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Abstract

Background: The ability to estimate durations in the seconds-to-minutes range - interval timing - is essential for
survival, adaptation and its impairment leads to severe cognitive and/or motor dysfunctions. The response rate near a
memorized duration has a Gaussian shape centered on the to-be-timed interval (criterion time). The width of the
Gaussian-like distribution of responses increases linearly with the criterion time, i.e., interval timing obeys the scalar
property.

Results: We presented analytical and numerical results based on the striatal beat frequency (SBF) model showing
that parameter variability (noise) mimics behavioral data. A key functional block of the SBF model is the set of
oscillators that provide the time base for the entire timing network. The implementation of the oscillators block as
simplified phase (cosine) oscillators has the additional advantage that is analytically tractable. We also checked
numerically that the scalar property emerges in the presence of memory variability by using biophysically realistic
Morris-Lecar oscillators. First, we predicted analytically and tested numerically that in a noise-free SBF model the
output function could be approximated by a Gaussian. However, in a noise-free SBF model the width of the Gaussian
envelope is independent of the criterion time, which violates the scalar property. We showed analytically and verified
numerically that small fluctuations of the memorized criterion time leads to scalar property of interval timing.

Conclusions: Noise is ubiquitous in the form of small fluctuations of intrinsic frequencies of the neural oscillators, the
errors in recording/retrieving stored information related to criterion time, fluctuation in neurotransmitters’
concentration, etc. Our model suggests that the biological noise plays an essential functional role in the SBF interval
timing.

Background
The capability of perceiving and using the passage of
time in the seconds-to-minutes range (interval timing)
is essential for survival and adaptation, and its impair-
ment leads to severe cognitive and motor dysfunctions
[1-3]. In most species, interval timing is both accurate and
time-scale invariant, or simply scalar, in that the error in
time estimation is proportional to the estimated duration
[4-6]. When timing a 30s interval (Figure 1A), responses
follow a quasi-Gaussian distribution around the 30s tar-
get duration. Furthermore, when timing a 90s interval
(Figure 1C), responses also follow a quasi-Gaussian distri-
bution around the 90s target duration. The scalar property
is evident in that normalizing the response functions by
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the target duration and by the maximum response rate
yields superimposition of response functions (Figure 1B).
The time-scalar invariance property of interval timing is
ubiquitous in many species from invertebrates such as
bees [7], tomany vertebrates, such as fish [8], birds [9], and
mammals such as rats [10], mice [11] and humans [12].
Although the localization of brain regions involved in

interval timing is not yet clear, some progress has been
made. For example, both temporal production and tempo-
ral perception are strongly connected to striatum and its
afferent projections from the substantia nigra pars com-
pacta [14-16]. In addition, it was shown that the firing
patterns of striatal neurons peak around a trained cri-
terion time, a pattern consistent with substantial striatal
involvement in interval timing [17]. Pharmacological data
also suggest a strong basal ganglia involvement in inter-
val timing. Administration of dopaminergic drugs both
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Figure 1 Interval timing is precise and scalar. Normalized mean lever-press response rate in peak-interval experiments with rats trained with a
criterion time of 30s (A), respectively, 90s (C; re-drawn from [13]). When normalized by the maximum response rate and by the criterion duration on
the horizontal scale, response functions for the two criteria overlap (B).

systemically [13,18-23] or directly into the anterior por-
tion of the striatum [24] alters the speed of interval timing.
Experiments showed a shift in the perceived time towards
earlier times following systemic dopamine (DA) ago-
nists administration (e.g., methamphetamine or cocaine)
whereas systemic DA antagonists administration (e.g.,
haloperidol) shift the response times in the opposite direc-
tion (clock pattern). A possible physiological hypothesis is
that DA causes internal clock(s) to run faster than normal,
therefore, shifting the entire response of the animal earlier
than the control [20,25,26].
Studies done in humans also support the hypothesis

that striatum and its afferents are involved in interval
timing [27-33]. Recent fMRI data showed that timing
network could involve cortico-striatal loops, including
premotor and supplementary motor areas, frontal oper-
culum and dorsolateral prefrontal cortex, and tempo-
ral and parietal cortices, as well as the putamen [34].
Imaging studies in humans [28-30,32], lesion studies in
humans [31,35-37] and rodents [14,15,22], and drug stud-
ies in rodents [17-20,22-24,38] all point towards a cen-
tral role of the basal ganglia in interval timing. The
anatomy of the basal ganglia suggests that information is
proceeded through cortico-striato-thalamic loops. Severe
deficiencies in reproducing temporal intervals were also
found in Parkinson’s patients, therefore, further support-
ing the hypothesis of basal ganglia involvement in interval
timing [36,39-41]. There are also lesions data suggest-
ing that the timing network is much widely distributed.
Lesions of the nucleus basalis magnocellularis, a cholin-
ergic nucleus in the basal forebrain with projections to
the frontal cortex, induced a progressive, proportional,
delay in peak time response (memory pattern). This effect
is believed to be related to altered temporal memo-
ries [42,43] due to change in acetylcholine (ACh) level.
Lesions of the frontal cortex produce similar memory pat-
terns [44], whereas lesions of the hippocampus or fimbria
fornix, a basal forebrain cholinergic nucleus with pro-
jections to the hippocampus, result in memory effects
translated into an advance of the peak time response

[42-44]. These experimental findings undoubtedly sup-
port the hypothesis of a distributed interval timing neural
network.
The connectionist model is among the first attempts

to integrate a large collection of experimental findings
into a coherent distributed network model of inter-
val timing by Church and Broadbent [45,46]. They
assumed that a set of neural oscillators, probably local-
ized in the prefrontal cortex, determines the peak time
using multiple-period discrimination algorithms. In their
model, the current phases of oscillators (clock stage) are
continually compared against the memorized phases at
the reinforcement time (memory stage). The connection-
ist model successfully duplicated the scalar property and
the response form of both peak-interval [46] and fixed-
interval procedures [47]. The connectionist model also
presents higher accuracy for intervals near the underly-
ing oscillator period similar to experimental observations
[48-50]. However, the connectionist model is limited to
timing durations that do not exceed the longest period of
the set of oscillators and requires a quite large coefficient
of variation [51].
Another successful distributed network model, called

the beat frequency model, uses beats between multiple
oscillators to produce a much wider range of durations
than the intrinsic periods of individual oscillators
[13,21,52]. It is assumed that at the beginning of each
trial all oscillators are reset and start in phase. At the
reinforcement time, the oscillators are read out to deter-
mine whether they are spiking (“on” state) or are silent
(“off” state). The small group of neurons that spike at the
reinforcement time represents the neural code for that
particular duration. A temporal prediction is made by
a threshold-driven comparison between the number of
strengthened neurons currently firing and the number of
neurons that fired at the reinforcement time. Miall [52]
conducted numerical simulations using beat frequency
model and found a second peak halfway through the cri-
terion duration similar to the “breakpoint” time observed
in the peak-interval procedure [53]. In addition, the third
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highest peak corresponds to 2/3 of the way to the crite-
rion in a manner similar to the breakpoint seen in fixed
interval procedures [54].
In this study, we generalized previous results regarding

the quasi-Gaussian shape and the scalar property using
the SBF model [13,21,52]. Although it was long assumed
that the behavioral response curve for peak procedure
could be approximated by a Gaussian, here we actually
proved theoretically and checked numerically that it is
always a Gaussian. Furthermore, we showed that this fact
is independent of the type of variability, or biological
noise, present in the interval timing network.
We also showed that the scalar property is a universal

feature of any SBF model regardless the type of model
neurons used and the type of probability distribution
functions (pfd) for parameters affected by biological noise.
Variability in the SBF model could be ascribed to channel
gating fluctuations [55,56], noisy synaptic transmission
[57], and background network activity [58-60]. Single-cell
recordings support the hypothesis that irregular firing
in cortical interneurons is determined by the intrinsic
stochastic properties (channel noise) [61-63] of individ-
ual neurons [64,65]. At the same time, fluctuations in the
presynaptic currents that drive cortical spiking neurons
have a significant contribution to the large variability of
the interspike intervals [66,67]. For example, in spinal
neurons, synaptic noise alone fully accounts for output
variability [66]. In this paper, we are not concerned with
the biophysical mechanisms that generated irregular fir-
ing of cortical oscillators. We rather investigate if assumed
variability in SBF model’s parameters can produce precise
and time-scale invariant interval timing.
Within the SBF paradigm we used a simple model of

cortical oscillators, i.e., a cosine wave (phase) model
(see [52] and references therein) and showed analytically
that it (a) violates the scalar property in the absence of
model’s parameters variability (noise), and (b) the output
function is always Gaussian and obeys the scalar prop-
erty regardless the pdf of assumed model’s variability.
The above two analytical predictions were numerically
confirmed both with the cosine wave model oscillators
and with a more biophysically realistic, conductance-
based, Morris-Lecar (ML) model neuron [68,69]. ML
model neuron was developed for the giant muscle fiber
of barnacles [68] by combining Hodgkin-Huxley [70] and
FitzHugh-Nagumo [71,72] models into a voltage-gated
calcium channel model with a delayed-rectifier potassium
channel. Since then, ML model was successfully used for
describing different types of cortical neurons. For exam-
ple, White et al [73] performed voltage-clamp recordings
from entorhinal cortical neurons of mice and calibrated
a ML model neuron in which they replaced the calcium
current by an instantaneously-activated persistent sodium
current. By comparing the results of ML model neuron

against experimental data, they found that “this reduction
in the number of dependent variables does not alter sig-
nificantly the behavior of the system.” For this reason, and
because the ML model is considered a canonical proto-
type for widely encountered classes of both deterministic
and stochastic neurons [74], we used ML model in our
implementation of the SFB model.

Methods
We introduced a minimal block diagram that mimics the
contributions of some of the neuroanatomical regions
known to be involved in interval timing as identified in
the Introduction. The schematic diagram includes the fol-
lowing blocks (see Figure 2). An oscillator block (OSC),
presumably mimicking the neural oscillators localized in
the prefrontal cortex area [17]. A memory block (MEM),
presumably mimicking the activity associated with the
nucleus basalis magnocellularis [42,43], frontal cortex
[44], and/or hippocampus or fimbria fornix [42-44]. Its
role is to stores the information about the state of the
brain at the reinforcement time. A decision block (OUT),
presumably mimicking the striatal spiny neurons that by
integrating a very large number of different inputs and
responding selectively to particular reinforced patterns
[75-77]. Finally, a neuromodulator block (MOD) that
mimics the modulation of cortical and thalamic-induced
activity of the striatal spiny neurons. The MOD block
also modulates the threshold for coherent activity detec-
tion due to dopamine release from substantia niagra pars
compacta [78].

The oscillator block (OSC) is composed of Nosc
neural oscillators with frequencies distributed over a
range (f1, f2) consistent with neurobiological observations
[21,52,79-81]. The fixed firing frequencies of individual
neural oscillators, fi, are equally spaced, i.e, fi = f1 + i · df
with frequency increments df = (f2 − f1)/Nosc. OSC
provides the underlying time base for the interval timing
network. In the presence of noise, e.g., ionic channel noise
[55,56,61-65] or background neural activity from other
cortical areas [57-60,66,67], a set Nf of Nosc frequencies,
f̃i = fi(1 + xf ), are generated from a random distribution
around fi with a frequency variability xf that obeys a given
probability density function pdff . The output function is
an average over all Nf distributions of frequencies.

Thememory block (MEM) stores a criterion time value,
c, memorized during the training process. Both storing
and retrieving the criterion time to and from the long-
term memory are affected by biological context (brain
state, noise, etc.) Therefore, in the presence of noise, a set
Nc of randomly distributing values c̃ = c(1 + xc) are gen-
erated with the mean c and variability xc according to a
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Figure 2 Schematic representation of the functional blocks of the SBF model. The oscillator block OSC contains Nosc neural oscillators that
constitute the time base for the entire interval timing network. The memory blockMEM stores the criterion time, c, and the “state” of the brain at
the reinforcement time w(k, c), with k = 1, . . . ,Nosc . The decision and output block OUT compares the current state of the oscillators in OSC,
w(k, t), with the memorized reference state w(k, c) at reinforcement time and produces a smooth output proportional to the “closeness” of the two
states. The neuromodulator blockMODmimics the global effect of DA and ACh neuromodulators.

given probability density function pdfc. The output func-
tion averages over all Nc randomly distributed values of
the criterion time c.

The decision/output block (OUT) relates the internal
perception of time with external actions.
In order to implement the decision-making process

ascribed to basal ganglia, we define a set of numbers
(weights) that represent the state of each oscillator. The
weight w(k, c) encodes the state of kth neural oscillator
from theOSC block at the reinforcement (criterion) time.
Although it is not the only possibility, the “state” of the
brain at the reinforcement time could be given, for exam-
ple, by the phases or the amplitudes of all neural oscil-
lators in OSC. The OUT block estimates the “closeness”
between the current state of the brain represented by the
running weights w(k, t) and the memorized weights at the
reinforcement time w(k, c). Among many possible imple-
mentations of the “closeness”, we chose the projection of
the running weights w(k, t) along the vector of reference
weights w(k, c) (the dot product of vectors w(k, c) and
w(k, t)).

The neuromodulator block (MOD) mimics the experi-
mentally observed effects of neuromodulators on interval

timing. The actual mechanism implemented in this SBF
model directly changes the firing frequency of all neurons
in the OSC block proportional to the level of neuromod-
ulator. In this implementation of the SBF model, we used
theMOD block as a “start gun” that resets theOSC block
at the beginning of each trial such that all neural oscil-
lators state in phase. Elsewhere [82-85], we showed that
a more detailed implementation of the DA modulation
in the SBF model correctly reproduces the clock patterns:
immediate change in timing and gradual re-calibration
under the drug, immediate re-bound in the opposite
direction and gradual re-calibration upon discontinuing
the drug, and scalar (proportional) effects as observed in
experiments (see, for example, [23]). Similarly, we showed
[82-85] that manipulations of ACh level that modulates
the long-term memory lead to memory patterns: grad-
ual change in timing on-drug, gradual re-calibration upon
discontinuing the drug, and scalar (proportional) effects
(see [23] for comparison with experiments).

The SBFmodel with cosine oscillators
In order to gain insight into the functionality of the SBF
block model, we initially assumed that the time base is
provided by cosine (phase) oscillators. A phase oscilla-
tor is a mathematical abstraction obtained by reducing
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a complex and detailed mathematical model of a bio-
logical neuron to a single parameter - the firing phase
measured with respect to an arbitrary reference [86-90].
The simplest possible oscillatory behavior is represented
by cos(2π ft), where the argument of cosine is called the
phase of oscillation, t is the temporal variable, and f is
the fixed firing frequency of the oscillator. Phase oscilla-
tors represent a significant class of neural oscillators and
all complex neural oscillators can be reduced to a phase
oscillator near bifurcation points [91].
In our implementation of the SBF model, the reference

weights w(k, c), which represent the state of the brain at
the reinforcement (criterion) time are normalized values
of the state of neuron k:

w(k, c) =
Nc∑
i=1

cos(2π f̃k c̃i)/Norm, (1)

where the sum is considered over all stored criteria c̃i
that fluctuate around c due to memory noise. The nor-
malization factor is the maximum value over all states
Norm = Max(

Nc∑
i=1

cos(2π f̃k c̃i)) ≤ Nc, in which case the

reference weight is bounded −1 < w(k, c) < 1. We also
tested positively defined weights given by:

w(k, c) =
Nc∑
i=1

cos(2π f̃k c̃i) + 1
2Norm

, (2)

and found no significant difference in the properties of the
output function.
In this implementation of the SBF model, OUT works

as a phase detector, i.e., if the current vector of weights
w(k, t) at the current phases (time) matches the reference
weights vector w(k, c) at criterion time, c, then a strong
response is delivered, otherwise the response is negligible.
In order to generate a response, theOUT block computes
the current weights w(k, t) for each oscillator according to
(1), or (2), and projects them along the reference weights
vector w(k, c):

output(t) =
Nosc∑
k=1

w(k, c)w(k, t). (3)

Based on (3), we computed the absolute value of the
cosine of the angle between w(k, t) and w(k, c), which
smoothly varies between unity, when the current state
of the brain coincides with the one memorized at the
reinforcement time, and zero, when there is no over-
lap between them. Other common and equally appealing

choices in computational neuroscience, but a bit more
expensive from a computational point of view, are sig-
moidal functions or double exponentials, both of which
are often used to mimic experimentally measured activa-
tion/inactivation curves with smooth transitions between
“off” (zero) and “on” (unity) states.

Results
Cosine oscillators with no variability
We gained significant insight into the dynamics of SBF
model by assuming no noise (variability) in any of the
model’s parameters. According to (1), the state of the
OSC bock at the reinforcement time, i.e., the reference
weights w(k, c), is the set of the normalized amplitudes
of the kth phase (cosine) oscillator. According to (3), the
output function of the SBF model with noiseless cosine
oscillators is:

output(t) =
Nosc∑
k=1

w(k, c)w(k, t) =
Nosc∑
k=1

cos(2π fkc)cos(2π fkt),

(4)

which becomes:

output(t) = 1/2sin(πNoscdf (t − c))cos(π(2f1 + Noscdf )
(t − c))/sin(πdf (t − c))

+ 1/2sin(πNoscdf (t + c))cos(π(2f1 + Noscdf )
(t + c))/sin(πdf (t + c)).

(5)

The output function (5) has two symmetric and strong
peaks at t = ±c, of which we only retain the first
one that has a sharp output when t → c. We
found that 1/2sin(πNoscdf (t − c))cos(π(2f1 +Noscdf )(t −
c))/sin(πdf (t − c)) approaches 1/2Nosc as t → c,
which is in agreement with numerical simulations car-
ried out for a network of 1000 noiseless phase oscillators
(see Figure 3). Figure 3A shows the numerically generated
output function of the SBF model with noiseless phase
oscillators for three memorized criteria, i.e., 30s, 60s, and
90s. Our numerical simulations show that the response
of the SBF model peaks when the pattern of input activ-
ity w(k, t) “lines-up” or “coincides” with the one stored at
the reinforcement time, c, i.e., this SBF model is able to
produce precise interval timing. The shape of the output
function at each criterion time (see Figure 3A) is cap-
tured by the sinc function envelope(t) = sin(πNoscdf (t −
c))/sin(πdf (t − c)), which peaks at t = c (see Eq. (5)).
The width of the sinc envelope above is the solution of
the equation envelope(c − width/2) = 1/2envelope(c), i.e,
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Figure 3 Normalized output functions for SBF model with cosine oscillators. In the absence of any variability in the SBF model, the output
functions are almost identical regardless the criterion time (A) and their widths are constant regardless the criterion times (B). In the presence of
uniformly distributed memory variability, the width of the output unction increases with the criterion time (C). The width of the Gaussian envelope
(dashed line in C) linearly increases with the criterion time both for uniform (solid rhombs in panel D) and normally-distributed criterion times (solid
squares in panel D).

sin(πNoscdfwidth/2)/sin(πdfwidth/2) = 1/2Nosc, which
shows that the width of the envelope is independent of
the criterion time, i.e., it violates time-scale invariance
property of interval timing.We conducted numerical sim-
ulations with various to-be-timed criteria (see Figure 3B)
and found that the width of the output is indeed constant
rather than increasing proportionally to the criterion time
as required by time-scale invariance property of interval
timing. In conclusion, a noiseless SBF model is accurate
(peaks at criterion time as seen in Figure 3A), but does
not exhibit time-scale invariance (the width of the out-
put does not scale-up with the criterion time as seen in
Figure 3B).

Cosine oscillators with arbitrarymemory variability
As mentioned in the Introduction, biological noise
is ubiquitous both as channel noise affecting the
dynamics of individual oscillators [55,56,61-65] and as
stochastic synaptic inputs or network background activity
[57-60,66,67]. In this implementation of the SBF model,
we investigated the effect of criterion time (memory) vari-
ability due to noisy storage and retrieval of the criterion
time on scalar timing. We found that regardless the pdf s

of the stochastic variables involved, the output function
is (a) always Gaussian and (b) obeys time-scale invari-
ance property. To prove analytically our conjectures, let
us assume only criterion time variability and rewrite the
output function (4) as follows:

output(t) =1/2
Nc∑
j=1

Nosc∑
k=1

(cos(2π fk(t − cj))

+ cos(2π fk(t + cj))).

(6)

We only considered the physically realizable first term
centered at t = +c, which lead to:

output(t) = 1/2
Nc∑
j=1

Nosc∑
k=1

cos(2π fk(t − cj))

=
Nc∑
j=1

sin(aj(f2 − f1)) cos(aj(f2 + f1))
2 sin(ajdf )

,

(7)

where aj = π(t − cj). In the presence of memory
variability, the criterion time is a stochastic variable cj =
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c(1 + xj) where x has a pdfpX(x). Using pdf transforma-
tion rules [92,93], we found the pdf of the new stochastic
variable in (7):

z=h(x)= sin(π(f2−f1)(t − c − cx)) cos(π(f2 + f1)(t − c−cx))
sin(πdf (t − c − cx))

.

(8)
The pdfz of the new stochastic variable z(x) is related
to the pdfx of the criterion time pX(x) through well-
known relationship [92,93]: pZ(z) = pX(h − 1(z))|dx/dz|.
Based on the central limit theorem, the output function
(7), which is a sum over Nc stochastic variables with the
pdfZ(z), is always a Gaussian regardless the pdf of the
criterion time.
What about the time-scale invariance property? Is this

feature of the output function still preserved regardless
the pdf of the criterion time? Based on (8), we estimated
the time-dependent output function by averaging over the
criterion time fluctuations:

output(t)=
xmax∫

xmin

sin(π(f2−f1)(t−c−cx)) cos(π(f2 + f1)(t − c − cx))
sin(πdf (t − c − cx))

pX(x)dx,

(9)

where the range (xmin, xmax) depends on the type of
pdfX(x). Based on the first mean theorem for integrals,
there exists a value xmin < θ < xmax such that (9)
becomes:
output(t)=(xmax − xmin)

× sin(π(f2 − f1)(t − c − cθ)) cos(π(f2 + f1)(t − c − cθ))

sin(πdf (t − c − cθ))
pX(θ).

(10)

To compute the width of the output function we intro-
duced the dimensionless variable y = (t−c)/cθ . The width
is the value y0 = (t0 − c)/cθ at which the amplitude of the
output function (10) is half its maximum value:

output(y0) = 1/2output(0). (11)

Using t0 = c+σ/2, where σ is the half-width of the output
function (10), the equation (11) becomes:

sin(π(f2 − f1)cθ(1 − y0)) cos(π(f2 + f1)cθ(1 − y0))
sin(πdfcθ(1 − y0))

= sin(π(f2 − f1)cθ) cos(π(f2 + f1)cθ)

2 sin(πdfcθ)
,

(12)

and y0 = σ/(2cθ) with θ �= 0. If a solution y0 exists for Eq.
(12), then the width σ of the output function must obey
the scalar property because σ = 2cθy0 increases linearly
with the criterion time c.
We carried out numerical simulations using cosine

model withNc different criterion times distributed around
c. Figure 3C shows the output of the SBF model when Nc
criteria are drawn from a uniform distribution centered
on c. For the particular realization of the criteria with uni-
form distribution, it results form Figure 3C that the width

of the Gaussian envelope (dashed line) increases with c.
Figure 3D shows that the width of the Gaussian fit scales
linearly with the criterion time both for uniformly dis-
tributed criteria (solid rhombs in Figure 3D) and normal
distribution (solid square in Figure 3D). These results sup-
port our theoretical prediction that the scalar property is
valid regardless the pdf of memory variability.

The SBF with biophysically realistic model oscillators
Cosine oscillators were extensively used in numerical
simulations of interval timing models with great suc-
cess [13,21,52]. Our current theoretical predictions and
numerical simulations of SBF model with cosine oscilla-
tors are in good agreement with interval timing exper-
iments. Cosine model has a series of advantages: (1) it
is mathematically convenient and computationally effi-
cient, (2) it is close to actual voltage traces recorded
from neural oscillators that fire close to a critical (bifur-
cation) point, and (3) it helps us understand the effects
of different types of variabilities (noises) on the output
of the SBF interval timing model. However, the cosine
waveforms are not physiologically realistic. Furthermore,
abstract cosine waveforms, cos(2π ft), cannot be linked
with the biophysics involved in action potential firing,
such as the density of ionic channels, membrane capac-
itance, etc. Another consequence of these shortcom-
ings is that the cosine waveform cannot account for the
effect of neuromodulators since there is no biophysical
mechanism behind the cosine oscillators with fixed fre-
quency. Therefore, as highlighted in the Introduction, we
replaced the cosine oscillator with a ML model neuron
[68,69] for two main reasons (see Appendix for model
equations): 1) MLmodel neuron is one of the simplest and
often used as a realistic cortical oscillator model [74,94]
that includes conductance-based mechanisms similar to
Hodgkin-Huxley model [70] involving potassium and cal-
cium channels and, 2) by changing a relatively small
subset of model’s parameters, ML model neuron can act
as a Type 1 excitable cell (fast spiking) [73] or a Type
2 excitable cell (slowly sinusoidal envelope close to a
cosine waveform) [95].

ML oscillators with no variability
In the absence of any variability, our numerical results
show that the width of the output function of the SBF
model with ML oscillators does not change with criterion
time, therefore, violating the scaling property. This find-
ing is not surprising and it was predicted analytically in
the case of cosine models. Since any periodic waveform,
such as the action potential of an endogenously spiking
neuron, can be decomposed in discrete cosine compo-
nents, we conjectured that “no variability = no scalar
property” based on the theoretical results obtained with
cosine oscillators. We also noticed that the width of the
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output function decreases with the increase in the num-
ber of neural oscillators. Based on our cosine oscillator
results, this observation is also predicable since the output
function is the discrete Fourier transform of the reference
weights vector w(k, c). Since the temporal and frequency
domains are conjugated through a Fourier transform [96],
the product �f�t is constant. Therefore, increasing the
frequency resolution �f (by increasing the number of
neural oscillators recruited for interval timing tasks over
the same frequency range) decreases the temporal spread
of the output function and makes the behavioral response
more localized.

ML oscillators with arbitrarymemory variability
The fact that noise, whether as channel noise [61-63] or
background synaptic activity [59,60] is a crucial ingredient
that often leads to new and unexpected effects is not lim-
ited to interval timing. For example, the noise facilitates
signal transduction [97] and enhances signal detection by
sensory systems [98]. The noise also induces synchroniza-
tion of neural oscillations in olfactory bulb mitral cells
[99] or in large networks cortical fast-spiking cells [100].
Cortical neurons have a large coefficient of variation of
the interspike interval [64,65] which can be modeled at
different levels of details from an explicit ML stochastic
models of ionic channels to phenomenological potential-
dependent averages [101]. In this paper, we opted for a
phenomenological approach to modeling variability in the
interspike interval through a fluctuating bias current.
In order to maintain the parallel with the cosine (phase)

model, we report here only the effect of memory vari-
ability on the standard deviation of the Gaussian fit of
the output function generated by the SBF model with
ML oscillators (see Figure 4). First, we noticed from our
numerical simulations that the SBF model with ML neu-
rons is less sensitive to the level of memory noise. For
example, a noise level of 0.1% that led to a linear depen-
dence of the standard deviation on the criterion time in
the case of the SBFmodel with cosine oscillators produced
no significant change in the width of the output func-
tion with ML neurons (Figure 4D). The scalar property
is indeed valid (Figure 4D), but it emerges at higher lev-
els of memory variability, which were not even accessible
to phase model. The slope of the standard deviation was
insignificant 0.001 ± 0.001(R2 = 0.342) for 0.1% memory
variance (Figure 4A), 0.007 ± 0.002(R2 = 0.789) for 1%
variance (Figure 4B), respectively, 0.07±0.01(R2 = 0.898)
for 10%memory variance (Figure 4C).We found that a ten
fold increase inmemory variability (from 1% to 10%) led to
a ten fold increase (from 0.007 to 0.07) in the slope of the
standard deviation versus criterion time. This result sug-
gests that for the SBF model with ML oscillators σoutput ∝
σcc as we predicted and already checked for the SBFmodel
with phase oscillators.

Discussion
Interval timing models vary largely with respect to the
fundamental assumptions and the hypothesized mech-
anisms by which temporal processing is explained. In
addition, interval timing model attempt explaining time-
scale invariance, or drug effects differently. Among the
most prominent models of interval timing we cite pace-
maker/accumulator processes [4-6], sequences of behav-
iors [102], pure sine oscillators [13,16,21,45], memory
traces [103-107], or cell and network-level models
[108,109]. Both neurometric functions from single neu-
rons and ensemble of neurons successfully paralleled
the psychometric functions for the to-be-timed intervals
shorter than one second [108]. Interacting populations
that balance LTP and LTD mechanisms are thought to
modulate the firing rate of single-cell with the end effect
at the population level that the adaptation leads to a lin-
ear decay of the firing rate over time [110]. Therefore, the
linear relationship between time and the number of clock
ticks of the pacemaker-accumulator model in the SET of
interval timing [4] was translated into a linearly decaying
firing rate model that maps time and variable firing rate.
By and large, to address time-scale invariance cur-

rent behavioral theories assume convenient computa-
tions, rules, or coding schemes. Scalar timing is explained
as either deriving from computation of ratios of durations
[4-6,111], adaptation of the speed at which perceived time
flows [102], or from processes and distributions that con-
veniently scale-up in time [45,103,105,106]. Some neuro-
biological models share computational assumptions with
behavioral models and continue to address time-scale
invariance by specific computations or embedded lin-
ear relationships [112]. Some assume that timing involves
neural integrators capable of linearly ramping up their
firing rate in time [109], while others assume LTP/LTD
processes whose balance leads to a linear decay of the fir-
ing rate in time [110]. It is unclear whether such models
can account for time-scale invariance in a large range of
behavioral or neurophysiological manipulations.
For example, Killeen and Taylor (1988) explained time-

scale invariance of timing in terms of noisy information
transfer during counting. Similarly, here, we explained
time-scale invariance of timing in terms of noisy coin-
cidence detection during timing. Our theoretical pre-
dictions based on an SBF model show that time-scale
invariance emerges as the property of a (very) large and
noisy network. Furthermore, our results regarding the
effect of noise on interval timing support and extend
the speculation [21] by which an SBF model requires
at least one source of variance (noise) to address time-
scale invariance. Rather than being a signature of higher-
order cognitive processes or specific neural computations
related to timing, time-scale invariance naturally emerges
in a massively-connected brain from the intrinsic noise
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Figure 4 Normalized output functions for SBF model with ML oscillators. The width of the output function of the SBF model with 600 ML
model neurons in the frequency range from 5.5 Hz to 11.5 Hz with normally distributed criterion times is insensitive to low 0.1% (A) and 1% (B)
levels of noise. The width of the output function shows linear increase with the criterion time for high noise levels, i.e., 10% (C) and panel D.

of neurons and circuits [1,108]. This provides the sim-
plest explanation for the ubiquity of scale invariance of
interval timing in a large range of behavioral, lesion, and
pharmacological manipulations.

Conclusions
We investigated both analytically and numerically the
properties of the output function generated by the SBF
model and found that the output function mimics behav-
ioral responses of animals performing peak interval pro-
cedures. We found analytically that, in the absence of any
kind of variability in the parameters of the SBF model,
the width of the output function only depends on the
number of oscillators and the range of frequencies they
cover. Therefore, in the absence of parameter variability
the scalar property is violated.
We showed that if parameter variability is allowed, then

the output function of the SBF model with cosine oscil-
lators is always Gaussian, which is a consequence of the
central limit theorem, regardless the pdf of the fluctuating
parameter(s). Moreover, we found that the scalar prop-
erty is also preserved regardless the pdf of the fluctuating
parameter(s).
We also conjectured that the following two state-

ments are always true in any noisy SBF implementation:
(1) the output function is always Gaussian, which is
a consequence of central limit theorem, and (2) the
scalar property is valid regardless the pdf of the fluc-
tuating parameter(s). The justification for such general

statements is that any periodic waveform of an endoge-
nously spiking neuron can be decomposed into a sum of
cosine waves. Based on our theoretical proof that any SBF
model with noisy cosine oscillators has a Gaussian output
function that obeys the scalar property, we concluded
that the biophysical details of the oscillators that generate
the train of periodic action potentials are not relevant
for the shape of the output function or the validity of the
scalar property. Our numerical tests of the SBF model
with biophysically realistic periodically spiking ML model
neurons showed that the above two conjectures are
valid.

Appendix
Cosinemodel with no variances violates the scalar property
Close to the criterion time, c, only the fist term in (5)
is significant. We used the least square fit method to
approximate its envelope with a Gaussian centered on the
criterion time. The output function becomes:

output(t) = 1/2sin(Noscx)cos((2f1/df+Nosc)x)/sin(x),
(13)

where x = πdf (t−c). The envelope of the output function
(13) is given by the maxima of sin(Noscx)/sin(x), which
oscillates much slowly than the cos((2f1/df + Nosc)x) fac-
tor. Therefore, the local maxima of the absolute value of
the output function (13) are determined by the zeroes of
the first derivative of sin(Noscx)/sin(x), i.e., solutions of
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tan(Noscx0) = Nosctan(x0). The corresponding maximum
values of the output function (13) are:

y0 = 1/2sin(Noscx0)cos((2f1/df + Nosc)x0)/sin(x0).
(14)

The pairs (x0, y0) are determined by the number of oscil-
lators Nosc in the network and the range of frequencies
covered. However, since there is no dependence of (x0, y0)
pair on the criterion time the output function is simply
centered on t = c but otherwise totally independent on
c. This means that the width σout of the output func-
tion envelope depends only on the range of oscillators’
frequencies f1 and f2 = Noscdf and the number of oscil-
lators, but is independent of the criterion time, therefore,
violating the scalar property.

Morris-Lecar model equations
We used a dimensionless, conductance-based, Morris-
Lecar model [68,113] described by the following
equations:

x′
1 = f1(x1, x2) = − ICa − IK − IL + I0,
x′
2 = f2(x1, x2) = ξλ0(x1)(w∞(x1) − x2),

(15)

where x1 is the membrane potential, x2 is the slow potas-
sium activation and all ionic currents are described by
Ix = gx(x1 − Ex), where gx is the conductance of the
voltage gated channel x and Ex is the corresponding rever-
sal potential. In particular, the calcium current is ICa =
gCam∞(x1)(x1 − ECa), the potassium current is IK =
gKx2(x1 − EK ), and the leak current is IL = gL(x1 − VL).
The reversal potentials for calcium, potassium and leak
currents are ECa = 1.0,EK = −0.7,EL = −0.5, respec-
tively. The steady state activation function for calcium
channels is m∞(x1) = 1 + tanh((x1 − V1)/V2))/2, where
V1 = −0.01,V2 = 0.15, the steady state activation func-
tion for potassium channels is w∞(x1) = (1 + tanh((x1 −
V3)/V4] )/2 where V3 = 0.1,V4 = 0.145, the inverse time
constant of potassium channels is λ0(x1) = cosh((x1 −
V3)/V4/2), the potassium and leak conductances are gK =
2.0, gL = 0.5, respectively, and the ξ = 1.0/3.0.
The two control parameters that can switch the ML

model from a Type 1 excitable cell [70] to a Type 2 are the
calcium conductance gCa and the bias current I0. If gCa =
1.0 and 0.083 < I0 < 0.242 the equations (15) describe
what was classified by A.L. Hodgkin as Type 1 excitable
cells. If gCa = 0.5 and 0.303 < I0 < 0.138 the equations
(15) describe a Type 2 excitable cells. In our simulations,
we used a Type 2 ML model neuron that has a membrane
potential shape very close to a cosine waveform.
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