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Abstract

Background: Sleep restriction alters pain perception in animals and humans, and many studies have indicated that
paradoxical sleep deprivation (PSD) promotes hyperalgesia. The hyperalgesia observed after mechanical nociceptive
stimulus is reversed through nitric oxide synthase (NOS) inhibition. Both nitric oxide (NO) and the dorsolateral

periaqueductal gray matter (dIPAG) area of the brainstem are involved in hyperalgesia. Thus, in this work, we

investigated the pain-related behavior response after mechanical noxious stimuli (electronic von Frey test), and the
activity of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), an indicator of NOS activity, within
the dIPAG of paradoxical sleep-deprived rats. We also evaluated the effects of pre-treatment with L-NAME on these

parameters.

rats (—36%, p < 0.0001).

descending antinociceptive pathway.

Results: These data revealed that PSD reduced the hindpaw withdrawal threshold (—47%, p < 0.0001) confirming
the hyperalgesic effect of this condition. In addition, there were more NADPH-d positive cells in dIPAG after PSD
than in control rats (+ 59%, p < 0.0001). L-NAME treatment prevented the reduction in the hindpaw withdrawal
threshold (+ 93%, p < 0.0001) and the increase in the NADPH-d positive cells number in the dIPAG of PSD-treated

Conclusion: These data suggest that the hyperalgesic response to mechanical noxious stimuli in paradoxical
sleep-deprived rats is associated with increased NOS activity in the dIPAG, which presumably influences the
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Background

Paradoxical sleep deprivation (PSD) has been implicated
in a variety of behavioral alterations [1] that are related
to distinct changes in neurotransmitter systems [2].
Current research has primarily focused on the relation-
ship between sleep and pain because periods of sleep
deprivation increase pain sensitivity [3-9], and the induc-
tion of a pain-like state also interferes with sleep archi-
tecture [10]. A reduction in the analgesic effect of
morphine after sleep deprivation has also been described
[11,12]. Wei and colleagues demonstrated PSD-induced
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hyperalgesia shares common mechanisms with neuro-
pathic pain, with the reversal of mechanical hypersensi-
tivity through nitric oxide synthase (NOS) inhibition in
paradoxical sleep-deprived and sciatic nerve-injured rats
[13]. However, in a previous study, we showed that the
drug amitriptylline, which is commonly used to treat
neuropathic pain, did not revert/prevent PSD-induced ther-
mal hyperalgesia, independent of the intensity of the ther-
mal noxious stimuli or the period of sleep deprivation [14].
The periaqueductal gray matter (PAG) is a major
brainstem area that plays an important role in analgesia
control [15]. PAG electrical stimulation promotes anal-
gesia in animals such as rats [16], cats [17] monkeys [18]
and in humans [19]. The dorsolateral subdivision of
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PAG (dIPAG) exerts a critical influence on descending
pain modulation [20,21].

Several studies have suggested that nitric oxide
(NO) plays a role in sleep and in pain. NO is produced
from L-arginine through a NOS enzyme in calcium-
dependent pathways and is described as a sleep-facilitating
agent [22]. During sleep deprivation, NO production
increases in the basal forebrain, and both NOS inhib-
ition and the NO scavenger prevent recovery sleep in-
duction [22].

The effects of NO have also been described as pro— or
anti—nociceptive, depending on the circumstances. Nu-
merous studies have shown an association between NO
and nociceptive signaling in chronic neuropathic pain
models through upregulated NOS expression in dorsal
horn neurons [23,24]. In these models, NOS inhibitors
suppress induced pain [23,25]. NO immunoreactivity is
associated with the nicotinamide adenine dinucleotide
phosphate diaphorase (NADPH-d) enzyme, which serves
as a histochemical marker for neurons that produce NO
[26]. A significant increase in NADPH-d-positive neu-
rons in PAG was observed after noxious visceral stimu-
lation, and a decrease in these neurons was observed
after acupuncture in streptozotocin-induced diabetic rats
[27,28]. Some investigators have also reported that NOS
inhibition augments morphine-induced analgesia in ex-
perimental animals [29].

Because the neurochemical alterations and brain sites
related to the promotion of hyperalgesia in paradoxical
sleep-deprived rats are not completely understood and
because NOS inhibition reverses mechanical hypersensi-
tivity in PSD [13], we hypothesized that PSD would
cause a hyperalgesic effect via nitrergic neuronal changes
in the dIPAG. In the present study, we examined the ef-
fect of PSD on the pain-related behavior of rats that were
submitted to mechanical noxious stimuli and the ex-
pression of NOS enzyme on dIPAG, through NADPH-d
histochemical analysis. We also examined these param-
eters in paradoxical sleep-deprived and control rats that
were pre-treated with L-NAME, a nitric oxide synthase
inhibitor.

Methods

Animal experiments

All experimental protocols followed the ethical guide-
lines for investigations of experimental pain in conscious
animals and were previously approved by the Animal
Studies Ethical Committee of the University of State of
Rio de Janeiro, (CEUA/032/2010). Adult male Wistar
rats (n=44; 250-300 g) were used for all experiments.
The rats were housed in cages with free access to food
and water in a room under controlled light/dark cycle
conditions (12 h light/12 h dark; lights on at 6:00 a.m.)
and ambient temperature (23 + 1°C).
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Paradoxical sleep deprivation

PSD was achieved using the flowerpot technique. The rats
were housed individually in tanks and placed on single
narrow circular platforms (6 cm diameter) surrounded by
water up to 1 cm beneath the surface. The paradoxical
sleep phase in the animals subjected to this procedure was
completely abolished because these animals fall into the
water and awake due to the muscle atonia that is charac-
teristic of this phase. Slow wave sleep is also reduced,
however does not lead to rebound sleep [30,31]. Rats from
the control group were maintained in cages in the same
room and for the same period of time as the experimental

group.

Paw mechanical sensitivity

Mechanical sensitivity was measured using an electronic
von Frey device (Insight Equipamentos, SP, Brazil). The
animals were placed in a wire chamber, where they
remained still after exhibiting brief exploratory behavior.
The electronic pressure transducer contacted the hindpaw
through a disposable polypropylene tip. Once the rat was
absolutely immobile, this propylene tip was gently pressed
against the plantar surface of the hindpaw with increasing
force. A single operator performed this procedure to guar-
antee the same strength of the delivered stimulus. Each
hindpaw was tested 3 times, with an interval of approxi-
mately 15 minutes between each experimental assessment.
Each single stimulus lasted no longer then 5 seconds,
which was sufficient time to evoke a visible lifting of the
stimulated hind limb after the unexpected touch. The
corresponding force, recorded through the electronic
device (in grams), was directly proportional to the
length and diameter of a given classical von Frey fila-
ment. The smaller the force applied for inducing paw
withdrawal, the more sensitive the animals were to
the nociception stimulus.

Tissue preparation and NADPH-d histochemical staining

The rats were deeply anesthetized (thiopental, 70 mg/kg)
and transcardially perfused with 0.9% NaCl, followed by
4% paraformaldehyde fixative in 0.16 M phosphate
buffer (PB) (pH 7.4) containing 10% sucrose. After perfu-
sion, the brains were removed and post-fixed for 24 hours
in a phosphate buffer solution containing 20% sucrose.
The rat brains were frozen and sectioned in the coronal
plane, into 60 um sections through the dIPAG (-7.64 mm
to—8.30 mm from the bregma) [32]. Four sections were
collected in each well, totaling 12 coronal sections
per animal. The coronal sections were stained by using
0.1 M Tris buffer (pH 8.0) containing 1 mM b-NADPH
(Sigma) and 0.1 mM nitroblue tetrazolium (NBT) (Sigma)
containing 0.3% Triton X-100. The sections were incu-
bated at 37°C for 1 hour. Subsequently, the sections were
washed several times in 0.1 M PB to halt the reaction,
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Paw mechanical sensitivity
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mounted on gelatinized slides and coverslipped with
permount. The positive stained cells distributed through-
out the dorsolateral PAG were bilaterally counted in each
coronal section by an investigator blinded to the experi-
mental condition and represent an average of 12 sections
per sample. All sections were examined under light mi-
croscopy using an Olympus BX 40 microscope. Image
capturing was performed with a cooled-charged-coupled
device camera (Sony DXC 151A), and the images were
overlaid with a fixed frame (15 pm x 15 pm) for unbiased
observations.

Study design

The animals were subjected to 96 hours of PSD (be-
ginning and completed at 1:00 p.m.) or maintained in
control cages. Subsequently, vehicle (physiological saline)
or L-NAME (50 mg/kg, Sigma-Aldrich, USA) was admin-
istered (i.p.). After 30 minutes, the mechanical sensi-
tivity was evaluated through an electronic von Frey test.
The same protocol was used to perform NADPH-d
histochemical staining, but instead of the electronic
von Frey test, the animals were perfused for brain analysis
(Figure 1).

Statistical analysis

The data analysis was performed using GraphPad Prism
5.0 (GraphPad Software, Inc., USA), and all data are
presented as the means+ SEM. One-way analysis of
variance (ANOVA) was used to analyze the effects of L-
NAME treatment on control and PSD groups subjected
to the pain sensitivity mechanical test. The same statis-
tical test was used to analyze the effects of L-NAME
treatment on the number of NADPH-d positive cell
bodies in the dIPAG of the control and PSD groups.
When the F value was significant, the Newman—Keuls
test was performed for post-hoc comparison. The results
were considered significant when p < 0.05.

Results

Mechanical nociception

An intergroup comparison showed lower mean values
for the paw withdrawal threshold of PSD-treated rats
when compared to control, in both right (-47%) (F39, =
8.57, p<0.0001) and left hindpaws (-42%) (F3-4=5.17,
p<0.0001, Figure 2). This hyperalgesic response was
prevented when L-NAME was administered to PSD-
treated animals. PSD/L-NAME rats presented higher
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Figure 2 Paw withdrawal threshold evoked using von Frey filaments in both hindpaws of the Control, PSD, and Control/L-NAME and
PSD/L-NAME groups. The data are presented as the means (g) + SEM * p < 0.05, different from the Control, Control/L-NAME and PSD/L-NAME
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Figure 3 NADPH-d-positive cell bodies in the dorsolateral periaqueductal gray matter of Control (A-left dIPAG; B-right dIPAG), PSD
(C-leftdIPAG; D-right dIPAG), Control/L-NAME (E-left dIPAG; F-right dIPAG), PSD/L-NAME (G-left dIPAG; H-right dIPAG) animals.
dIPAG = dorsolateral periaqueductal gray matter; Aq = Sylvius Aqueduct; bars =50 um (B, D, F, H).
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mean values for the paw withdrawal threshold compared
with the PSD-treated animals that received only vehicle
for both the right (+ 93%) and left (+ 54%) hindpaws.
There were no significant differences between the con-
trol/L-NAME and PSD/L-NAME groups for both the
right (-2%) and left (-4%) hindpaws.

NADPH-d histochemistry

The distribution of NADPH-d-positive cells in both
control and PSD-treated rats was well defined in the
two bilateral nuclei at the dorsolateral portion of the
PAG (Figure 3). There was a significant increase in
the NADPH-d cell number in PSD-treated rats compared
with control animals (+ 60%) (F3.; =54.31, p <0.0001).
These differences were prevented when L-NAME was
administered to PSD-treated animals. A comparison
between groups revealed a lower mean number of
NADPH-d-positive cells in the PSD/L-NAME group
compared with the PSD group (-36%) (F3207 =54.31,
p <0.0001). No significant differences were observed
between the control/L-NAME and PSD/L-NAME
groups (+ 14%) (Figure 4).

Discussion

In the present investigation, animals subjected to 96 hours
of PSD exhibited an increased pain response after mech-
anical noxious stimuli, and the results suggest that
there is a correlation between PSD-induced hyperalgesia
and the increased NO system activity in the dorsolateral
periaqueductal gray matter.

A significant reduction of the withdrawal threshold to
von Frey filament application was observed after PSD.
The control animals were less sensitive to pain as their
paw withdrawal thresholds were higher than those of the
PSD-treated rats. These data are consistent with previ-
ous studies that showed a PSD-induced hyperalgesia
effect, as evaluated through mechanical noxious test
[7,13]. In these studies, only one of the hindpaws was
challenged with the von Frey filament. In the present
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study, we demonstrated that a PSD-induced hyperalgesic
response to noxious mechanical stimuli is detected inde-
pendently of the hindpaw selected.

An increase in NOS is associated with sleep deprivation
and the development of hypersensitivity to pain in inflam-
matory and neuropathic pain models [22-24]. In the
present study, we observed that PSD-treated animals
presented an increased number of NADPH-d-positive cell
bodies in the dIPAG. Because NADPH-d is a common
marker for NOS and because its activity parallels NO pro-
duction, this increased expression could indicate that
dIPAG- NO plays a role in PSD-induced hyperalgesia. Jang
and collaborators also described a NO involvement in
dIPAG pain modulation [28]. These authors observed
an increased dIPAG NOS activity in a peripheral neur-
opathy model, which was evoked through streptozotocin-
induced diabetes, and a reduction after acupunctural
treatment.

The observed hyperalgesia and increased NOS activity
in the dIPAG were both reverted after the administration
of L-NAME (50 mg/kg), a dose which was previously
established as antinociceptive to mechanical, chemical
and thermal noxious stimulus [33-35]. Wei and collabo-
rators [13] also described a reduction of PSD-induced
hyperalgesia through L-NAME, confirming that the
nitrergic system plays an important role in this process.

In our PSD model, the increase in NADPH-d-positive
cell bodies in the dIPAG might be responsible for the in-
creased pain sensitivity because this region plays an im-
portant role in the modulation of nociception and the
antinociceptive effects of morphine [20,21]. The neuronal
pathways and molecular events involved in NO-supraspinal
pain modulation are not completely understood. This effect
is likely mediated through multiple neurobiological compo-
nents. A recent study described a reversed NO-induced
nociceptive hypersensitivity through the blockade of a
supraspinal signaling pathway involving a PKC-dependent
CREB (cAMP response element-binding protein), STAT1
(signal transducer and activator of transcription 1) and NEF-
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Figure 4 Number of NADPH-d-positive cell bodies in the dorsolateral periaqueductal gray (dIPAG) area of the Control, PSD, Control/L-NAME
and PSD/L-NAME groups. The data are presented as the means + S.EM *p < 0.05 different from the Control, Control/L-NAME and PSD/ L-NAME
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kB (nuclear factor kappa B) activation in the PAG
and thalamus [36]. Spinal glutamate has also been
associated with mechanical hypersensitivity following
sleep deprivation in rats, and the intrathecal admin-
istration of MPEP (an antagonist of mGluR5) and
MK-801 (an NMDA glutamate receptor antagonist) re-
verts PSD-induced hyperalgesia [13]. In a previous study,
we described a reduction in dopaminergic activity in the
lateral PAG in paradoxical sleep-deprived rats and a rever-
sion of hyperalgesia through L-DOPA (a dopamine pre-
cursor) treatment [3].

The PAG contains a dense plexus of cholinergic
nerve terminals derived from the pontine tegmentum;
these nerves mediate analgesia at least partly via the
endocannabinoid signaling system [37]. The sleep-wake
cycle also controls the activity of cholinergic neurons in
the basal forebrain [38]. Thus, further studies are needed
to characterize the neuronal pathways that are associated
with sleep deprivation-induced hyperalgesia.

The PSD method used in this work induces physio-
logic signs of stress; however, a few studies have reported
that stress produces a reduction in pain-related behavior
[39,40] that is different from the PSD results obtained in
this work.

Thus we propose that the hyperalgesia observed in
PSD-treated rats, observed after mechanical noxious
stimuli, is associated with increased NOS activity in the
dIPAG and NO-signaling pathway activation, presumably
influencing the descending antinociceptive pathway. Be-
cause there is a great prevalence of sleep complaints in
individuals suffering from chronic pain, this knowledge
will be of great pharmacological interest.

Conclusion

Here, we present findings confirming the hyperalgesic ef-
fect observed in paradoxical sleep-deprived animals in a
mechanical nociceptive behavior test. These results sug-
gest that there is an association of PSD-induced hyper-
algesia with increased NOS activity in the dIPAG.
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