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Abstract
Background: To understand the functioning of distributed networks such as the brain, it is
important to characterize their ability to integrate information. The paper considers a measure
based on effective information, a quantity capturing all causal interactions that can occur between
two parts of a system.

Results: The capacity to integrate information, or Φ, is given by the minimum amount of effective
information that can be exchanged between two complementary parts of a subset. It is shown that
this measure can be used to identify the subsets of a system that can integrate information, or
complexes. The analysis is applied to idealized neural systems that differ in the organization of their
connections. The results indicate that Φ is maximized by having each element develop a different
connection pattern with the rest of the complex (functional specialization) while ensuring that a
large amount of information can be exchanged across any bipartition of the network (functional
integration).

Conclusion: Based on this analysis, the connectional organization of certain neural architectures,
such as the thalamocortical system, are well suited to information integration, while that of others,
such as the cerebellum, are not, with significant functional consequences. The proposed analysis of
information integration should be applicable to other systems and networks.

Background
A standard concern of communication theory is assessing
information transmission between a sender and a receiver
through a channel [1,2]. Such an approach has been suc-
cessfully employed in many areas, including neuroscience
[3]. For example, by estimating the probability distribu-
tion of sensory inputs, one can show that peripheral sen-
sory pathways are well suited to transmitting information
to the central nervous system [4]. When considering the
central nervous system itself, however, we face the issue of
information integration [5]. In such a distributed network,
any combination of neural elements can be viewed as
senders or receivers. Moreover, the goal is not just to trans-

mit information, but rather to combine many sources of
information within the network to obtain a unified pic-
ture of the environment and control behavior in a coher-
ent manner [6,7]. Thus, while a neural system composed
of a set of parallel, independent channels or reflex arcs
may be extremely efficient for information transmission
between separate inputs and outputs, it would be unsuit-
able for controlling behaviors requiring global access,
context-sensitivity and flexibility. A system equipped with
forward, backward and lateral connections among spe-
cialized elements can perform much better by supporting
bottom-up, top-down, and cross-modal interactions and
forming associations across different domains [8].
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The requirements for information integration are perhaps
best exemplified by the organization of the thalamocorti-
cal system of vertebrates. On the "information" side, there
is overwhelming evidence for functional specialization,
whereby different neural elements are activated in differ-
ent circumstances, at multiple spatial scales [9]. Thus, the
cerebral cortex is subdivided into systems dealing with
different functions, such as vision, audition, motor con-
trol, planning, and many others. Each system in turn is
subdivided into specialized areas, for example different
visual areas are activated by shape, color, and motion.
Within an area, different groups of neurons are further
specialized, e.g. by responding to different directions of
motion. On the "integration" side, the information con-
veyed by the activity of specialized groups of neurons
must be combined, also at multiple spatial and temporal
scales, to generate a multimodal model of the environ-
ment. For example, individual visual elements such as
edges are grouped together to yield shapes according to
Gestalt laws. Different attributes (shape, color, location,
size) must be bound together to form objects, and multi-
ple objects coexist within a single visual image. Images
themselves are integrated with auditory, somatosensory,
and proprioceptive inputs to yield a coherent, unified
conscious scene [10,11]. Ample evidence indicates that
neural integration is mediated by an extended network of
intra- and inter-areal connections, resulting in the rapid
synchronization of neuronal activity within and between
areas [12-17].

While it is clear that the brain must be extremely good at
integrating information, what exactly is meant by such a
capacity, and how can it be assessed? Surprisingly,
although tools for measuring the capacity to transmit,
encode, or store information are well developed [2], ways
of defining and assessing the capacity of a system to inte-
grate information have rarely been considered. Several
approaches could be followed to make the notion of
information integration operational [5]. In this paper, we
consider a measure based on effective information, a
quantity capturing all causal interactions that can occur
between two parts of a system [18]. Specifically, the capac-
ity to integrate information is called Φ, and is given by the
minimum amount of effective information that can be
exchanged across a bipartition of a subset. We show that
this measure can be used to identify the subsets of a sys-
tem that can integrate information, which are called com-
plexes. We then apply this analysis to idealized neural
systems that differ in the organization of their connec-
tions. These examples provide an initial appreciation of
how information integration can be measured and how it
varies with different neural architectures. The proposed
analysis of information integration may also be applica-
ble to other non-neural systems and networks.

Theory
As in previous work, we consider an isolated system X
with n elements whose activity is described by a Gaussian
stationary multidimensional stochastic process [19]. Here
we focus on the intrinsic properties of a neural system and
hence do not consider extrinsic inputs from the environ-
ment. The elements could be thought of as groups of neu-
rons, the activity variables as firing rates of such groups
over hundreds of milliseconds, and the interactions
among them as mediated through an anatomical connec-
tivity CON(X). The joint probability density function
describing such a multivariate process can be character-
ized [2,20] in terms of entropy (H) and mutual informa-
tion (MI).

Effective information
Consider a subset S of elements taken from the system.
We want to measure the information generated when S
enters a particular state out of its repertoire, but only to
the extent that such information can be integrated, i.e. it
can result from causal interactions within the system. To
do so, we partition S into A and its complement B (B = S-
A). The partition of S into two disjoint sets A and B whose
union is S is indicated as [A:B]S. We then give maximum
entropy to the outputs from A, i.e. substitute its elements
with independent noise sources of constrained maximum
variance. Finally, we determine the entropy of the result-
ing responses of B (Fig. 1). In this way we define the effec-
tive information from A to B as:

EI(A→B) = MI(AHmax:B) (1)

where MI(A:B) = H(A) + H(B) - H(AB) stands for mutual
information, the standard measure of the entropy or
information shared between a source (A) and a target (B).
Since A is substituted by independent noise sources, the
entropy that B shares with A is due to causal effects of A on
B. In neural terms, we try out all possible combinations of
firing patterns as outputs from A, and establish how dif-
ferentiated is the repertoire of firing patterns they produce
in B. Thus, if the connections between A and B are strong
and specialized, different outputs from A will produce dif-
ferent firing patterns in B, and EI(A→B) will be high. On
the other hand, if the connections between A and B are
such that different outputs from A produce scant effects,
or if the effect is always the same, then EI(A→B) will be
low or zero. Note that, unlike measures of statistical
dependence, effective information measures causal inter-
actions and requires perturbing the outputs from A. More-
over, by enforcing independent noise sources in A,
effective information measures all possible effects of A on
B, not just those that are observed if the system were left
to itself. Also, EI(A→B) and EI(B→A) will generally differ,
i.e. effective information is not symmetric.
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For a given bipartition [A:B]S of subset S, the effective
information is the sum of the effective information for
both directions:

EI(A B) = EI(A→B) + EI(B→A) (2)

Information integration
Based on the notion of effective information for a biparti-
tion, we can assess how much information can be inte-
grated within a system of elements. To this end, we note
that a subset S of elements cannot integrate any informa-
tion if there is a way to partition S in two complementary
parts A and B such that EI(A B) = 0. In such a case we
would be dealing with two (or more) causally independ-

ent subsets, rather than with a single, integrated subset.
More generally, to measure how much information can be
integrated within a subset S, we search for the biparti-
tion(s) [A:B]S for which EI(A B) reaches a minimum.

EI(A B) is necessarily bounded by the maximum
entropy available to A or B, whichever is less. Thus, to be
comparable over bipartitions, min{EI(A B)} is normal-
ized by min{Hmax(A), Hmax(B)}. Thus, the minimum infor-
mation bipartition of subset S, or MIB(S), is its bipartition
for which the normalized effective information reaches a
minimum, corresponding to:

Schematics of effective informationFigure 1
Schematics of effective information. Shown is a single subset S (grey ellipse) forming part of a larger system X. This sub-
set is bisected into A and B by a bipartition (dotted line). Arrows indicate anatomical connections linking A to B and B to A 
across the bipartition, as well as linking both A and B to the rest of the system X. Bi-directional arrows indicate intrinsic con-
nections within each subset and within the rest of the system. (Left) All connections are present. (Right) To measure EI(A→B), 
maximal entropy Hmax is injected into the outgoing connections from A (see Eq. 1). The resulting entropy of the states of B is 
then measured. Note that A can affect B directly through connections linking the two subsets, as well as indirectly via X.
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MIB(S) = [A:B]S for which EI(A B)/(min{Hmax(A),
Hmax(B)}) = min for all A (3)

The capacity for information integration of subset S, or

Φ(S), is simply the value of EI(A B) for the minimum
information bipartition:

Φ(S) = EI(MIB(S)) (4)

The Greek letter Φ is meant to indicate the information
(the "I" in Φ) that can be integrated within a single entity
(the "O" in Φ). This quantity is also called MIBcomplexity,
for minimum information bipartition complexity
[18,21].

Complexes
If Φ(S) is calculated for every possible subset S of a system,
one can establish which subsets are actually capable of
integrating information, and how much of it. Consider
thus every possible subset S of m elements out of the n ele-
ments of a system, starting with subsets of two elements
(k = 2) and ending with a subset corresponding to the
entire system (k=n). A subset S with Φ>0 is called a com-
plex if it is not included within a subset having higher Φ
[18,21]. For a given system, the complex with the maxi-
mum value of Φ(S) is called the main complex, where the
maximum is taken over all combinations of k>1 out of n
elements of the system.

main complex (X) = S ⊆ X for which Φ(S) = max for all S
(5)

In summary, a system can be analyzed to identify its com-
plexes – those subsets of elements that can integrate infor-
mation among themselves, and each complex will have an
associated value of Φ – the amount of information it can
integrate.

Results
In order to identify complexes and their Φ(S) for systems
with many different connection patterns, we imple-
mented each system X as a stationary multidimensional
Gaussian process such that values for effective informa-
tion could be obtained analytically (see Methods). In
order to compare different connection patterns, the con-
nection matrix CON(X) was normalized so that the abso-
lute value of the sum of the afferent synaptic weights per
element corresponded to a constant value w<1 (here,
unless specified otherwise, w = 0.5). When considering a
bipartition [A:B]S, the independent Gaussian noise
applied to A was multiplied by cp, the perturbation coeffi-
cient, while the independent Gaussian noise applied to
the rest of the system was given by ci, the intrinsic noise
coefficient. By varying cp and ci one can vary the signal-to-
noise ratio (SNR) of the effects of A on the rest of the sys-

tem. In the following examples, except if specified other-
wise, we set cp = 1 and ci = 0.00001 in order to emphasize
the role of the connectivity and minimize that of noise.

An illustrative example
We first consider a system for which the results of the
search for complexes should be easy to predict based on
the anatomical connectivity. The system comprises 8 ele-
ments with a connection matrix corresponding to two
fully interconnected modules, consisting of elements 1–4
and 5–7, respectively. These modules are completely dis-
connected from each other except for receiving common
input from element 8 (Fig. 2A,2G). We derived the sys-
tem's covariance matrix (Fig. 2B) based on the linear
model and performed an exhaustive search for complexes
as described in the Methods section. The search for mini-
mum information bipartitions proceeded over subsets of
sizes k = 2,...,8, with a total of 247 individual subsets
being examined. The main output is a list of all the subsets
S of system X ranked by how much information can be
integrated by each of them, i.e. their values of Φ. In Fig.
2C, the top 25 Φ values are ranked in descending order,
regardless of the size of the corresponding subset. The
composition of each subset corresponding to each Φ
value is schematically represented in Fig. 2D, with differ-
ent grey tones identifying the minimum information
bipartition. The most relevant information is contained at
the top of the matrix, which identifies the subsets with
highest Φ. The subset at the top of Fig. 2C,2D consists of
elements {1,2,3,4} and has Φ = 20.7954. Its minimum
information bipartition (MIB) splits it between elements
{1,2} and {3,4}. The next subsets consist of various com-
binations of elements. However, many of them are
included within a subset having higher Φ (higher up in
the list) and are stripped from the list of complexes, which
is shown in Fig. 2F. Fig. 2E shows the ranked values of Φ
for each complex. In this illustrative example, our analysis
revealed the existence of three complexes in the system:
the one of highest Φ, corresponding to elements
{1,2,3,4}, the second-highest, corresponding to elements
{5,6,7} with Φ = 20.1023, and a complex corresponding
to the entire system (elements {1,2,3,4,5,6,7,8}) with a
much lower value of Φ = 7.4021. As is evident from this
example, the same elements can be part of different
complexes.

Optimal networks for information integration
The above example illustrates how, in a simple case, the
analysis of complexes correctly identifies subsets of a sys-
tem that can integrate information. In general, however,
establishing the relationship between the anatomical con-
nectivity of a network and its ability to integrate informa-
tion is more difficult. For example, it is not obvious which
anatomical connection patterns are optimal for
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information integration, given certain constraints on
number of elements, total amount of synaptic input per
element, and SNR.

Fig. 3 shows connection patterns and complexes obtained
from a representative example of nonlinear constrained
optimization of the connection matrix CON(X), starting
from random connection matrices (n = 8, all columns

normalized to w = 0.5, no self-connections, and high
SNR, corresponding to ci = 0.00001, cp = 1). A large
number of optimizations for Φ were carried out and pro-
duced networks having high values of information inte-
gration (Φ = 73.6039 ± 0.5352 for 343 runs) that shared
several structural features. In all cases examined, com-
plexes with highest (optimized) values of Φ were of max-
imal size n. After optimization, connection weights

Measuring information integration: An illustrative exampleFigure 2
Measuring information integration: An illustrative example. To measure information integration, we performed an 
exhaustive search of all subsets and bipartitions for a system of n = 8 elements. Noise levels were ci = 0.00001, cp = 1. (A) Con-
nection matrix CON(X). Connections linking elements 1 to 8 are plotted as a matrix of connection strengths (column ele-
ments = targets, row elements = sources). Connection strength is proportional to grey level (dark = strong connection, light = 
weak or absent connection). (B) Covariance matrix COV(X). Covariance is indicated for elements 1 to 8 (corresponding to A). 
(C) Ranking of the top 25 values for Φ. (D) Element composition of subsets for the top 25 values of Φ (corresponding to panel 
C). Elements forming the subset S are indicated in grey, with two shades of grey indicating the bipartition into A and B across 
which the minimal value for EI was obtained. (E) Ranking of the Φ values for all complexes, i.e. subsets not included within sub-
sets of higher Φ. (F) Element composition for the complexes ranked in panel E. (G) Digraph representation of the connections 
of system X (compare to panel A). Elements are numbered 1 to 8, arrows indicate directed edges, arrow weight indicates con-
nection strength. Grey overlays indicate complexes with grey level proportional to their value of Φ. Figs. 2 to 7 use the same 
layout to represent computational results.
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showed a characteristic distribution with a large propor-
tion of weak connections and a gradual fall-off towards
connections with higher strength ("fat tail"). The column
vectors of optimized connection matrices were highly
decorrelated, as indicated by an average angle between
vectors of 63.6139 ± 2.5261° (343 optimized networks).
Thus, the pattern of synaptic inputs were different for dif-
ferent elements, ensuring heterogeneity and specializa-
tion. On the other hand, all optimized connection
matrices were strongly connected (all elements could be
reached from all other elements of the network), ensuring
information integration across all elements of the system.

Under conditions of low SNR (ci = 0.1, cp = 1), optimized
values of Φ (albeit much lower) were again obtained for
complexes of size n (Fig. 4, Φ = 5.7454 ± 0.1189 for 21

runs). However, the optimized connection patterns had
different weight distributions and topologies compared to
those obtained with high SNR. Connection weights
showed a highly bimodal distribution, with most connec-
tions having decayed effectively to strengths of zero and a
few connections remaining at high strength, correspond-
ing to a sparse connection pattern. Again, decorrelation of
synaptic input vectors was high (78.9453 ± 1.3946° for 21
optimized networks), while at the same time networks
remained strongly connected.

In order to characterize optimal networks for information
integration in graph-theoretical terms, we examined
sparse networks with fixed numbers of connections of
equal strength. Starting from networks of size n = 8 having
16 connections arranged at random, we used an

Information integration and complexes for an optimized network at high SNRFigure 3
Information integration and complexes for an optimized network at high SNR. Shown is a representative example 
for n = 8, w = 0.5, ci = 0.00001, cp = 1. Note the heterogeneous arrangement of the incoming and outgoing connections for 
each element.
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evolutionary algorithm [22] to rearrange the connections
for optimal information integration. Also in this case,
optimal networks yielded complexes corresponding to the
entire system, both for high (ci = 0.00001, Φ = 60.7598,
Fig. 5) and low levels of SNR (ci = 0.1, Φ = 5.943, not
shown). Optimized sparse networks shared several struc-
tural characteristics that emerged in the absence of any
structural constraints imposed on the evolutionary algo-
rithm. As with non-sparse networks, heterogeneity of the
connection pattern was high, with no two elements shar-
ing sets of either inputs or outputs. To quantify the simi-
larity of input patterns, we calculated the matching index
[23,24], which reflects the correlation (scaled between 0
and 1) between discrete vectors of input connections to a
pair of vertices, excluding self- and cross-connections.
After averaging across all pairs of elements of each opti-
mized network, the average matching index was 0.1429,

indicating extremely low overlap between input patterns.
Also, despite the sparse connectivity, all optimized net-
works were strongly connected. In-degree and out-degree
distributions, which record the number of afferent and
efferent connections per element, tended to be balanced,
with most if not all elements receiving and emitting two
connections each (see example in Fig. 5). Consistent with
results from nonlinear optimization runs, networks
showed few (if any) direct reciprocal connections but had
an over-abundance of short cycles. For example, an opti-
mal pattern having maximal symmetry was made up by
nested cycles of length 3 (3-cycles, or indirect reciprocal,
as shown in Fig. 10). Finally, structural characteristics of
optimized sparse networks differed significantly from
those of random sparse networks. The latter had a much
lower value of Φ (Φ = 35.6622 ± 5.0382, 100 exemplars)
and complexes of maximal size n = 8 were found only in

Information integration and complexes for an optimized network at low SNRFigure 4
Information integration and complexes for an optimized network at low SNR. Shown is a representative example 
for n = 8, w = 0.5, ci = 0.1, cp = 1. Note the sparse structure of the optimized connection pattern.
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a fraction (46/100) of cases. Calculation of the matching
index revealed a higher degree of similarity between input
vectors (average of 0.2180), despite random generation.
Moreover, only a small number of random networks were
strongly connected (13/100) and the fraction of direct
reciprocal connections was higher.

In summary, all optimized networks, irrespective of size,
sparse or full connectivity, and levels of noise, satisfied
two opposing requirements – that for specialization and
that for integration. The former corresponded to the
strong tendency of connection patterns of different ele-
ments to be as heterogeneous as possible, yielding ele-
ments with different functional roles. The latter was
revealed by the fact that optimized networks, in all cases

examined in this study and for any combination of
parameters or constraints, formed a single, highly con-
nected complex of maximal size.

Homogeneous and modular networks
To examine the influence of homogeneity and modularity
of connection patterns on the integration of information,
it is useful to study how values of Φ respond to changes in
these parameters. Specifically, if heterogeneity (specializa-
tion) is essential, Φ should decrease considerably for con-
nection matrices that lack such heterogeneity, i.e. are fully
homogeneous. Fig. 6 shows a fully connected network
where all connection weights had the same value CONij =
0.072, i.e. a fully homogenous network (matching index =
1). Its main complex contained all elements of the system,

Information integration and complexes for an optimized sparse network having fixed number of connections of equal strengthFigure 5
Information integration and complexes for an optimized sparse network having fixed number of connections 
of equal strength. The network was obtained through an evolutionary rewiring algorithm (n = 8, 16 connections of weight 
0.25 each, ci = 0.00001, cp = 1). Note the heterogeneous arrangement of the incoming and outgoing connections for each ele-
ment, the balanced degree distribution (two afferent and two efferent connections per element) and the low number of direct 
reciprocal connections.
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but its ability to integrate information was much less than
that of optimized networks (Φ = 20.5203 against 73.6039,
for n = 8 and ci = 0.00001). This result was obtained irre-
spective of the size of the system or SNR.

On the other hand, if forming a single large complex
(integration) is essential to reach high values of Φ, then a
system that is composed of several smaller complexes (e.g.
"modules") should integrate less information and have
lower values of Φ. Fig. 7 shows a strongly modular net-
work, consisting of four modules of two strongly intercon-
nected elements (CONij = 0.25) that were weakly linked
by inter-module connections (CONij = 0.0417). This net-
work yielded Φ = 20.3611 for each of its four modules,
which formed the system's four main complexes. A com-
plex consisting of the entire network was also obtained,

but its Φ value (19.4423) was lower than that of the indi-
vidual modules.

Finally, to evaluate how Φ changes by varying parametri-
cally along the continuum between full modularity to full
homogeneity, we plotted the value of Φ for a series of
Toeplitz connection matrices of Gaussian form for
increasing standard deviation σ (Fig. 8A,8B; Toeplitz
matrices have constant coefficients along all subdiago-
nals). As σ was varied from 10-3 (complete modularity,
self-connections only) to 101 (complete homogeneity, all
connections of equal weight), Φ reached a maximum for
intermediate values of σ, when the coefficients in the
matrix spanned the entire range between 0 and 1.

Information integration and complexes for a homogeneous networkFigure 6
Information integration and complexes for a homogeneous network. Connectivity is full and all connections weights 
are the same (n = 8, w = 0.5, ci = 0.00001, cp = 1).
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Basic digraphs and their Φ
In this section, we examine the capacity to integrate infor-
mation of a few basic digraphs (directed graphs) that con-
stitute frequent motifs in biological systems, especially in
neural connection patterns (Fig. 9). A directed path (Fig.
9A) consists of a series of directed connections (edges)
linking elements (vertices) such that no element is
repeated. A directed path composed of connections of
equal weight linking n elements formed a complex of size
n with a low value of Φ = 10.1266 (n = 8, connection
strength = 0.25, ci = 0.00001, cp = 1). The minimum infor-
mation bipartition (MIB) always separated two connected
elements. The value for Φ was fixed irrespective of the
total length of the path. Addition of a connection linking
the last and first elements results in a closed path or cycle
(Fig. 9B). The complex integrating maximal information
corresponded to the entire system and its MIB corre-

sponded to a cut into two contiguous halves. The value of
Φ = 20.2533 was exactly twice that for the directed path
(Fig. 9A) and remained constant irrespective of the length
of the cycle. A two-way cycle with reciprocal connections
linking pairs of elements as nearest neighbors (Fig. 9C)
had a main complex equal to the entire system, with a
MIB that separated the system into two halves. The value
for Φ was 40.5065, almost twice that of the one-way cycle,
and was constant irrespective of length (n>4). If the sys-
tem is a fan-out (divergent) digraph (Fig. 9D) with a single
element (master) driving or modulating several other ele-
ments (slaves), the entire system formed the main com-
plex, the MIB corresponded to a cut into two contiguous
halves, and the value of Φ was low (Φ = 10.8198). How-
ever, this architecture became more efficient, compared to
others, under low SNR. Predictably, the fan-out
architecture was rather insensitive to size under high SNR.

Information integration and complexes for a strong modular networkFigure 7
Information integration and complexes for a strong modular network. Weights of inter-modular connections are 
0.0417 (n = 8, w = 0.5, ci = 0.00001, cp = 1).
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If the system is a fan-in (convergent) digraph (Fig. 9E),
where a single element is driven by several other elements,
the entire system formed the main complex and MIB cor-
responded to a cut into two contiguous halves with low Φ
values (Φ = 10.8198).

It is also interesting to consider what happens if paths,
cycles, or a fan-out architecture are added onto a complex
of high Φ (Fig. 10). Specifically, adding a path did not
change the composition of the main complex, and did not
change its Φ if the path was out-going from the complex
(Fig. 10A; the source element of the path in the complex
is called a port out). If the path was in-going (Fig. 10B; the

target element of the path in the complex is called a port
in), the Φ value of the main complex could be slightly
altered, but its composition did not change. The addition
of an in-going or an out-going path did form a new
complex including part or all the main complex plus the
path, but its Φ value was much lower that that of the orig-
inal complex, and corresponded to that of the isolated
path, with the MIB cutting between the path and the port
in/out. Adding cycles to a complex (Fig. 10C) also gener-
ally did not change the main complex, although Φ values
could be altered. It should be noted that, even if the ele-
ments of a cycle do not become part of the main complex
(except for ports in and ports out) they can provide an

Information integration as a function of modularity – homogeneityFigure 8
Information integration as a function of modularity – homogeneity. Values of Φ were obtained from Gaussian 
Toeplitz connection matrices (n = 8) with a fixed amount of total synaptic weight (self-connections allowed). The plot shows Φ 
as a function of the standard deviation σ of the Toeplitz connection profile. Connection matrices (cases a to f) are shown at 
the left, for different values of σ. For very low values of σ (σ = 0.001, case a), Φ is zero: the system is made up of 8 causally 
independent modules. For intermediate values of σ (σ ≈ 0.01 to 0.1, cases b, c, d, e), Φ increases and reaches a maximum; the 
elements are interacting in a heterogeneous way. For high values of σ (σ = 1, case f) Φ is low; the interactions among the ele-
ments are completely homogeneous.
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indirect connection between two elements of the main
complex. Thus, information integration within a complex
can be affected by connections and elements outside the
complex.

Scaling and joining complexes
Because of the computational requirements, an exhaus-
tive analysis of information integration is feasible only for
small networks. While heuristic search algorithms may be
employed to aid in the analysis of larger networks, here
we report a few observations that can be made using
networks with n≤12. Keeping all parameters except size
the same, maximum values of Φ achieved using nonlinear
constrained optimization grew nearly linearly at both
high and low SNR, e.g. increasing from Φ = 39.95 at size
4 to Φ = 103.96 at size 12 (w = 0.5, ci = 0.00001, cp = 1).

For larger networks, and especially for networks of biolog-
ical significance, a relevant question is whether high levels
of information integration can be obtained by joining
smaller components. To investigate this question, we first
optimized two small component networks with n = 8 and
then joined them through 8 pairs of reciprocal connec-
tions (Fig. 11A,11B). We refer to the connections inside
each component as "intra-modular", and to those
between the two components as "inter-modular". Before
being joined the two optimized component networks
each had Φ = 60.7598. After being joined by inter-modu-
lar connections, whose strength was equal to the total
strength of intra-modular connections, the value of Φ for
the system of size n = 16 was Φ = 109.5520. This repre-
sents a significant gain in information integration without
further optimization, considerably exceeding the average

Information integration for basic digraphsFigure 9
Information integration for basic digraphs. (A) Directed path. (B) One-way cycle. (C) Two-way cycle. (D) Fan-out 
digraph. (E) Fan-in digraph. Complexes are shaded and values for Φ are provided in each of the panels.
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Φ for random networks of size n = 16 (Φ = 51.5930 ±
5.2275, 10 exemplars).

The stability of the maximal complex and its capacity to
integrate information depends on the relative synaptic
strengths of intra-modular and inter-modular connec-
tions. In Fig. 11C, we plot the values for Φ and the size of
the corresponding complex for different inter-modular
coupling strengths, using two n = 8 sparse optimized com-
ponents joined by 8 pairs of reciprocal connections. At
very low levels of inter-modular coupling, the two compo-
nent networks formed separate complexes (see modular
networks above) and their Φ was close to the average Φ
attained by optimizing networks of size n = 8
(Φ≈60.7598). As coupling increases, at a coupling
strength of approximately 0.001, the two components

suddenly joined as one main complex. This complex
reached a maximal Φ≈109.6334 at a coupling ratio of 2:3
for intra- versus inter-modular connections. Stronger cou-
pling resulted in weaker information integration.

Our results demonstrate that the value for Φ attained by
simply coupling optimized smaller components substan-
tially exceeds that of random networks of equivalent size,
although it typically does not reach the Φ of optimized
networks. This gain in integrated information achieved by
joining complexes suggests that larger networks capable of
high information integration may be constructed effi-
ciently starting from small optimized components.

Adding paths and cycles to a main complexFigure 10
Adding paths and cycles to a main complex. (A) Out-going path added to a complex. Complex and directed path are 
shown separately on the left and joined on the right. (B) In-coming path added to a complex. (C) Cycle added to a complex. 
Complexes are shaded and values for Φ are provided in each of the panels.
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Discussion
In this paper, we have examined how the capacity to inte-
grate information can be measured and how it varies
depending upon the organization of network
connections. The measure of information integration – Φ
– corresponds to the minimum amount of effective infor-
mation that can be exchanged across a bipartition of a
subset. A subset of elements capable of integrating
information that is not part of a subset having higher Φ
constitutes a complex. As was shown here with linear sys-
tems having different architectures, these measures can be
used to identify subsets of elements that can integrate
information and to measure its amount.

Measuring information integration
Despite the significant development of techniques for
quantifying information transmission, encoding and stor-
age, measures for information integration have been com-
paratively neglected. One reason for such neglect may be
that information theory was originally developed in the
context of communication engineering [1]. In such appli-
cation, the sender, channel, and receiver are typically
given, and the goal is to maximize information transmis-
sion. In distributed networks such as the central nervous
system, however, most nodes can be both senders and
receivers, multiple pathways can serve as channels, and a
key goal is to integrate information for behavioral control
[5].

Joining complexesFigure 11
Joining complexes. (A) Graph representation of two optimized complexes (n = 8 each), joined by reciprocal "inter-modular" 
connections (stippled arrows). For simplicity, these connections are arranged as n pairs of bi-directional connections, repre-
senting a simple topographic mapping. (B) Connection matrix of a network of size n = 16 constructed from two smaller opti-
mized components (n = 8). (C) Information integration as a function of inter-modular coupling strength. Connection strength 
is given as inter-modular CONij values; all intra-modular connections per element add up to 0.5-CONij. Plot at the bottom 
shows the size of the complex with highest Φ as a function of inter-modular coupling strength.
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In previous work, we introduced a measure called neural
complexity (CN), which corresponds to the average
mutual information for all bipartitions of a system [19].
We showed that CN is low if the elements of the system are
connected too sparsely (no integration), or if they are con-
nected too homogeneously (no specialization), but it is
high if the elements are connected densely and in a
specific manner (both integration and specialization). CN
captures an important aspect of the average integration of
information within a distributed system. However, it is
insensitive to whether the system constitutes a single, inte-
grated entity, or is actually made up of independent sub-
sets. For example, based on CN alone it is not possible to
know whether a set of elements is integrated or is arranged
into parallel, independent channels. To identify which
elements of a system constitute an integrated subset, we
introduced an index of functional clustering (CI), which
reflects the ratio between the overall statistical depend-
ence within a subset over the statistical dependence
between that subset and the rest of the system [25].
Because it is based on a ratio, CI requires statistical com-
parison to a null hypothesis to rank subsets of different
size. Like CN, CI cannot detect whether elements are
merely correlated, e.g. because of common input, or are
causally interacting.

The procedure discussed here represents a direct attempt
at measuring intergration information, and it differs in
several important respects from the above-mentioned
two-step process of finding functional clusters and
measuring the average mutual information between their
bipartitions. The analysis of complexes identifies subsets
in a single step based on their ability to integrate informa-
tion, i.e. their Φ value. Moreover, Φ measures the actual
amount of information that can be integrated, rather than
an average value, and eliminates the need for statistical
comparisons to a null hypothesis. Φ provides therefore a
meaningful metric to cluster subsets of neural elements
depending on the amount of information they can
exchange. At a more fundamental level, information can
only be integrated if there are actual interactions within a
system. Accordingly, because it is based on effective infor-
mation rather than on mutual information, Φ measures
causal interactions, not just statistical dependencies. In
neural terms, this means that Φ characterizes not just the
functional connectivity of a network, but the entire range
of its effective connectivity (in neuroimaging studies,
effective connectivity is generally characterized as a
change in the strength of interactions between brain areas
associated with time, attentional set, etc. [26,27]). Finally,
similar to the capacity for information transmission of a
channel [1], the capacity for information integration of a
system is a fundamental property that should only
depend on the system's parameters and not be affected by
observation time or nonstationarities. Accordingly, Φ

captures all interactions that are possible in a system, not
just those that happen to be observed over a period of
time.

Information integration and basic neuroanatomy
A characterization of the structural factors that affect infor-
mation integration is especially useful when considering
intricately connected networks such as the nervous sys-
tem. Using linear systems of interconnected elements, we
have examined how, given certain constraints, the organ-
ization of connection patterns influences information
integration within complexes of elements. The results
suggest that only certain architectures, biological or
otherwise, are capable of jointly satisfying the require-
ments posed by specialization and integration and yield
high values of Φ.

The present analysis indicates that, at the most general
level, networks yielding high values of Φ must satisfy two
key requirements: i) the connection patterns of different
elements must be highly heterogeneous, corresponding to
high specialization; ii) networks must be highly con-
nected, corresponding to high integration (Figs. 3,4,5). If
one or the other of these two requirements is not satisfied,
the capacity to integrate information is greatly reduced.
We have shown that homogenously connected networks
are not suited to integrating large amounts of information
because specialization is lost (Fig. 6), while strongly mod-
ular networks fail because of a lack of integration (Fig. 7).
Moreover, we have shown that randomly connected net-
works do not perform well given constraints on the
amount of connections or in the presence of noise, since
optimal arrangements of connection patterns are highly
specific. We have also examined simple digraphs that are
widely represented in biology, such as paths, cycles, and
pure convergence and divergence (Fig. 8). Such simple
arrangements do not yield by themselves high values of Φ,
but they can be helpful to convey the inputs and outputs
of a complex, to mediate indirect interactions between
elements of a complex or of different complexes, and for
global signalling. Finally, we have seen that, while opti-
mizing connection patterns for Φ is unrealistic for large
networks, high values of Φ can be achieved by joining
smaller complexes by means of reciprocal connections
(Fig. 11). These observations are of some interest when
considering basic aspects of neuroanatomical
organization.

Thalamocortical system
The above analysis indicates that Φ is maximized by hav-
ing each element develop a different connection pattern
with the rest of the complex (functional specialization)
while ensuring that, irrespective of how the system is
divided in two, a large amount of information can be
exchanged between the two parts (functional integration).
Page 15 of 20
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The thalamocortical system appears to be an excellent
candidate for the rapid integration of information. It com-
prises a large number of widely distributed elements that
are functionally specialized [8,9]. Anatomical analysis has
shown that specialized areas of cortex maintain heteroge-
neous sets of afferent and efferent pathways, presumably
crucial to generate their individual functional properties
[28]. At the same time, these elements are intricately inter-
connected, both within and between areas, and these
interconnections show an overabundance of short cycles
[12,29]. These connections mediate effective interactions
within and between areas, as revealed by the occurrence of
short- and long-range synchronization, a hallmark of
functional integration, both spontaneously and during
cognitive tasks [13-17]. Altogether, such an organization
is reminiscent of that of complexes of near-optimal Φ. The
observation that it is possible to construct a larger com-
plex of high Φ by joining smaller, near-optimal complexes
in a fairly straightforward manner, may also be relevant in
this context. For example, while biological learning algo-
rithms may achieve near-optimal information integration
on a local scale, it would be very convenient if large com-
plexes having high values of Φ could be obtained by lay-
ing down reciprocal connections between smaller
building blocks.

From a functional point of view, an architecture yielding
a large complex with high values of Φ is ideally suited to
support cognitive functions that call for rapid, bidirec-
tional interactions among specialized brain areas.
Consistent with these theoretical considerations, percep-
tual, attentional, and executive functions carried out by
the thalamocortical system rely on reentrant interactions
[30], show context-dependency [30-32], call for global
access [10,11], require that top down predictions are
refined against incoming signals [27], and often occur in
a controlled processing mode [33]. Considerable evidence
also indicates that the thalamocortical system constitutes
the necessary and sufficient substrate for the generation of
conscious experience [11,34-36]. We have suggested that,
at the phenomenological level, two key properties of con-
sciousness are that it is both highly informative and inte-
grated [11,18]. Informative, because the occurrence of
each conscious experience represents one outcome out of
a very large repertoire of possible states; integrated,
because the repertoire of possible conscious states belongs
to a single, unified entity – the experiencing subject. These
two properties reflect precisely, at the phenomenological
level, the ability to integrate information [21]. To the
extent that consciousness has to do with the ability to
integrate information, its generation would require a
system having high values of Φ. The hypothesis that the
organization of the thalamocortical system is well suited
to giving rise to a large complex of high Φ would then pro-
vide some rationale as to why this part of the brain

appears to constitute the neural substrate of conscious-
ness, while other portions of the brain, similarly equipped
in terms of number of neurons, connections, and neuro-
transmitters, do not contribute much to it [21].

Cerebellum
This brain region contains probably more neurons and as
many connections as the cerebral cortex, receives mapped
inputs from the environment and controls several out-
puts. However, the organization of synaptic connections
within the cerebellum is radically different from that of
the thalamocortical system, and it is rather reminiscent of
the strongly modular systems analyzed here. Specifically,
the organization of the connections is such that individ-
ual patches of cerebellar cortex tend to be activated inde-
pendently of one another, with little interaction between
distant patches [37,38]. This suggests that cerebellar con-
nections may not be organized so as to generate a large
complex of high Φ, but rather very many small complexes
each with a low value of Φ. Such an organization seems to
be highly suited for the rapid, effortless execution and
refinement of informationally encapsulated routines,
which is thought to be the substrate of automatic process-
ing. Moreover, consistent with the notion that conscious
experience requires information integration, even exten-
sive cerebellar lesions or cerebellar ablations have little
effect on consciousness.

Cortical input and output systems, cortico-subcortical loops
According to the present analysis, circuits providing input
to a complex, while obviously transmitting information
to it, do not add to its ability to integrate information if
their effects are entirely accounted for by the elements of
the complex to which they connect. This situation resem-
bles the organization of early sensory pathways and of
motor pathways. Similar conclusions apply to cycles
attached to a main complex at both ends, a situation
exemplified by parallel cortico-subcortico-cortical loops.
Consider for example the basal ganglia – large neural
structures that contain many circuits arranged in parallel,
some implicated in motor and oculomotor control, oth-
ers, such as the dorsolateral prefrontal circuit, in cognitive
functions, and others, such as the lateral orbitofrontal and
anterior cingulate circuits, in social behavior, motivation,
and emotion [39]. Each basal ganglia circuit originates in
layer V of the cortex, and through a last step in the thala-
mus, returns to the cortex, not far from where the circuit
started [40]. Similarly arranged cortico-cerebello-tha-
lamo-cortical loops also exist. Our analysis suggests that
such subcortical loops, even if connected at both ends to
the thalamocortical system, would not change the compo-
sition of the main thalamocortical complex, and would
only slightly modify its Φ value. Instead, the elements of
the main complex and of the connected cycle form a joint
complex that can only integrate the limited amount of
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information exchanged within the loop. Thus, the present
analysis suggests that, while subcortical cycles or loops
could implement specialized subroutines capable of
influencing the states of the main thalamocortical com-
plex, the neural interactions within the loop would
remain informationally insulated from those occurring in
the main complex. To the extent that consciousness has to
do with the ability to integrate information [18], such
informationally insulated cortico-subcortical loops could
constitute substrates for unconscious processes that can
influence conscious experience [21,41]. It is likely that
informationally encapsulated short loops also occur
within the cerebral cortex and that they play a similar role.

Limitations and extensions
Most of the results presented in this paper were obtained
on the basis of systems composed of a small number of
elements, and further work will be required to determine
whether they apply to larger systems. For example, it is not
clear whether the highest values of Φ can always be
obtained by optimizing connection patterns among all
elements, or whether factors such as noise, available con-
nection strength, and dynamic range (maximum available
entropy) of individual elements would eventually force
the largest complexes to break down. Similarly, it is not
clear whether arbitrarily high values of information inte-
gration could be reached by generating connection pat-
terns according to some probability distribution and
merely increasing network size. Results obtained with
small networks (n ≤ 12) indicate that the performance of
connection patterns generated according to a uniform or
normal random distribution diverges strongly from that
of optimal networks as soon as realistic constraints are
introduced. For example, if we assume that each network
can only maintain a relatively small number of connec-
tions, thus enforcing sparse connectivity, optimized net-
works develop specific wirings that yield high Φ (Φ =
60.76, for n = 8 and ci = 0.00001), while sparse random
networks generated according to a uniform distribution
have low Φ and tend to break down into small complexes
(Φ = 33.90). Similarly, if we assume that a certain amount
of noise is unavoidable in biological systems (ci = 0.1, cp =
1), architectures yielding optimal Φ turn out to be sparse
and are clearly superior to random patterns with connec-
tions drawn from uniform distributions (Φ = 5.71 versus
Φ = 2.92).

The results presented in this initial analysis were obtained
from linear systems having no external connections. Real
systems such as brains, of course, are highly non-linear,
and they are constantly interacting with the environment.
Moreover, the ability of real systems to integrate informa-
tion is heavily constrained by factors above and beyond
their connectional organization. In neural systems, for
instance, factors affecting maximum firing rates, firing

duration, synaptic efficacy, and neural excitability, such as
behavioral state, can radically alter information integra-
tion even if the anatomical connectivity is unchanged
[21]. Such factors and their influence on Φ value of a com-
plex need to be investigated in more realistic models
[10,42,43]. Values of effective information and thus of Φ
are also dependent on both temporal and spatial scales
that determine the repertoire of states available to a sys-
tem. The equilibrium linear systems considered here had
predefined elementary units and no temporal evolution.
In real systems, information integration can occur at
multiple temporal and spatial scales. An interesting possi-
bility is that the "grain size" in both time and space at
which Φ/t reaches a maximum might define the optimal
functioning range of the system [21]. With respect to time,
Φ values in the brain are likely to show a maximum
between tens and hundreds of milliseconds. It is clear, for
example, that if one were to perturb one half of the brain
and examine what effects this produces on the other half,
no perturbation would produce any effect whatsoever
after just a tenth of a millisecond (EI = 0). After say 100
milliseconds, however, there is enough time for differen-
tial effects to be manifested. Similarly, biological consid-
erations suggest that synchronous firing of heavily
interconnected groups of neurons sharing inputs and out-
puts, e.g. cortical minicolumns, may produce significant
effects in the rest of the brain, while asynchronous firing
of various combinations of individual neurons may not.
Thus, Φ values may be higher when considering as ele-
ments cortical minicolumns rather than individual neu-
rons, even if their number is lower.

A practical limitation of the present approach has to do
with the combinatorial problem of exhaustively measur-
ing Φ in large systems, as well as with the requirement to
perturb a system in all possible ways, rather than just
observe it for some time. In this respect, large-scale,
realistic neural models offer an opportunity for examining
the effects of a large number of perturbations in an effi-
cient and economical manner [10,42]. In real systems,
additional knowledge can often provide an informed
guess as to which bipartitions may yield low values of EI.
Moreover, as is the case in cluster analysis and other com-
binatorial problems, advanced optimization algorithms
may be employed to circumvent an exhaustive search
[44]. In this context, it should be noted that the biparti-
tions for which the normalized value of EI will be at a
minimum will be most often those that cut the system in
two halves, i.e. midpartitions [18]. Similarly, a represent-
ative rather than exhaustive number of perturbations may
be sufficient to estimate the repertoire of different
responses that are available to neural systems. Work along
these lines has already progressed in the analysis of sen-
sory systems in the context of information transmission
[3,45]. It will be essential to extend this work and evaluate
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the effects of perturbations applied directly to the central
nervous system, as could be done for instance by combin-
ing transcranial magnetic stimulation with functional
neuroimaging [46,47], or microstimulation with multie-
lectrode recordings. Finally, where direct perturbations
are impractical or impossible, a partial characterization of
the ability of a system to integrate information can still be
obtained by exploiting endogenous variance or noise and
substituting mutual information for effective information
in order to identify complexes and estimate Φ (see exam-
ples at http://www.indiana.edu/~cortex/complexity.html.

Conclusions
Despite these limitations and caveats, the approach dis-
cussed here demonstrates how it is possible to assess
which elements of a system are capable of integrating
information, and how much of it. Such an assessment
may be particularly relevant for neural systems, given that
integrating information is arguably what brains are espe-
cially good at, and may have evolved for. More generally,
the coexistence of functional specialization and integra-
tion is a hallmark of most complex systems, and for such
systems the issue of information integration is para-
mount. Thus, a way of localizing and measuring the
capacity to integrate information could be useful in char-
acterizing many kinds of complex systems, including gene
regulatory networks, ecological and social networks, com-
puter architectures, and communication networks.

Methods
Model Implementation
In order to identify complexes and their Φ(S) for systems
with many different connection patterns, we imple-
mented numerous model systems X composed of n neural
elements with connections CONij specified by a connec-
tion matrix CON(X); self-connections CONii are generally
excluded. In order to compare different architectures,
CON(X) was normalized so that the absolute value of the
sum of the afferent synaptic weights per element corre-
sponded to a constant value w<1. If the system's dynamics
corresponds to a multivariate Gaussian random process,
its covariance matrix COV(X) can be derived analytically.
As in previous work [19], we consider the vector X of ran-
dom variables that represents the activity of the elements
of X, subject to independent Gaussian noise R of magni-
tude c. We have that, when the elements settle under sta-
tionary conditions, X = X CON(X) + cR. By defining Q =
(1-CON(X))-1 and averaging over the states produced by
successive values of R, we obtain the covariance matrix
COV(X) = <X X> = <Qt Rt R Q> = Qt  Q, where the
superscript t refers to the transpose.

Mutual Information
Under Gaussian assumptions, all deviations from inde-
pendence among the two complementary parts A and B of

a subset S of X are expressed by the covariances among the
respective elements. Given these covariances, values for
the individual entropies H(A) and H(B), as well as for the
joint entropy of the subset H(S) = H(AB) can be obtained.
For example, H(A) = (1/2)ln [(2π e)n|COV(A)|], where |•|
denotes the determinant. The mutual information
between A and B is then given by MI(A:B) = H(A) + H(B)
- H(AB) [2,20]. Note that MI(A:B) is symmetric and
positive.

Effective Information
To obtain the effective information between A and B
within our model systems, we enforced independent
noise sources in A by setting to zero strength the connec-
tions within A and afferent to A. Then the covariance
matrix for A is equal to the identity matrix (given inde-
pendent Gaussian noise), and any statistical dependence
between A and B must be due to the causal effects of A on
B, mediated by the efferent connections of A. Moreover,
all possible outputs from A that could affect B are evalu-
ated. Under these conditions, EI(A→B) = MI(AHmax:B), as
per equation (1). The independent Gaussian noise R
applied to A is multiplied by cp, the perturbation coeffi-
cient, while the independent Gaussian noise applied to
the rest of the system is given by ci, the intrinsic noise coef-
ficient. By varying cp and ci one can vary the signal-to-
noise ratio (SNR) of the effects of A on the rest of the sys-
tem. In what follows, high SNR is obtained by setting cp =
1 and ci = 0.00001 and low SNR by setting cp = 1 and ci =
0.1. Note that, if A were to be stimulated, rather than sub-
stituted, by independent noise sources (by not setting to
zero the connections within and to A), one would obtain
a modified effective information (and derived measures)
that would reflect the probability distribution of A's out-
puts as filtered by its connectivity.

Complexes
To identify complexes and obtain their capacity for infor-
mation integration, we consider every subset S ⊆ X, com-
posed of k elements, with k = 2,..., n. For each subset S, we

consider all bipartitions and calculate EI(A B) for each
of them according to equation (2). We find the minimum
information bipartition MIB(S), the bipartition for which
the normalized effective information reaches a minimum
according to equation (3), and the corresponding value of
Φ(S), as per equation (4). We then find the complexes of X
as those subsets S with Φ>0 that are not included within a
subset having higher Φ and rank them based on their Φ(S)
value. As per equation (5), the complex with the maxi-
mum value of Φ(S) is the main complex.

Algorithms: Measuring Φ and finding complexes
Practically, the procedure for finding complexes can only
be applied exhaustively to systems composed of up to two
dozen elements because the number of subsets and bipar-
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titions to be considered increases factorially. When deal-
ing with larger systems, a random sample of subsets at
each level (e.g. 10,000 samples per level) can provide an
initial, non-exhaustive matrix of complexes. A search for
complexes of maximum Φ can then be performed by
appropriately permuting the subsets with the highest Φ
(cf. [44] for optimization procedures in cluster analysis).
In most cases, this procedure rapidly identifies the subsets
with the highest Φ among millions of possibilities. MAT-
LAB functions used for calculating effective information
and exhaustive search for complexes are available for
download at http://www.indiana.edu/~cortex/complex
ity.html or http://tononi.psychiatry.wisc.edu/informa
tionintegration/toolbox.html.

Algorithms: Optimization
To search for connectivity patterns that are associated with
high or optimal values of Φ, we employed two optimiza-
tion strategies. When searching for connection patterns
characterized by full CON(X) matrices with real-valued
and continuous connection strengths CONij, we used a
nonlinear constrained optimization algorithm with Φ as
the cost function. When searching for sparse connection
patterns characterized by binary connection matrices, we
used an evolutionary search algorithm similar to an algo-
rithm called "graph selection" described in earlier work
[22]. Briefly, individual generations of varying connection
matrices are generated and evaluated with Φ as the fitness
function. Networks with the highest values for Φ are cop-
ied to the next generation and their connection matrices
are randomly rewired to generate new variants. The proce-
dure is continued until a maximal value for Φ is reached.
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