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Abstract

Background: Changes in photoperiod and ambient temperature trigger seasonal adaptations in
the physiology and behaviour of many species, including the Djungarian hamster. Exposure of the
hamsters to a short photoperiod and low ambient temperature leads to a reduction of the
polyphasic distribution of sleep and waking over the light and dark period. In contrast, a long
photoperiod enhances the daily sleep-wake amplitude leading to a decline of slow-wave activity in
NREM sleep within the light period. It is unknown whether these changes can be attributed
specifically to photoperiod and/or ambient temperature, or whether endogenous components are
contributing factors. The influence of endogenous factors was investigated by recording sleep in
Djungarian hamsters invariably maintained at a low ambient temperature and fully adapted to a
short photoperiod. The second recording was performed when they had returned to summer
physiology, despite the maintenance of the 'winter' conditions.

Results: Clear winter-summer differences were seen in sleep distribution, while total sleep time
was unchanged. A significantly higher light-dark cycle modulation in NREM sleep, REM sleep and
waking was observed in hamsters in the summer physiological state compared to those in the
winter state. Moreover, only in summer, REM sleep episodes were longer and waking bouts were
shorter during the light period compared to the dark period. EEG power in the slow-wave range
(0.75-4.0 Hz) in both NREM sleep and REM sleep was higher in animals in the summer physiological
state than in those in the 'winter' state. In winter SWA in NREM sleep was evenly distributed over
the 24 h, while in summer it decreased during the light period and increased during the dark period.

Conclusion: Endogenous changes in the organism underlie the differences in sleep-wake
redistribution we have observed previously in hamsters recorded in a short and long photoperiod.

Background

Changes in photoperiod trigger seasonal adaptations in
physiology and behaviour of many species [1]. The adap-
tations are manifold and include changes in body weight,
pelage colour and density, altered social and sexual
behaviors, in many rodents gonadal regression and sup-

pression of breeding, and in some species hibernation or
episodes of daily torpor. In mammals, the main trigger for
these changes is the shortening of the photoperiod that
determines the duration of pineal melatonin secretion [1-
11]. Seasonal changes in physiology can be facilitated by
lowering of ambient temperature (T,) [12-15]. The
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encoding of seasonal time may involve clock genes, as
suggested by the elevated expression of Perl and Per2
genes in the SCN and pars tuberalis under a long photope-
riod [16-19].

Few studies have addressed seasonal changes in sleep.
Walker et al [20] reported annual changes in sleep in 4
golden mantled ground squirrels, with the largest amount
of sleep in winter. Changes in sleep duration were found
in 4 captive prosimians, Microcebus murinus, with major
reductions of sleep in summer [21]. In humans, under
natural conditions in winter and under controlled short
photoperiod conditions in the laboratory, sleep duration
is increased when nights are long [22-24], but also
changes restricted to timing and not duration of sleep
have been reported [25]. A behavioural study in elephants
in captivity found an increase in sleep duration during the
winter months [26]. In contrast, in small rodents, includ-
ing the rat, Siberian chipmunk, and Djungarian hamster,
sleep duration was not affected by a change in photope-
riod [27-31]. However, a marked redistribution of sleep
occurred across 24 h when the animals were recorded in a
long and a short photoperiod.

The Djungarian hamster is a rodent that typically displays
a large spectrum of behavioural and physiological adapta-
tions to changes in photoperiod [2] (for references see
[30]). The most prominent change in sleep was the
enhancement of the light-dark amplitude in the amount
of sleep when the hamsters were adapted to 'summer' con-
ditions by a long photoperiod, after living in the 'winter'
short photoperiod. Moreover, EEG power density in the
slow-wave range was lower in the short photoperiod [32].
It is unknown whether the differences in sleep between
the two photoperiods are a direct consequence of the
change in the environment or if an endogenous compo-
nent is involved. Syrian hamsters maintained in short
days or in constant darkness do not sustain gonadal
regression indefinitely, indicating that an endogenous
component contributes to these changes [33,34]. In Djun-
garian hamsters the amplitude and duration of melatonin
secretion returned to summer values despite the mainte-
nance of the short photoperiod [8], (A. Stieglitz, PhD the-
sis, 1995), and we have frequently observed that the
hamsters maintained in a short photoperiod and low T,
nevertheless gain weight and show the typical pelage
change from white to dark brown (unpublished; Figure
1). It thus seems that the hamsters undergo a refractory
period, despite the maintenance of 'winter' conditions in
the environment. We investigated the endogenous nature
of changes in sleep by comparing hamsters recorded in
winter with animals recorded several months later, when
they showed adaptations to summer, while they remained
in a short photoperiod and low T, throughout the
experiment.
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Results

In summer, when the hamster's pelage was dark brown
(Figure 1), they showed a significant increase in the light-
dark amplitude of total sleep time, NREM sleep and REM
sleep compared to winter, when the fur was white with the
typical dark band on the back (Figure 2). The total
amount of sleep (TST) and the amounts of the single vig-
ilance states remained at a similar level in winter and sum-
mer (Figure 2, Table 1). This result applied also to those
hamsters which were recorded in both conditions (n = 6;
TST: 58.4 + 2.1% in winter physiology and 57.9 + 1.9% in
summer physiology; NREM sleep: 50.6 + 1.8% and 49.6 +
1.6%; REM sleep: 8.5 + 0.4% and 8.9 + 0.4%, paired t-test,
n.s.). The increase in amplitude in summer was due to a
significant increase of TST and a concomitant increase in
REM sleep in the light period, while an opposite change
occurred in the dark period (Table 1).

The changes in the vigilance states between the two condi-
tions were reflected in the duration and frequency of epi-
sodes (Table 2). While in hamsters manifesting winter
physiology, episode duration and episode frequency in
NREM sleep and waking did not differ between the light
and the dark period, and REM sleep episode frequency
was larger in the light period compared to the dark period,
when recorded in summer physiology, REM sleep epi-
sodes were longer, waking episodes shorter, and NREM
and REM sleep episodes more frequent in the light period
compared to the dark period. None of the 24-h values dif-
fered significantly between the hamsters in the winter or
in the summer physiological state.

SWA in NREM sleep reflected the redistribution of TST in
the light and dark period between the conditions. Thus,
the LD amplitude increased significantly from winter to
summer (Figure 2). No LD change in SWA in NREM sleep
was observed in winter, while an increase of SWA was seen
from the light to the dark period in summer. Within the
SWA band, frequencies between 0.75-3.0 Hz increased
significantly from winter to summer physiology (all ham-
sters: 378.07 + 34.89 V2 in winter and 537.67 + 38.81
puV2in summer, unpaired t-test, p < 0.01; n = 6: 386.05 =
26.93 uV2in winter and 493.96 + 34.95 pV2in summer,
paired t-test, p = 0.068). An increase in EEG power was
present in frequencies between 1.25 - 2.5 Hz also in REM
sleep (not shown). Total EEG power (0.75-20.0 Hz) over
all vigilance states did not differ between the hamsters in
winter physiology and summer physiology (1368.34 +
130.98 pVZand 1650.48 + 119.51 uv2, n = 10 and 11,
respectively, unpaired t-test, p = 0.13; 1368.03 + 128.19
pV2and 1513.63 + 90.26 uV2, n = 6, paired t-test, p =
0.35).

The comparison of the 24-h EEG power spectrum between

the two cortical derivations showed a frontal

Page 2 of 8

(page number not for citation purposes)



BMC Neuroscience 2003, 4

i &0,
W o, L

Figure |

http://www.biomedcentral.com/1471-2202/4/9

Djungarian hamsters displaying the typical winter and summer pelage.

predominance in NREM sleep in the low frequency range
both in the hamsters in winter physiology (1.25-2.5 Hz)
and summer physiology (1.25-4.0 Hz). The difference
between the derivations remained the same in the winter
and summer physiology hamsters.

To establish whether small differences in T, or in brain
temperature could have contributed to the differences in
sleep, several correlations (Pearson product-moment cor-
relation) were computed. No significant correlation was
found between brain temperature and EEG parameters
(total EEG power: 12 = 0.005, p = 0.77, n = 20, brain tem-
perature data of one hamster were lacking; 12= 0.25, p =
0.10, n = 12; LD SWA difference, 12 = 0.05, p = 0.34, n =
20 and 12 = 0.28, p = 0.08 n = 12; LD difference in the
amount of NREM sleep, REM sleep and waking (n.s., not
shown)). Also the correlations with T, were not significant
(total EEG power, 12=0.03, p=0.50, n =20 and 12= 0.02,
p = 0.64 n = 12; LD SWA difference, r2=0.12, p = 0.132,
n=20and 2=0.14, p = 0.24, n = 12; LD difference in the

amount of NREM sleep, REM sleep and waking (n.s., not
shown)).

Discussion

The main change in sleep observed in hamsters recorded
in a physiological state typical for winter and for summer
was an enhancement of the sleep-wake amplitude. The
total amount of vigilance states remained unchanged,
while the polyphasic sleep-wake pattern was redistrib-
uted. These summer-winter differences are similar to
those observed in hamsters recorded after a prolonged
adaptation to a short photoperiod at 16°C or after adap-
tation to a long photoperiod at 22°C [31] or in hamsters
that remained always at 14.5°C but were adapted first to
a short and then to a long photoperiod [32]. In the latter
studies it remained open whether the changes were
induced by the photoperiod or whether they have an
endogenous component. Our results indicate that there is
an endogenous component contributing to the seasonal
changes in sleep.
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Figure 2

Winter-Summer difference in vigilance-state distribution. Light-dark differences in the vigilance states and slow-wave activity
(SWA, mean EEG power density 0.75—4.0 Hz) in hamsters in physiological state belonging to winter and to summer. Mean 8-h
and 16-h values (+ SEM) expressed as percentage of the corresponding 24-h for waking, non-rapid eye movement (NREM)
sleep and REM sleep. SWA in NREM sleep is expressed relative to the corresponding 24 h mean ( = 100%). Numbers within
panels represent total amount in % of 24 h (mean £ SEM). Winter (W, n = 10) and summer (S, n = | I). Note different scales of
panels. Winter vs. summer: *p < 0.01, *p < 0.005, ***p < 0.0005; unpaired t-test (for n = 6: waking p < 0.05, NREM sleep p =
0.065, REM sleep p < 0.01 and SWA p = 0.063, paired t-test).

The stability of sleep duration seems to be a feature of ani- ~ 31], since humans that typically have a monophasic sleep
mals that exhibit a polyphasic sleep-wake pattern [27-  pattern, did increase sleep duration during the winter
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Table I: Seasonal differences in the vigilance states.
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Hamsters in winter physiological state

Hamsters in summer physiological state

8-hL 16-h D 8-hL 16-h D 24 h
Waking 23.15 + 0.94%° 27.43 £ 0.59° 624.03 + 8.03 19.45 + 0.90** 30.29 £ 0.81 640.16 = 15.01
NREM sleep 31.30 £ 0.90 29.17 £ 0.57° 702.13 £9.99 33.69 + 0.93%* 27.21 £0.48 685.50 + 14.80
REM sleep 5.70 £ 0.33*° 5.00£0.18°° 113.35 +4.58 6.93 £ 0.31** 435%0.11 114.34 +2.89

Mean values + SEM in min/h in the light (L) and dark (D) period (LD 8:16 h) and 24-h values (minutes) for hamsters in winter physiological state (n
= 10) and summer physiological state (n = |1). Differences between the corresponding periods in winter vs. summer: °p < 0.05, ° °p < 0.005, two-
tailed unpaired t-test. For n = 6, p < 0.05 for REM sleep in the light and dark period and waking in the light period; Differences L vs. D: *p < 0.05,
**p < 0.0001, two-tailed paired t-test. For n = 6, L vs. D in summer, p < 0.001 for all vigilance states, two-tailed paired t-test.

Table 2: Seasonal differences in duration and frequency of vigilance state episodes.

Hamsters in winter physiological state

Hamsters in summer physiological state

8-hlL 16-h D 8-hL 16-h D 24 h
Episode duration (min)

Woaking 6.35+0.72 6.27 + 0.47 6.21 £ 0.42 5.26 + 0.47** 7.57 £ 0.8 6.75 + 0.62
NREM sleep 7.54 £ 031 7.39£0.38 743 £0.35 7.94 £ 0.36 7.15 £ 0.31 740 £ 0.26
REM sleep 1.73 £ 0.07 1.67 £ 0.07 1.69 + 0.06 2.08 + 0. 7+ 1.64 + 0.09 1.82 £ 0.12

Episode frequency (# per h)
Waking 4.15 £ 0.40 429 £0.29 4.25 £ 0.30 3.98 £ 0.25 4.20 £ 0.41 4.13 £ 0.34
NREM sleep 448 £0.19 4.15+0.23 426 £0.19 4.56 £ 0.19* 3.90 + 0.23 4.12+0.19
REM sleep 3.29 + 0.20°* 2,65 +0.15 2.86 £ 0.15 3.52 + 0.27%FF* 236 +£0.14 2.75+0.16

Mean values (+ SEM) for duration (minutes) and frequency (number of episodes per hour) of vigilance state episodes for the light (L) and dark (D)
period (LD 8:16 h), and for the entire 24 h recording in the winter physiological state (n = 10) and summer physiological state (n = | I). L vs. D: *p
< 0.05, ¥p < 0.01, **p < 0.005, ***p < 0.001, two-tailed paired t-test. For n = 6: 24-h REM sleep episode duration: winter vs. summer, p < 0.05, L
vs. D in summer, p < 0.01; REM sleep episode frequency: L vs D p < 0.05 both in winter and summer.

months [22-24]. The changes in SWA in NREM sleep
reflected the changes in the amount of sleep within the
light or dark period. In winter, when sleep was more
evenly distributed between the light and dark period, SWA
showed only a minimal LD amplitude. In contrast, in
summer when the hamsters were more awake during the
dark period, SWA exhibited concomitantly higher values
compared to the light period. Thus, hamsters in the sum-
mer physiological state sleep less but more intensively
during the dark period compared to their sleep in winter.
These data are in accordance with the two-process model
of sleep regulation that predicts that the homeostatic
Process S, quantified by SWA reflects the previous sleep-
wake history [35].

The sleep-wake redistribution between the winter and
summer physiology animals was reflected also in the fre-
quency and duration of vigilance state episodes. Waking
episode duration was lower and the frequency of NREM
sleep episodes was higher during the light period in sum-
mer physiology, when the hamsters slept more. No

changes occurred in the hamsters in winter physiology
when sleep was more evenly distributed over the 24 h.

Although day-length appears to be the primary environ-
mental cue that the Djungarian hamster uses to initiate
seasonally appropriate physiological and behavioural
changes [2,8,14], ambient temperature and food restric-
tion markedly affect the photoperiodic responses [14]. In
order to make sure that the changes we observed were
reflecting endogenous mechanisms, several correlations
were computed. Not even a trend between any of the
effects on sleep and T, or brain temperature was observed.
Also in a previous study, EEG power density in the slow-
wave range had increased when hamsters were recorded
first in a short photoperiod followed by a long photope-
riod [32]. In both studies other EEG frequencies were not
affected. We have repeatedly observed a decrease of EEG
power density over time in rats and hamsters chronically
implanted with EEG electrodes. It is therefore unlikely
that the present increase in SWA from winter to summer
was due to technical artifacts.
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In a previous paper we concluded that when the Djungar-
ian hamster prepares for the harsh environment it will
encounter during winter, it dissociates sleep homeostasis
from the circadian clock [32]. This was based on the data
that showed that sleep homeostasis remained invariable
in a long and short photoperiod, but the sleep-wake pat-
tern had changed dramatically [31,36]. Nevertheless, it
was evident that the circadian clock remained functional,
because other behavioural and physiological rhythms
remained in synchrony with the light-dark cycle [32,37],
or free-ran in constant darkness [38]. The present data
show that when the animal's physiology returns to its
summer characteristics while the short photoperiod and
low T, are maintained, the circadian clock seems to regain
control over the sleep-wake behaviour. This indicates that
physiological changes occurring in the hamsters as they
adapt to different photoperiods encompass also an inter-
action between the circadian clock and sleep homeostatic
mechanisms.

Little is known about the mechanisms that underlie this
interaction. Among the many adaptations to the short
photoperiod, the most important advantage for survival
the Djungarian hamster gains from the short photoperiod
physiology is the change in metabolic rate [37]. Recent
developments in narcolepsy research integrate sleep and
metabolism and suggest that changes in metabolic rate do
influence sleep regulation [39]. Also hormonal changes
may be involved in the relation between sleep homeosta-
sis and the circadian clock. For example it has been
hypothesized that melatonin can serve both as a clock and
as a calendar [1,9,40]. In the Djungarian hamster and the
European hamster the duration and amplitude of mela-
tonin secretion depends on photoperiod e.g.
[6,11,41,54], (A. Stieglitz, PhD thesis, 1995). When the
duration of darkness was increased the onset of melatonin
synthesis was delayed in both species, while the end cor-
responded to lights on in the Djungarian hamster only
when adaptation to the photoperiod was sufficiently long
[6,11,42]. Thus, in the European hamster an endogenous,
seasonal component became evident in the short pho-
toperiod, where the end of melatonin secretion was unre-
lated to the time of lights on. The evidence that melatonin
may have a direct effect on sleep in the Djungarian ham-
ster [43,44] or in the rat [43,55] is inconclusive.

Previous comparisons of the EEG power spectra in NREM
sleep have shown a frontal predominance of the low EEG
frequencies in humans [45-47], rats [48,49], mice [50],
and Djungarian hamsters [51]. Interestingly, the frontal
predominance in EEG power density in NREM sleep was
not affected by the seasonal changes in the animal's phys-
iology, supporting the interpretation that frontal predom-
inance may reflect a functional component that is related
to previous waking activities.

http://www.biomedcentral.com/1471-2202/4/9

Conclusions

Our data show that light-dark differences in sleep-wake
behavior and the time-course of EEG SWA recover when
the hamsters spontaneously exhibit changes related to
long photoperiod physiology. The circadian clock seems
to regain control of the circadian sleep-wake distribution.

Methods

Animals

Adult Djungarian hamsters (Phodopus sungorus) raised
under a natural photoperiod in summer, were kept indi-
vidually in Macrolon cages (36 x 20 x 35 cm) with food
and water available ad libitum, and maintained in a short
photoperiod with 8-h light - 16-h dark (LD, light from
09:00 - 17:00 h; 7 Watt OSRAM DULUX EL energy saving
lamp, approximately 30 lux). Mean ambient temperature
(T,) was 15.5 + 0.2°C.

Surgery

When the weight reduction and the fur colour index (# 5-
6 on the index scale 1-6, according to Figala et al [52]) as
well as the gonadal regression indicated a strong adapta-
tion to the short photoperiod (Figure 1), the 15 best
adapted hamsters of a total of 32 were selected for i.p.
implantation of temperature-sensitive transmitters
(model X-M, Mini-mitter). At the age of 5.3 + 0.4 months
the hamsters (mean weight 26.6 + 1.3 g, n = 15) were
implanted under deep anaesthesia (Ketalar® 75 mg/kg,
Parke-Davis; Rompun® 4 mg/kg, Bayer, i.p.) with gold-
plated miniature screws (0.9 mm diameter) that served as
EEG electrodes. Screws were placed epidurally over the
right parietal cortex (2 mm lateral to midline and 2 mm
posterior to bregma), right frontal cortex (2 mm lateral to
midline and 2 mm anterior to bregma) and a reference
electrode was placed over the cerebellum (2 mm posterior
to lambda, on midline). A thermistor (Thermometrics,
P20, R (25°C) = 1 kQ, max. diam. = 0.5 mm, accuracy +
0.05°C) was inserted horizontally between the skull and
dura through a hole over the left frontal cortex (2-3 mm
lateral to midline and 2 mm anterior to bregma) to
measure cortical temperature (Tgrp). Two gold wires
(diameter 0.2 mm) inserted into the neck muscles served
to record the electromyogram (EMG). The electrodes and
thermistor were soldered to stainless steel wires and to a
plug that was fixed to the skull with dental cement [53].
Animals were connected to the cables and allowed to
recover at least two weeks.

Experimental protocol

The two EEGs, EMG and Ty were continuously recorded
for 24-h when the animal's physiology was in 'winter'
conditions (January - February). After 'summer' physiol-
ogy was manifest in all animals, i.e. fur colour changed
from white-grey to brown-grey and regrowth of gonads
was evident, a second 24-h record was obtained in March.
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The short photoperiod and low T, were maintained
throughout the entire experiment. Six hamsters contrib-
uted to both days, whereas four and five hamsters contrib-
uted with a recording in winter or summer, respectively.

Data acquisition and analysis

The EEG and EMG signals were amplified (amplification
factor approx. 2,000), conditioned by analogue filters
(high-pass filter: -3 dB at 0.016 Hz; low-pass filter: -3 dB
at 40 Hz, less than -35 dB at 128 Hz) sampled with 512
Hz, digitally filtered (EEG: low-pass FIR filter 25 Hz; EMG:
band-pass FIR filter 20-50 Hz) and stored with a resolu-
tion of 128 Hz. EEG power spectra were computed for 4-s
epochs by a Fast Fourier Transform (FFT) routine. Adja-
cent 0.25-Hz bins were averaged into 0.5-Hz (0.25 - 5.0
Hz) and 1.0-Hz (5.25-25.0 Hz) bins. The EMG was full-
wave rectified and integrated over 4-s epochs, Terrand T,
inside the cage were sampled at 4-s intervals. Before each
recording the EEG and EMG channels were calibrated
with a 10 Hz sine wave, 300 nV peak-to-peak signal.

The three vigilance states NREM sleep, REM sleep and
waking were scored for 4-s epochs as in previous studies
[30,53]. Vigilance states were determined off-line by vis-
ual inspection of the parietal and frontal EEG and EMG
records and EEG power in the slow-wave range (0.75-4.0
Hz). Epochs containing EEG artifacts in both derivations
or in a single derivation were excluded from spectral anal-
yses of both EEG derivations (14.2 + 0.9 SEM % of record-
ing time. Artifacts occurred mainly during active waking:
244 + 1.8 SEM % of waking). Vigilance states could
always be determined.

The duration and frequency of vigilance state episodes
were determined according to criteria described previ-
ously [30,53]. Differences in the EEG spectrum between
the winter and summer recording were tested by ANOVA
for repeated measures (rANOVA) or ANOVA. Whenever
ANOVA reached significance, differences were evaluated
by post hoc two-tailed paired t-tests within days or by
unpaired t-test between two days. LD differences were
tested with post hoc two-tailed paired t-tests within days
or by unpaired t-test between two days.

All statistical comparisons of data from recordings per-
formed in hamsters in winter and summer physiology
were performed twice, once for the n = 6 hamsters which
had been recorded both in winter and summer physiology
(paired tests), and once for the entire group (n = 10-11;
unpaired tests).
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