
BioMed CentralBMC Neuroscience
BMC Neuroscience 2001, 2 :18Research article
Gamma oscillation underlies hyperthermia-induced 
epileptiform-like spikes in immature rat hippocampal slices
Jie Wu*1, Sam P Javedan2, Kevin Ellsworth1, Kris Smith2 and 

Robert S Fisher3

Address: 1Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix AZ 85013, USA, 2Division 

of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix AZ 85013, USA and 3Department of 
Neurology, Stanford University School of Medicine, 300 Pasteur Drive Stanford, CA 94305-5235, USA

E-mail: Jie Wu* - jwu2@chw.edu; Sam P Javedan - Lsjavedan@hotmail.com; Kevin Ellsworth - Kevine@imapz.asu.edu; 
Kris Smith - Ksmith6@chw.edu; Robert S Fisher - rfisher@stanford.edu

*Corresponding author

Abstract
Background: Recently a hyperthermic rat hippocampal slice model system has been used to
investigate febrile seizure pathophysiology. Our previous data indicates that heating immature rat
hippocampal slices from 34 to 41°C in an interface chamber induced epileptiform-like population
spikes accompanied by a spreading depression (SD). This may serve as an in vitro model of febrile
seizures.

Results: In this study, we further investigate cellular mechanisms of hyperthermia-induced initial
population spike activity. We hypothesized that GABAA receptor-mediated 30–100 Hz γ
oscillations underlie some aspects of the hyperthermic population spike activity. In 24 rat
hippocampal slices, the hyperthermic population spike activity occurred at an average frequency of
45.9 ± 14.9 Hz (Mean ± SE, range = 21–79 Hz, n = 24), which does not differ significantly from the
frequency of post-tetanic γ oscillations (47.1 ± 14.9 Hz, n = 34) in the same system. High intensity
tetanic stimulation induces hippocampal neuronal discharges followed by a slow SD that has the
magnitude and time course of the SD, which resembles hyperthermic responses. Both post-tetanic
γ oscillations and hyperthermic population spike activity can be blocked completely by a specific
GABAA receptor blocker, bicuculline (5–20 µM). Bath-apply kynurenic acid (7 mM) blocks synaptic
transmission, but fails to prevent hyperthermic population spikes, while intracellular diffusion of
QX-314 (30 mM) abolishes spikes and produces a smooth depolarization in intracellular recording.

Conclusion: These results suggest that the GABAA receptor-governed γ oscillations underlie the
hyperthermic population spike activity in immature hippocampal slices.

Background
Febrile seizures are the most prevalent type of seizures

experienced by children, affecting up to 5% of the world's

population [1]. Although most febrile seizures are benign

and do not require treatment, they are distressing to par-
ents, and in a few circumstances, can increase the risk of

subsequent epilepsy [2]. In clinical practice, therapy for

febrile seizures presently is unsatisfactory, since clinical
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data are insufficient to document efficacy of most anti-
epileptic drugs [3]. The most commonly used drug, phe-

nobarbital, has significant deleterious effects on learning

and behavior.

A better understanding of the underlying mechanisms of

febrile seizures might lead to new strategies of preven-

tion or treatment [4]. Recent work has identified several

genes associated with familial febrile seizure tendencies

[5–7]. Some of these genes code for ion channels that

govern excitability of nerve tissue. We recently published

a study of the characteristic hyperthermic responses rep-

resented as epileptiform-like population spike activity

accompanied by spreading depression (SD) in a rat hip-

pocampal slice, which may serve as an in vitro model of

febrile seizures [8]. The hyperthermic response was age-

dependent, occurring almost exclusively in young, but

not newborn, rats. The primary underlying abnormality

in this model was inability of neuronal tissue properly to

regulate extracellular potassium concentrations. During

heating of the slice, extracellular potassium concentra-

tions rose transiently from the normal 5 mM to as high as

40 mM and extracellular field potential shitted about 20

mV negative, a reversible condition known as SD. During

the early phases of SD, neurons burst synchronously in a

pattern analogous to seizures. Since hyperthermic epi-
leptiform-like population bursts exhibited the frequency

of γ oscillations (30–100 Hz), we hypothesized that

GABAA receptor-governed γ oscillations might underlie

the cellular basis of hyperthermic epileptiform-like pop-

ulation spike activity.

The γ frequency oscillations (30–100 Hz) are character-

istic of responses to sensory input measured by cortical

EEG [9]. In the hippocampal slice preparation, γ oscilla-
tions can be evoked by brief, high frequency tetanic stim-

uli to region CA1 [10–13]. The extracellular field

potential response during these oscillations takes the

form of a train of population spikes in stratum pyramidal

at γ and β (15–30 Hz) frequencies [14]. Intracellular re-

cordings during γ oscillations induced by tetanic stimu-

lation reveal a slow membrane depolarization in

conjunction with GABAA receptor-mediated inhibitory

postsynaptic potentials [11,15]. This synaptic inhibition-

based γ activity entrains action potential generation in
pyramidal neurons, leading to the population spikes at γ
band frequencies. The specific GABAA receptor antago-

nist, bicuculline, blocks the γ oscillations [14,16], an ac-
tion that can be modeled by simulated neuronal

networks [17]. The γ band oscillations appear to play an
important role in generation of ictal epileptiform activity

in hippocampal slices [18]. This study explores the role of

γ oscillations in epileptiform activity in the hyperthermic

rat hippocampal slice.

Results
Hyperthermia-induced epileptiform-like population spike 
activity
More than 90% of slices heated to 40°C showed a "fe-
brile-seizure like event," represented as initial epilepti-

form-like population bursts, followed by SDs. Figure 1A

shows a typical "febrile seizure-like event" elicited by

heating a hippocampal slice from 33.9 to 38.2°C. The ep-
ileptiform discharges demonstrated a frequency of 80 Hz

(Fig. 1B), within the 30–100 Hz γ oscillation range. Sum-

mary of data from 24 slices showed that 71% (17/24) of

hyperthermic epileptiform-like population spike activity

fired at a frequency range between 30–50 Hz (Fig. 1C,D),

with a mean oscillation frequency of 45.9 ± 3.0 (mean ±
SE, n = 24).

Comparison of post-tetanic γ oscillation and hyperthermic 
population spike activity
Figure 2 shows the comparison between hyperthermic

population spike activity and post-tetanic γ oscillations.
In standard artificial cerebrospinal fluid (ACSF), a tetan-

ic stimulation at 100 Hz, 100 µsec, 2 mA, for 200 ms (20

trains) elicited γ and β frequency population spikes, visi-
ble both with intracellular and extracellular recordings.

In the same slice, heating to 38°C (2Ab) evoked popula-
tion oscillation very similar to those of post-tetanic γ os-
cillations. Power spectrum analysis of the population of

Figure 1
Hyperthermia-induced γ oscillation. (A): Heating hippocam-
pal slice to 38.2°C induced epileptiform-like spikes, followed
by a slow spreading depression (SD) recorded by intracellu-
lar (Vin) and extracellular (Vex) electrodes simultaneously.
(B): Expanded time scale from (A) to show initial epilepti-
form-like spikes. (C): Distribution of frequency of initial epi-
leptiform spikes in 24 experimental cases. (D): Gaussian-
fitting shows a γ band frequency (30–80 Hz) distribution of
hyperthermia-induced epileptiform spikes.
Page 2 of 7
(page number not for citation purposes)



BMC Neuroscience 2001, 2:18 http://www.biomedcentral.com/1471-2202/2/18
responses among all slices, showed similar frequency

peak of hyperthermic and post-tetanic gamma oscilla-

tions (Fig. 2B). Among all slices, hyperthermic oscilla-

tions occurred at a frequency of 45.9 ± 3.0 Hz (mean ±
SE, n = 24) and post-tetanic gamma oscillations at 47.1 ±
2.6 (mean ± SE, n = 34). These two frequencies do not
significantly differ (Fig. 2C).

Effects of high intensity tetanic stimulation
Results from this and our previous study showed that the

SD always followed hyperthermic bursts [8], but tetanic

stimulation induced only γ oscillations in the absence of
SD (Fig. 2). Therefore, we investigated whether high-in-

tensity tetanic stimulation could induce γ oscillations fol-
lowed by SD. Fig. 3A illustrates a weak γ oscillation of
field potential in response to tetanic stimulation at 2.25

mA. Tetanic stimulation at 3.25 mA induced a strong γ
oscillation with a large field burst amplitude and long-

lasting depolarization (Fig. 3B). In 6 of 7 tested slices, te-

tanic stimulation at 4.25 mA induced, not only promi-

nent γ oscillations, but also SDs (Fig. 3C). These post-

tetanic depolarizations had duration and time course

very similar to those of hyperthermic SDs (Fig. 1A,2Ab).

Effects of bicuculline
We utilized the specific GABAA receptor antagonist,
bicuculline methiodide (BMI), to ascertain whether γ os-
cillations were dependent upon GABAergic mechanisms.

The effect of BMI on the field potential in region CA1 is

shown in Fig. 4. Bath-applied BMI (5 µM) changed the

single evoked population spike to multiple spikes, in a re-

versible manner. In the same slice, tetanic stimulation

delivered in control artificial cerebrospinal fluid (ACSF)

induced typical γ oscillations, and these γ oscillations
were abolished by addition of BMI to the perfusate. γ os-
cillations recovered partially by 80 minutes of wash in

ACSF. Figure 4B shows another case in which high inten-

sity of tetanic stimulation was applied to elicit γ oscilla-
tions and SDs. Addition of 20 µM BMI reversibly blocked

γ oscillations, but not the SD.

In a second set of experiments using five slices (Fig. 5),

we examined the effects of BMI on hyperthermic epilep-

tiform-like population bursts. Bath-application of 10 µM
BMI for 20 min abolished post-tetanic γ oscillations. Af-
ter several minutes of exposure to BMI, slices demon-

strated rhythmic spontaneous bursts of population

spikes (Fig. 5B), indicating that GABAA receptors have

been blocked by BMI. Under these conditions, heating of

the slice only evoked the SD without the initial popula-

tion spikes (Fig. 5C).

Figure 2
Comparison of hyperthermic and post-tetanic γ oscillations.
(A): a. Post-tetanic stimulation (100 Hz, 20 trains, 2 mA, 100
µs) induced γ oscillation at 34°C. b. Heating the same
recorded slice to 38°C induced an initial γ oscillation accom-
panied by a slow SD. c. Expanded time scale shows the simi-
lar frequency ranges of post-tetanic and hyperthermic
oscillations. (B): Comparison of frequency power by power
spectrum analysis between Aa and Ab. (C) There is no signif-
icant difference of average frequency between post-tetanic
and hyperthermic oscillations.

Figure 3
Post-tetanic stimulation at high intensity induced γ oscilla-
tions followed by a slow SD. (A): Post-tetanic stimulation at
2.25 mA elicited a rudimentary γ oscillation. (B): Post-tetanic
stimulation at 3.25 mA induced a typical γ oscillation with
large amplitude and long duration. (C): Post-tetanic stimula-
tion at 4.25 mA induced a γ oscillation followed by a slow SD.
Traces A-C are recorded from the same slice, which is a typ-
ical representative of five experiments.
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Effects of kynurenic acid and QX 314
Figure 6A shows the effect of the ionotropic glutamate
receptor antagonist, kynurenic acid (Kyn-A, 7 mM), on γ
oscillations. Kyn-A dramatically attenuated evoked syn-

aptic transmission, but failed to prevent hyperthermia-

induced γ oscillations and slow SDs, suggesting that exci-

tatory synaptic transmission is not necessary for hyper-

thermic γ oscillations and SDs. In Fig. 6B, 30 mM QX-

314 was incorporated into the recording electrode. The

action potentials were blocked by intracellular QX-313

diffusion. Heating the slice to 37°C elicited a γ oscillation
followed by a slow SD in the extracellular field recording.

However, the intracellularly-recorded hyperthermic γ
oscillation disappeared and was replaced by a smooth

depolarization (Fig. 6B).

Discussion
This study suggests that GABAA receptor-governed γ os-
cillations underlie the hyperthermic population spike ac-

tivity in immature hippocampal slices.

Gamma oscillations underlie hyperthermic epileptiform-
like population spikes
Gamma oscillations are defined as coherent cortical os-

cillations at γ (30–100 Hz) band frequency frequencies

in in vivo and in vitro models. In hippocampal slice

preparations, γ oscillations can be triggered by high fre-
quency tetanic stimuli, called post-tetanic γ oscillations

[10–13]. In addition to post-tetanic γ oscillations, the γ
oscillations also can be elicited by metabotropic gluta-

mate receptor agonists, carbacol, or free extracellular

Mg2+[18,19]. In this study, we report that γ oscillations
can occur in a model of a clinical disorder, namely hyper-

thermia. Hyperthermic epileptiform-like population

spikes occur within the band of γ frequencies (30–100
Hz). Post-tetanic γ oscillations can be mimicked by

hyperthermic stimulation in the same slice. Tetanic

stimulation at high intensity induces initial γ oscillations
followed by a slow SD which resembles hyperthermic ep-

ileptiform-like population spikes followed by a slow SD.

Finally, both post-tetanic γ oscillations and hyperther-
mic epileptiform-like population spikes were completely

blocked by a GABAA receptor antagonist, BMI. This ex-

perimental evidence suggests that the GABAA receptor-

governed γ oscillations underlie the hyperthermic popu-

lation spikes in our in vitro model system.

Possible mechanisms of hyperthermic γ oscillation
Accumulating lines of evidence demonstrate that the

genesis mechanisms for post-tetanic γ oscillations in-
volve slow GABAA receptor-mediated depolarization, ex-

tracellular K+ elevation and field effects [10–13]. The

present study showed that these three major factors also

underlie hyperthermic γ oscillations. As shown in Fig. 1A
and 2A, the hyperthermic γ oscillations always overlie
the slow membrane depolarizations. For post-tetanic γ
oscillations, the slow depolarizations were mediated by
tetanic stimulation-induced GABAergic depolarizing ac-

Figure 4
The GABAA receptor antagonist, bicuculline (BMI), blocks
post-tetanic γ oscillations. (A): a. BMI (5 µM) induced multi-
ple field potential spikes to a single stimulation, b and c. BMI
reversibly blocked post-tetanic γ oscillations. (B) BMI (20
µM) blocked high intensity (4 mA) tetanic stimulation-
induced γ oscillation, but not the slow SD. The traces in (A)
were recorded from the same neuron (n = 6 experiments)
and in (B) from another neuron (n = 4 experiments).

Figure 5
(A): BMI (10 µM) blocked post-tetanic γ oscillations. (B): Per-
sistence of spontaneous spikes and bursts after BMI block of
γ oscillation. (C): In the presence of BMI, heating the slice to
38.8°C induced a slow SD without initial γ oscillations.
Traces A-C were recorded from the same neuron (n = 6
experiments).
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tion [20–23]. This GABAergic depolarization is attribut-

ed to the tetanic stimulation-induced accumulation of

intracellular chloride [24] and extracellular potassium

[22]. For hyperthermic γ oscillations, heating causes a
Na+/K+ pump failure [8], in turn resulting in the accu-
mulation of intracellular Na+ and Cl-, as well as extracel-

lular K+, finally causing a slow membrane

depolarization. In our previous report, the extracellular

K+ indeed elevated dramatically during hyperthermia-

induced epileptiform-like population spikes and SDs [8].

Field effects further contribute to post-tetanic γ oscilla-
tions [25,26]. High Frequency tetanic stimuli leads to

cellular swelling [27,28], increasing extracellular resist-

ance. According to Ohm's law, this increases the voltage

deflection recorded for a given current flowing through

this extracellular resistance. Current generated by the

active population travels through the resistances of the

extracellular space and of the nearby inactive cells,

therefore producing the extracellular population spikes

and meanwhile depolarizing the inactive cells. In this

manner, inactive cells are brought closer to threshold,

enhancing their opportunity to firing together [29–31].

The extracellular resistance is the major determinant of

field-effect strength [32]. Since the extracellular volume

fraction in CA1 stradium pyramidal is only 12% com-

pared with approximately 18% in CA3 and granule cells

[33], the CA1 pyramidal cells are particularly susceptible

to field effects. The accumulation of extracellular K+ dur-

ing hyperthermic SDs depolarizes membrane potential,

which triggers initial γ oscillations. Cell swelling reduces
the extracellular space, which triggers slow SDs [8], (Fig.

1A and 2A). In Fig. 6A, after blockade of synaptic trans-

mission by kynurenic acid (7 mM), heating the slice still

induced γ-oscillation followed by SD, suggesting that a
non-synaptic mechanism (local field effect) may be in-
volved in the generation of hyperthermic γ-oscillations
and SDs. Figure 6B demonstrated that hyperthermic γ-
oscillations disappear in the presence of an intracellular-

ly delivered Na+ channel blocker (QX 314, 30 mM).

Gamma oscillations and seizures
Epileptic activity can result from an imbalance between

glutamatergic excitation and GABAergic inhibition.

However, this simple balance model has been challenged

by findings that GABAergic transmission remains effec-

tive in some epilepsy models, in epileptogenic human tis-

sue [34–40], and by current findings of the excitatory

effects of GABA [18,22,23]. Therefore, the GABA excita-

tory effects may work as a possible ictogenic mechanism

under some special condition such as tetanic stimula-

tion. Indeed, recently Köhling et al. reported that under

epileptogenic condition (free Mg 2+ in ACSF), γ band os-
cillations arise from GABAergic depolarizations and that

this activity may lead to the generation of ictal discharges

[18]. It has been reported that prolonged periods of γ os-
cillations are associated with temporal lobe seizures in in

vivo rats [41]. Furthermore, human EEG studies with

subdural recording electodes showed that a γ band oscil-
lation could be recorded at the start of typical seizure ac-

tivity [42]. In this respect, the hyperthermic γ oscillations
may also play a critical role in generation of neuronal ep-

ileptiform activity. The extent to which the hyperthermic

slice serves as a model of febrile seizures remains to be

determined. If γ oscillations do prove to be important in

clinical febrile seizures, then future work might profita-

bly examine the therapeutic potential of mild disinhibi-

tion to disrupt inhibitory GABA-mediated synchrony at

the start of ictal activity.

Conclusions
In the in vitro hippocampal slice preparation, hyperther-

mia-induced epileptiform-like population spikes are at γ
band frequencies, and can be blocked by BMI. Therefore,

the GABAA receptor-governed γ oscillations underlie the
hyperthermic population spikes in immature hippocam-

pal slices.

Materials and methods
Experiments were performed on transverse hippocam-

pal slices prepared from Sprague-Dawley rats, ages 17 to

29 days. Rats were anesthetized with halothane and de-

capitated. The brain tissue was removed rapidly and

placed in iced artificial cerebrospinal fluid (ACSF). Brain

tissue was then glued to a cryotome, and a few 450–500

µ transverse slices were cut through the hippocampal
formations. Slices were allowed to incubate and recover

Figure 6
(A): Kynurenic acid (Kyn, 7 mM) blocked evoked synaptic
transmission, but failed to prevent γ oscillations and SDs elic-
ited by heating the slice. Traces illustrate four slice record-
ings. (B): QX-314 blocks hyperthermia-induced γ oscillation
in the intracellular recording from three slices.
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for at least an hour in room temperature ACSF com-

prised of the following composition (mM): NaCl 117; KCl

5.4; NaHCO3 26; MgSO4 1.3; NaH2PO4 1.2; CaCl2 2.5;

glucose 10, continuously bubbled with 95% O2 plus 5%
CO2.

Slice were transferred one at a time to the recording

chamber (FST, air-liquid interface chamber), and sus-

pended on nylon net at the interface. Carbogen (95% O2

plus 5% CO2) was bubbled across the upper surface of the

slice. Temperature was regulated by a feedback circuit,

accurate to 0.5 ± 0.2°C. Baseline temperature was 34°C.
After verification of evoked population spike stability for

three consecutive stimuli over a time course of 15–30

minutes, bath temperature set-point was increased to

41°C and notation was made of actual temperature meas-

ured by a thermistor probe.

Extracellular field potentials were recorded with a boro-

silicate glass micropipette pulled to a tip diameter of 1 µ,
filled with 2 M sodium chloride and with resistance ap-

proximately 1–10 MΩ. Intracellular recordings were per-

formed with a pulled-glass fine tip micropipette (< 1 µ),
with resistance approximately 80–110 MΩ, filled with 4

M potassium acetate. Hyperthermic spreading depres-

sions (SDs) were considered to have occurred when all of

the following conditions were met: 1. At least 10 mV ex-

tracellular negativity; 2. Duration of extracellular nega-

tivity at the half-height of at least 10 seconds; 3. Loss of
evoked field in CA1; and recovery of field to at least 50%

of control amplitude within 30 minutes of cooling to

baseline temperature. Electrophysiological data were

stored on a computer (Axon scope), and played back on

a laser printer. Slow potentials, including extracellular

field during SD also were recorded on a continuous rec-

tilinear chart recorder. To measure oscillation frequency,

we chose a slice oscillation range beginning at 200 ms,

then used the "frequency count" function of the Origin

program to get average frequency from each slice. Chem-

icals used in the experiment consisted of bicuculline me-

thiodide (BMI), kynurenic acid (Sigma, St. Louis, MO)

and QX-314 (Tocris). All animal experiments were in ac-

cord with Institutional animal welfare committee guide-

lines.
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