IBMX.Figure 1
Guanosine 5'-tetraphosphate decreased and slowed the depolarization produced by 2.5 mM IBMX. (A) Bath 
application of 2.5 mM IBMX produced a characteristic depolarization of Limulus photoreceptors (control) that was diminished 
following intracellular pressure injection sufficient to inhibit the light response from a microelectrode containing 25 mM GtetP 
(GtetP). (B) Amplitudes of IBMX-induced depolarization in individual photoreceptors are matched before and after inhibition 
of the light response using GtetP. The thick line indicates the average decrease in depolarization (n = 10). (C) The maximum 
rising slopes of IBMX-induced depolarization in the same photoreceptors as in (B) are matched before and after inhibition of 
the light response using GtetP. The thick line indicates the average decrease in rising slope.
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responses and light responses, however there was some
quantitative difference: responses to light were decreased
by 90% whereas responses to Ca2+ were decreased by 60%
in this experiment. In six experiments, the average inhibi-
tion of the light response was 88 ± 7 % and the average
inhibition of the response to Ca2+ injection was 60 ± 27
%. These small differences have not been analyzed fur-
ther. One possibility is that the greater inhibition of the
light response is indicative of a minor effect of GtetP on
excitation upstream of InsP3-mediated Ca2+ release. In any

case, our results clearly show that a major component of
Ca2+-induced excitation can be blocked by a GC inhibitor.

GC inhibitors act prior to the opening of cyclic nucleotide 
gated channels
In a final set of experiments, we tested the possibility the
GC inhibitor might directly antagonize cyclic nucleotide-
gated channels. We know of no precedent or other reason
to suspect that GtetP would affect these channels, but it
was nevertheless important to test directly for this possi-
bility. This was done by examining whether GtetP affected

Guanosine 5'-tetraphosphate acts subsequent to InsP3-mediated Ca2+ release during excitation.Figure 2
Guanosine 5'-tetraphosphate acts subsequent to InsP3-mediated Ca2+ release during excitation. Intracellular 
pressure injection from a microelectrode containing 25 mM GtetP decreased both the responses to a test flash and intracellu-
lar pressure injection of 1 mM 3dInsP3. Brackets and numbers match sets of five consecutive responses to light (1, 3, 5) or 
3dInsP3 (2, 4, 6) averaged to produce the respective trace in the inset. 3dInsP3 injections were interspersed between test 
flashes during the periods indicated by brackets (2, 4, 6). GtetP was injected during the period indicated by a solid bar. Aver-
aged responses are shown before (1, 2), at the end of drug application (3, 4), and late in recovery (5, 6).
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GtetP acts subsequent to Ca2+-mediated excitation.Figure 3
GtetP acts subsequent to Ca2+-mediated excitation. (A) Injection from a microelectrode containing 25 mM GtetP 
caused a progressive decline in the response to injection from a second microelectrode of 1.8 mM Ca2+ solution buffered with 
2 mM HEDTA. Data points are the average response with error bars (std. dev.) to ten consecutive Ca2+ injections before, after 
inhibition of the light response by GtetP, and late in recovery of the light response. GtetP was injected during the period indi-
cated by the bar positioned between the graphs. Brackets and arrows match response amplitude to averaged voltage time 
course in the insets. (B) GtetP injection inhibited the response to test flashes in parallel to the decline in response to Ca2+.
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the excitation produced by intracellular injection of the
cGMP analog, Rp-8pCPT-cGMPS. We minimized intracel-
lular accumulation of this membrane-permeant, high-
affinity agonist by keeping the number of injections used

for each measurement low (n < 10). In control experi-
ments using these conditions (not shown) the response to
Rp-8pCPT-cGMPS, the response to light, and membrane
properties remained stable over long periods. Fig. 4 shows

GtetP acts prior to opening of cyclic nucleotide-gated channels.Figure 4
GtetP acts prior to opening of cyclic nucleotide-gated channels. (A) Injection from a microelectrode containing 25 
mM GtetP was used to desensitize cells to a test flash by 90% (left panel). Data points are the average response with error bars 
(std. dev.) to seven consecutive test flashes. (B) The response to injection from a microelectrode containing 250 uM Rp-
8pCPT-cGMPS (cGMP) in the same three cells was qualitatively unaffected by GtetP (left panel). Respective responses before 
(control) and after injection (GtetP) are matched by lines and symbols (+, *, and open circles). The voltage traces represent 
averaged responses from one cell (*) to light (left) and Rp-8pCPT-cGMPS (right) before (control) and after GtetP intracellular 
injections.
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that the response to Rp-8pCPT-cGMPS was relatively
unaffected by GtetP (10 to 30% decrease, N = 3), whereas
the light response decreased enormously (90%). In two
additional cells, the response to Rp-8pCPT-cGMPS injec-
tion appeared qualitatively unaffected by GtetP, but prob-
lems with clogging, a tendency of microelectrodes
containing Rp-8pCPT-cGMPS, precluded quantitative
analysis.

Discussion
There has been substantial previous work on the pho-
totransduction cascade in Limulus, but the reactions
involved in the late stages of the process have been
unclear. In particular, there has been no information on
enzymatic steps downstream from InsP3-mediated Ca2+

elevation that might couple this elevation to channel
opening. Recently, it was shown that GC was required in
the cascade [27], but its position in the cascade was not
known. Here we have demonstrated that GC is down-
stream from Ca2+ and thus situated appropriately to medi-
ate late stages of the cascade. As a result, a rather complete
picture of the transduction cascade is now possible. In the
paragraphs below, we provide an overview of this cascade
and delineate areas where gaps remain.

In Limulus, excitation is initiated by conversion of rho-
dopsin to metarhodopsin by light (Fig. 5). The active state
of metarhodopsin activates a G protein as evidenced by
the fact that G protein inhibitors decrease the light-
response, whereas G protein activators mimic the light
response [31,35,36]. Metarhodopsin is inactivated in less
than 150 ms [37]; while active about 10 G proteins are
turned on [38]. The G protein involved has been identi-
fied as Gq in Limulus [39,40]. In the next stage of the cas-
cade, PLC is activated by Gq, resulting in the hydrolysis of
phosphatidyl inositol-4,5-bisphosphate to produce InsP3
and diacyglycerol. PLC antagonists such as neomycin,
spermine, and U-73122 decrease the response to light
[41,42] (see also [15]). Diacyglycerol may be important
for excitation in Drosophila [10]; however in Limulus this is
not likely to be the case [43]. InsP3 has been shown to
meet all the requirements for acting as an intracellular sec-
ond messenger necessary for excitation in Limulus: endog-
enous synthesis, increased concentration in response to
light, and excitation through exogenous application [6,7].

InsP3 produces a Ca2+ efflux from intracellular stores and
can raise cytosolic Ca2+ upwards of 150 µ M [6,7,44,45].
Excitation by light or InsP3 is blocked by the InsP3 receptor
antagonist heparin [18,29]. Direct measurements show
that Ca2+ release is sufficiently fast to activate the light-
dependent conductance [14,45]. The InsP3 receptor is
localized in the endoplasmic reticulum adjacent to the
base of the rhodopsin-containing microvilli at the site of
Ca2+ release [46]. Excitation can be mimicked by raising

intracellular Ca2+ [15-17] and thwarted by Ca2+ buffers
[16,18]. Ca2+ elevation is thus necessary and sufficient for
excitation.

Several lines of work indicate that the final step is the acti-
vation of cGMP-gated channels. Excitation can be induced
by PDE inhibitors [25,47] or by intracellular injection of
cGMP [23,24]. Most importantly, cGMP can directly acti-
vate channels when applied to inside-out excised mem-
brane patches from the R-lobe [19]. These channels have
properties similar to the light-activated channels in cell-
attached patches on the R-lobe [48]. Most recently, a puta-
tive cyclic nucleotide-gated channel gene has been cloned
from Limulus [22]. The mRNA for the channel is expressed
in photoreceptors and the protein product was specifically
localized in the R-lobe [21].

The work reported here shows that GC is appropriately
positioned in the cascade to couple the light-induced Ca2+

elevation to the production of cGMP. In principle, the role
of GC could be simply to constitutively produce cGMP;
during light cGMP might be elevated due to a decrease in
PDE activity. However, such a decrease in PDE activity
during light exposure would probably enhance the
response to injected cGMP relative to the dark-adapted
response and certainly not decrease it, the observed effect
[24]. These results thus strongly suggest that the GC is acti-
vated as a result of the light-induced elevation of Ca2+.
Because there are few photoreceptors in the ventral eye,
this preparation is not well-suited for biochemistry to the
extent that experiments to test for the Ca2+ or light-
dependence of GC are not practical. Therefore what is
known in these photoreceptors about GC is based on its
pharmacological profile. It has been concluded that the
GC involved is not the soluble, NO-dependent form and
therefore does not rely on Ca2+-dependent activation of
nitric oxide synthase [27]. An important unresolved issue
is how the enzyme might be regulated by Ca2+. Several
precedents for Ca2+-dependent activation of this enzyme
must be considered. For instance, in vertebrates Ca2+-
dependent GC activating proteins (CD-GCAPs) and neu-
rocalcin are known to activate rod GC [49,50]. The con-
centration of Ca2+ required for this activity is well within
the range achieved during Limulus phototransduction
[44,45]. In ciliates there is a form of GC that can be acti-
vated by Ca2+/calmodulin [51]. This raises the question of
whether GC activation in Limulus might be mediated by
calmodulin. The involvement of calmodulin in a critical
step in the transduction cascade could be one reason for
the high concentrations of calmodulin found in Limulus
R-lobes [52].

The Limulus cascade is more complex than that of the ver-
tebrate rod, but this increased complexity can be viewed
in light of the remarkable performance characteristics of
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A model for Limulus excitation.Figure 5
A model for Limulus excitation. The cascade is initiated by the isomerization of rhodopsin to metarhodopsin by light. 
Metarhodopsin catalyzes exchange of GTP for GDP on multiple G proteins (Gq). Gq-GTP binds and activates phospholipase C 
(PLC). This complex cleaves phosphatidyl inositol-4,5-bisphosphate (PIP2) producing InsP3. InsP3 opens Ca2+ ion channels in the 
endoplasmic reticulum (ER) leading to the release of Ca2+ into the cytosol. Ca2+ release activates GC. A rise in cGMP opens 
cyclic nucleotide-gated ion channels (CNCG) in the plasma membrane.
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Limulus photoreceptors. These cells generate single
photon responses in the nA range, three orders of magni-
tude larger than those of the rod. Furthermore, Limulus
photoreceptors respond over nearly 4 orders of magni-
tude greater range of light intensities than rods [53,54].
The Limulus cascade has eight stages compared to the five
stages of the rod cascade. The larger number of stages may
underlie the greater single-photon response and wider
dynamic range seen in Limulus photoreceptors.

Conclusions
Although much has been determined about the pho-
totransduction cascade in Limulus, the late steps occurring
between InsP3-induced Ca2+ elevation and the opening of
the cGMP-gated channels has been unclear. Previous work
showed that guanylate cyclase was necessary for
generation of the light-response, but did not identify
where in the cascade it acted [27]. The major question
answered in the present study is to determine whether GC
is appropriately positioned at the end of the cascade
where it could couple Ca2+ elevation to cGMP elevation.
Our conclusion is that this is the case; the excitation pro-
duced by either InsP3 or Ca2+ injection can be greatly
reduced by inhibiting GC (Figs. 2, 3). Importantly the GC
inhibitor did not affect the excitation produced by injec-
tion of cGMP analog (Fig. 4); therefore channel function
appears unaffected. Taken together with previous results,
a picture of the enzymatic steps by which rhodopsin is
coupled to channel activation in an invertebrate rhabdo-
meric photoreceptor can now be proposed (Fig. 5).

The simplest interpretation of the available data is that GC
activation is the primary means by which the intracellular
concentration of cGMP is increased during excitation in
Limulus photoreceptors. This hypothesis can be tested by
characterizing the specific guanylate cylase involved and
the link between Ca2+ release and cyclase activation.

Methods
Electrophysiology
The dissection and techniques for electrophysiology have
been described in detail elsewhere [16]. Cells were
exposed to stimulus light with a maximal light intensity of
1.0 mW/cm2 which was attenuated by neutral density fil-
ters (attenuation = 10ND). Cells were perfused with artifi-
cial sea water (ASW) with the composition (in mM) 425
NaCl, 10 KCl, 10 CaCl2, 22 MgCl2, 26 MgSO4, and 15 Tris,
adjusted to pH 7.8. Non-injecting intracellular microelec-
trodes contained 3 M KCl (15–25 mΩ resistance). Injec-
tion microelectrodes contained drugs as described in the
text with (in mM) 150 KCl, 10 HEPES, 0.001% Triton X-
100 [17] and had 7–15 mΩ resistance. The microelec-
trodes used to inject Ca2+ contained 1.8 mM Ca2+ buffered
with HEDTA. This use of HEDTA has been described else-
where and shown to not affect excitation or light adapta-

tion [15]. GtetP, HEDTA, and IBMX were obtained from
Sigma; InsP3 and 3dInsP3 from Calbiochem; Rp-8pCPT-
cGMPS from Biolog.

Microscopy
The selection and observation of cells has been described
in detail elsewhere [27]. Briefly, cells were observed under
infrared illumination with Hofmann optics using a Cooke
Corporation Sensicam. Cells were chosen on the basis of
having a stable membrane potential and robust dark
adapted and single photon light responses.

In some experiments the electrodes had to be placed into
the light-sensitive R lobe of the cells. Under Hoffman
optics, the R-lobe has a smooth appearance, contrasted
with the granular appearance of the light-insensitive A-
lobe. In these cases, the tip of the electrode was positioned
at the border of the two lobes and advanced axially into
the R-lobe.

Intracellular pressure injection
Injection electrodes were backfilled with at least 2 µL of
solution and routinely recorded membrane potentials
approximately 20 mV higher than 3 M KCl electrodes.
Injections were observed on a monitor. The pulse dura-
tion and pressure were adjusted to maintain a constant
bolus size. Injection electrodes became clogged on occa-
sion, and the blockage was cleared using either a manually
controlled high pressure pulse or brief (< 30 ms) oscilla-
tion train. If the cell's light or drug injection responses
were affected by the clearing procedure, that experiment
was not used.

Abbreviations
A-lobe arhabdomeric lobe

3dInsP3 3-deoxy-D-myo-inositol-1,4,5-trisphosphate

GC guanylate cyclase

GtetP guanosine-5'-tetraphosphate

HEDTA N-(2-hydroxyethyl)ethylenediaminetriacetic acid

IBMX 3-isobutyl-1-methylxanthine

InsP3 D-myo-inositol-1,4,5-trisphosphate

PDE phosphodiesterase

PLC phospholipase C

R-lobe rhabdomeric lobe
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Rp-8pCPT-cGMPS Rp-8-(4-chlorophenylthio)guanosine-
3',5'-cyclic monophosphorothioate
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