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Abstract

single knockout mice.

compared to their wild-type littermates.

and other disorders.

Background: Group Il metabotropic glutamate receptors (mGlu2 and mGlu3, encoded by Grm2 and Grm3) have
been the focus of attention as treatment targets for a number of psychiatric conditions. Double knockout mice
lacking mGlu2 and mGlu3 (mGlu2/3™") show a subtle behavioural phenotype, being hypoactive under basal
conditions and in response to amphetamine, and with a spatial memory deficit that depends on the arousal
properties of the task. The neurochemical correlates of this profile are unknown. Here, we measured tissue levels of
dopamine, 5-HT, noradrenaline and their metabolites in the striatum and frontal cortex of mGlu2/3™~ double knockout
mice, using high performance liquid chromatography. We also measured the same parameters in mGlu2™~ and mGlu3 ™~

Results: mGlu2/3™ mice had reduced dopamine levels in the striatum but not in frontal cortex, compared to wild-
types. In a separate cohort we replicated this deficit and, using tissue punches, found it was more prominent in the
nucleus accumbens than in dorsolateral striatum. Noradrenaline, 5-HT and their metabolites were not altered in the
striatum of mGlu2/3™~ mice, although the noradrenaline metabolite MHPG was increased in the cortex. In mGlu2 ™~
and mGlu3™" single knockout mice we found no difference in any monoamine or metabolite, in either brain region,

Conclusions: Group Il metabotropic glutamate receptors impact upon striatal dopamine. The effect may contribute to
the behavioural phenotype of mGlu2/3™~ mice. The lack of dopaminergic alterations in mGlu2 ™~ and mGlu3 ™" single
knockout mice reveals a degree of redundancy between the two receptors. The findings support the possibility that
interactions between mGlu2/3 and dopamine may be relevant to the pathophysiology and therapy of schizophrenia
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Background

Group II metabotropic glutamate receptors, mGlu2 and
mGlu3, are G protein coupled receptors that negatively
regulate adenylate cyclase [1]. The receptors are pre-
dominantly located pre-synaptically, where they function
as auto- and hetero-receptors, inhibiting release of glu-
tamate and other neurotransmitters, including dopa-
mine. mGlu2 and mGlu3 are widely expressed in the
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brain with overlapping but not identical regional, cellu-
lar, and subcellular distributions [2].

mGlu2 and mGlu3 have been implicated in a number
of psychiatric disorders including, schizophrenia, addic-
tion, anxiety and depression. In schizophrenia, for ex-
ample, allelic variation in GRM3 (the gene encoding
mGlu3) has been associated with disease risk, and
mGlu2/3 agonists have shown efficacy in models of the
disorder, and in one study, of the disorder itself [3-5].
However, the overall picture is complex, with studies
showing varying results, and with uncertainty as to the
pathways by which mGlu2/3 operate, including how they
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impact upon dopamine, the neurotransmitter central to
existing treatments for schizophrenia.

Knockout mice lacking mGlu2 (mGlu2™") or mGlu3
(mGlu3™'") have been generated to help characterize the
function of these receptors. Results emphasize that the
roles of these receptors are subtle, with the mice show-
ing no overt behavioural or neurochemical phenotype at
baseline [6-8]. This may in part be due to compensatory
up-regulation of the remaining receptor [9]. Double
knockout mice lacking both mGlu2 and mGlu3 (mGlu2/
377 also known as Grm2/3™'") show an emergent, and
complex, phenotype. Specifically, the mice are hypoactive,
are less sensitive to amphetamine induced hyperactivity,
and have a spatial memory impairment in appetitive but
not aversive tasks [10].

The neurochemical correlates of these behavioural
findings are unknown, although the hypoactivity at base-
line and in response to amphetamine are suggestive of
alterations in dopamine and potentially of other mono-
amines. This is of relevance to the roles which group II
mGlus may play in, or as targets for, dopamine-related
psychiatric disorders. Here, we used high performance li-
quid chromatography (HPLC) to measure tissue levels of
monoamines and their metabolites in the cortex and
striatum of mGlu2/3™~ mice. Given the findings, we re-
peated the study in mGlu2”~ and mGlu3™" single
knockout mice, and also measured dopamine separately
in the ventral striatum (nucleus accumbens [NAc]) and
dorsolateral striatum of the mGlu2/3™'~ mice.

Results

Tissue monoamine levels were measured in mGlu2/3™"~
and wild-type mice. The main finding is a reduction in
dopamine content in the striatum (~25%, p=0.005), accom-
panied by similar reductions in the metabolites DOPAC
(~28%, p=0.004) and HVA (~22%, p=0.023; Figure 1) of
the mGlu2/3™"~ mice. In addition, the noradrenaline me-
tabolite MHPG was increased (~31%, p=0.003) in frontal
cortex (Table 1). There were no significant differences be-
tween groups in cortical dopamine metabolism, nor in
5-HT or its metabolite 5-HIAA in either region
(Table 1). No significant interactions of sex and geno-
type were found.

The experiment was repeated in single mGlu2~~ and
mGlu3™~ knockout mice and their respective littermate
controls. As detailed in Table 2, there were no differ-
ences in monoamines or their metabolites between ge-
notypes. In particular, striatal dopamine showed no
differences, nor trends.

To replicate and better characterize the striatal dopamine
findings seen in the mGlu2/3~~ mice, a second cohort of
animals were studied, from which tissue micropunches
were taken to allow separate measurements in dorsolateral
striatum and NAc. Figure 2 shows that dopamine content
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Figure 1 Dopamine and dopamine metabolites are reduced in
the striatum of mGlu2/3”" mice. (A) Dopamine content is reduced
in the striatum of mGlu2/3”" mice (black) compared to wildtype
mice (white), n = 14 WT, 16 KO. Dopamine metabolites DOPAC
(B) and HVA (C) are also reduced. Monoamine concentration is
normalised to the tissue weight in mg. Graphs show mean + SEM;
all one-way ANOVA, *p=0.023; **p<0.005.

was decreased in NAc (~22%, p=0.037) but not in the
dorsolateral striatum (~6%, p=0.837) of mGlu2/3~"~ mice.
DOPAC followed a similar trend (NAc ~25% p=0.1, and
striatum ~7%, p=0.98); HVA could not be measured in this
experiment.
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Table 1 Monoamines and their metabolites in the cortex and striatum of mGlu2/3~/~ double knockout and

wild-type (WT) mice

Cortex Striatum

mGlu2/3 WT mGlu2/3™"~ mGlu2/3 WT mGlu2/3™~
Dopamine 1.7 +/- 051 14 +/-034 49.8 +/-3.38 37.8 +/— 2.40°
DOPAC 06 +/—0.13 0.5 +/— 009 38 +/- 023 27 +/-022°
HVA 08 +/-0.10 09 +/-0.12 49 +/- 033 3.9 +/— 0.28°
Noradrenaline 1.6 +/— 0.08 1.8 +/-0.07 14 +/- 007 16 4+/-0.15
MHPG 22 +/-0.17 29 +/-0.14° 43 +/-038 42 +/- 041
5HT 29 +/-0.13 3.1 +/- 009 3.5 +/- 020 36 +/- 023
SHIAA 1.1 +/—-0.08 1.3 +/-0.08 1.8 +/-0.11 1.8 4+/-0.12

n=12-16 mGlu2/3~~ mice, and 12-14 WT mice. Values are pmol/mg tissue, mean + SEM.

3F1,26 = 9.25, p=0.005.
bF1,26 = 9.85, p=0.004.
F1,26 = 5.84, p=0.023.
9F1,24 = 11.1, p=0.003.

Discussion

Interactions between mGlu2/3 and monoamines, par-
ticularly dopamine, are of interest because of the puta-
tive roles of these receptors in the pathophysiology and
therapy of various dopamine-related psychiatric disor-
ders, including schizophrenia, anxiety, and addiction.
The main finding of the present study is that deletion
of both receptors leads to a decrease in striatal dopa-
mine, particularly in the NAc. The data complement
the many previous pharmacological studies which have
shown effects of mGlu2/3 agonists and antagonists on
dopamine, albeit with complex and in places inconsist-
ent results [4,11-21].

Table 2 Monoamines and their metabolites in the cortex
and striatum of mGlu2™~ and mGlu3™'~ mice and their
respective wild-type (WT) littermates

mGlu2 WT = mGlu2™”~  mGIu3 WT  mGlu3™"
Cortex
Dopamine 0.5 +/-008 04 +/-007 04+/-004 04 +/-005
DOPAC 02 +/-003 02+/-001 02+/-002 02+/-003
Noradrenaline 20 +/-0.18 18 +/-0.16 22+/-0.19 23 +/-022
MHPG 06 +/- 005 06 +/-005 07+/-010 08+/-007
5-HT 314/-019 31+/-023 31+4/-020 29+/-025
5-HIAA 10 +/- 003 08+/-006 08+/—008 0.7 +/-006
Striatum
Dopamine 340 +/-38 365+/-38 357 +/-47 326+/-33
DOPAC 234/-02 24+4/-02 21+/-01 224/-02
HVA 28+/—02 31+/-02 23+/-02 30+/-03
Noradrenaline 20+4/-02 18+4/-02 15+/-01 16+/-0.
5-HT 294/-02 31+4/-02 36+/-02 35+/-03
5-HIAA 16+-01 16+-01 16+/-01 18+/-003

n=6-8 in each group. Values are pmol/mg tissue, mean + SEM. There are no
significant differences between groups. Reliable measurements for cortical
HVA and striatal MHPG could not be obtained.

mGlu2/3~'~ mice are hypoactive and show decreased
responsiveness to amphetamine [10]. It is plausible that
the reduced dopamine ‘tone’ reported here contributes
to these findings. Whether it also underlies the arousal-
dependent effect on spatial memory [10] or the impaired
long-term depression [22] of the mice, is unknown. But
it may be significant that the NAc is involved in motiv-
ation, reward and aversion [23,24]. Noradrenaline also
plays a role in attention, arousal and stress [25] and
mGlu2/3 ligands have been shown to regulate NA re-
lease [26]. We observed an increase in cortical MHPG
and an increase in the MHPG to noradrenaline ratio
(p=0.053), which may reflect an increase in noradrenaline
turnover and reduced pre-synaptic a2-adrenoceptor activ-
ity [27], therefore it is possible that changes in noradren-
aline signalling are also important for the behavioural
findings in these mice. In a future study, simultaneous be-
havioural and neurochemical measurements could be
taken, helping to confirm and clarify the links between
them, and could be extended to include other transmit-
ters, such as GABA and glutamate.

We found no differences in monoamine content in ei-
ther mGlu2™/~ or mGlu3~”/"mice. In this respect the
findings in the mGlu2/3™/~ mice were emergent, and
mirror the behavioural profile, which is present in the
mGlu2/3~'~ mice [10] but is not observed in either sin-
gle knockout line [6-8,28-30] (and unpublished observa-
tions; De Filippis, DMB, PJH, TAL). One relevant finding
in the mGlu2™'~ mice is that despite no changes in stri-
atal tissue levels of dopamine (current data and [7]) and
no baseline dialysate changes in glutamate or dopamine
[7], these mice exhibit enhancement of cocaine-induced
extracellular dopamine and glutamate in the NAc [7].
There is also evidence that a greater proportion of dopa-
mine D2 receptors are in a high-affinity state in mGlu2™'~
and mGlu3~ “mice, which may be indicative of a subtle
difference in dopaminergic function [31]. By the same
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Figure 2 Dopamine is reduced in tissue punches of the NAc
but not dorsolateral striatum of mGlu2/3”" mice. A: Dopamine
content is reduced in tissue punches of NAc but not dorsolateral
striatum of mGlu2/3”" mice (black) compared to wildtypes (white).
NAc n = 12 WT, 12 KO and dorsolateral striatum n=12 WT, 14 KO.
B: DOPAC shows a trend towards reduction in the NAc of mGlu2/
3-/- mice (p=0.1). NAc n = 12 WT, 14 KO and dorsolateral striatum
n= 12 WT, 15 KO. Monoamine concentration is normalised to the total
protein content of the punches. Graphs show mean +SEM; all one-way
ANOVA except striatal DOPAC, analysed with Mann Whitney U

test, *p=0.037.

token, the unchanged baseline levels of noradrenaline,
5-HT and cortical dopamine in mGlu2/3~~ mice reported
here do not preclude the occurrence of functionally sig-
nificant alterations in monoamine signalling.

The striatal dopamine deficit observed in the mGlu2/37/~
mice could be a result of reduced synthesis and storage,
and/or decreased release. The latter explanation seems
more likely given that dopamine and its metabolites were
all comparably reduced. However, measurements of extra-
cellular dopamine using microdialysis or voltammetry
would be needed to confirm this interpretation.

There are a number of locations at which mGlu2/3 may
regulate striatal dopamine, either directly or indirectly.
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One possibility is that the receptors are expressed by, and
function within, dopamine neurons. However, neither
mGlu2 nor mGlu3 mRNA is detected in the substantia
nigra pars compacta, while in the ventral tegmental area
(VTA), only very low levels of mGlu2 and no mGlu3
mRNA is detected [32-34]. These data are complemented
by findings that mGlu2/3 immunoreactivity does not co-
localize with tyrosine hydroxylase positive axons in the
striatum [35]. Similarly, there is little or no mGlu2/3 im-
munoreactivity detected in the VTA or substantia nigra
pars compacta [35-37] suggesting that mGlu2/3 are un-
likely to be located presynaptic to the dendrites or soma
of dopamine neurons. This possibility cannot be excluded
entirely since some data have shown functional mGlu2/3
receptors in VTA [38-40]. Nevertheless, together these re-
sults suggest that mGlu2/3 regulation of dopamine is not
mediated by receptors expressed or located within the
dopaminergic nuclei.

Instead, a more likely site for mGlu2/3-mediated
modulation of striatal dopamine is within the striatum
itself. The striatal neuropil shows strong mGlu2/3 im-
munoreactivity [2,35-37], accompanied by low to mod-
erate levels of mGlu2 and mGIlu3 mRNAs [32-34].
This combination of mRNA and protein data suggests
that regulation of striatal dopamine by mGlu2/3 occurs
via receptors which are expressed on the axonal processes
of neurons projecting in from outside the striatum.
Corticostriatal afferents are a strong candidate: mGlu2/3
immunoreactivity is present on their terminals [37,41],
striatal mGlu2/3 immunoreactivity is markedly decreased
by decortication [35], and there is abundant mGlu2 and
mGIlu3 mRNA in cortical neurons [32,33,41]. Striatal
mGlu2/3 are located at axo-dendritic synapses [42], ruling
out direct effects on dopaminergic axon terminals. Thus,
mGlu2/3 regulation of striatal dopamine is likely to be
mediated via an intrinsic striatal neuron population that
does not itself express mGlu2/3. This issue can be
clarified by studies of the circuitry underlying the
neurochemical results reported here. As part of this
work, the possible contribution of glial mGlu3 should
be considered [2,35,43], and it will also be necessary to
investigate the basis for the preferential reduction in
dopamine in NAc versus dorsolateral striatum. Regard-
ing the latter point, it might have been expected that
the reduction in dopamine in the NAc (Figure 2)
would have been of greater magnitude than that seen
in the striatum overall (Figure 1). In the event, both
were comparable (22-25%). This may reflect the differ-
ent methodologies and normalization methods used in
the tissue punch and homogenisation experiments, or
simply variation between cohorts.

As noted earlier, there have been many pharmaco-
logical studies showing that mGlu2/3 agonists and an-
tagonists affect dopamine turnover, release and function
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[4,11-21]. In this respect our data are consistent with
these findings. However, direct comparisons with the
earlier pharmacological studies are difficult, for two rea-
sons. Firstly, the most pertinent drug studies would be
those using chronic administration of mGlu2/3 antagonists,
yet to our knowledge these have not been conducted — the
majority of studies have used agonists, and have used acute
administration. Secondly, the pharmacological findings
have been inconsistent, in terms of the magnitude and even
the direction of effects on dopamine levels or release
caused by acute administration of mGlu2/3 ligands
[4,11-21]. Despite these issues, the present data sup-
port, and extend, the evidence that mGlu2/3 impact on
dopamine, and thereby may be valuable therapeutic
targets for disorders involving dopamine dysregulation.

Conclusions

Baseline tissue levels of dopamine and dopamine metab-
olites are reduced in the striatum of mGlu2/3™'~ mice,
providing novel evidence that group II metabotropic glu-
tamate receptors influence the dopamine system. The
finding is relevant to the development of mGlu2/3 ligands
as potential therapies for neuropsychiatric disorders. No
changes were observed in the frontal cortex, nor in mice
lacking only one of the two receptors. The mechanisms by
which mGlu2/3™~~ deletion results in decreased striatal
dopamine (and whether it is a direct or indirect effect) are
unknown. They may be clarified by dynamic measures of
dopamine functioning, and by investigation of the mo-
lecular correlates of the neurochemical changes reported
here.

Methods

All animal studies were carried out in accordance with
Animals (Scientific Procedures) Act 1986 and the GSK
Policy on the Care, Welfare and Treatment of Animals,
and were approved by the relevant local ethics committee.

Knockout mice

mGlu2 (Grm2), mGlu3 (Grm3) single knockout (mGlu2~/~
or mGlu3™") and double knockout mice (mGlu2/377) on a
C57BL/6] background were obtained from GlaxoSmithKline,
Harlow, UK. The mGlu2~/~ mice were generated as in [30],
mGlu3™~ mice were generated as in [44] and mGlu2/37~
were generated as in [10]. Briefly, mGlu2~”/~ mice were
crossed with mGlu3™~ mice to generate double heterozygote
offspring. Double heterozygotes were crossed to generate
double knockout (1:16) and wild-type (WT; 1:16) mice. To
avoid excessive animal wastage, separate lines of WT and
mGlu2/3™"~ mice were established.

Tissue preparation for homogenate studies
Mice were culled by cervical dislocation. Frontal cortex
and striatum were dissected out, snap frozen in isopentane
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on dry ice and stored at -80°C. For the study of
mGlu2/37~ mice, 16 double knockouts (8 male, 8 fe-
male) and 16 WT mice (8 male, 8 female), aged 8-11
months, were used. For the studies of mGlu2™'~ and
mGlu3~’~ mice, 8 males of each type were compared
with 8 male littermate controls, aged 11-12 months. Final
samples sizes were smaller for some analyses, either due
to abnormal chromatograms, or due to outliers.

Immediately prior to HPLC analysis, tissue was removed
from the freezer, weighed and homogenised in 0.06M
perchloric acid (PCA) with a polytron homogeniser for 20
seconds. Samples were centrifuged for 5 minutes at
14,000 rpm on a desktop centrifuge at 4°C and the super-
natant collected and filtered (using a 13 mm syringe filter,
Whatman). Samples were handled on ice and run as soon
as possible to prevent degradation. Monoamine concen-
tration was measured using HPLC and normalised to the
tissue weight of each sample.

Tissue preparation for tissue punch study

15 mGlu2/37/~ (8 male, 7 female), and 12 WT (7 male, 5
female) mice, aged 6 — 11 months, were culled by cervical
dislocation and the whole brain snap frozen in liquid ni-
trogen and stored at —80°C. Coronal brain sections
containing the NAc and striatum were cut on a cryostat
(thick sections were produced by pressing the advance
button 20 times before cutting each section), collected on
untreated glass slides, and stored at —80°C.

Immediately prior to HPLC analysis, slides containing
2 to 3 brain sections for each mouse were placed on dry
ice and two tissue punches from each hemisphere were
taken, one from dorsolateral striatum and one from ven-
tral striatum containing mostly NAc, resulting in a total
of 4 punches per section. Approximately 8 punches per
brain region per mouse were taken. A 0.5 mm diameter
sample corer (Fine Science Tools 18035-50) was used to
make the tissue punch. Punches were ejected into 200 pl
of ice cold 0.06M PCA, lysed by placing in an ice cold
ultrasonic bath for 1min and centrifuged at 13,000 rpm
for 10min in a desk top centrifuge at 4°C. The super-
natant was removed, filtered and analysed with HPLC.
Protein pellets were collected and stored at —80°C. The
total protein content in each sample was determined
using Bradford assay; samples were diluted with 5 pl of
1M NaOH, solubilised and 20 pl of ddH,O added and then
Bradford assay run as per standard protocol (Sigma, UK).
Monoamine concentrations were normalised to the protein
content as measured above.

HPLC detection

Immediately after filtration, levels of dopamine, nor-
adrenaline, 5-HT, DOPAC, HVA, MHPG and 5-HIAA
were measured using HPLC and electrochemical detec-
tion. Analytes were separated by injecting 50 pl of sample
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into a Microsorb C18 column (100 x 4.6 mm column,
3 pm C18 Microsorb particles, Varian Inc) and a mobile
phase containing 120 mM NaH,PO,, 2 mM NaCl, 0.1 mM
EDTA, 2 mM OSA (1-Octanesulphonic acid sodium) and
15% (v/v) methanol, pH 3.71, at a flow rate of 1 ml/min
(Jasco pump, Jasco, UK). Analytes were electrochemically
detected using an ANTEC Decade II amperometric de-
tector, (set at 28°C [first double knockout experiment]) or
36°C (single knockout and tissue punch experiments),
Antec Leyden, Zoeterwoude, The Netherlands), which
was equipped with an ISAAC flow cell (Antec Leyden,
Zoeterwoude, The Netherlands) operated at +0.6 V
with an Ag/AgCl reference electrode. Chromatograms
were processed by ChromPass software (Jasco, UK).

Data analysis

We first checked for outliers, defined as being >3x out-
side the interquartile range, and assessed data with the
D’Agostino and Pearson omnibus K2 normality test.
Where data were suitable for parametric analysis, we
used one-way ANOVA with genotype and sex as
dependent factors for the double knockout mice experi-
ments, and t-tests for the single knockouts (since only
males were studied). When data were not normally dis-
tributed, the Mann—Whitney U test was used; in the
event, the latter was required for analyses of cortical
dopamine, DOPAC and 5-HIAA in the mGlu2/37"~
mice, for cortical DA and 5-HT in mGlu2™~ mice, and
for striatal DOPAC in the tissue punch study. Analyses
were conducted using SPSS v20 and Graphpad Prism 5.
All tests were 2-tailed.

Abbreviations

DOPAC: 3,4-Dihydroxyphenylacetic acid; MHPG: 3-Methoxy-4-
hydroxyphenylglycol; 5-HIAA: 5-Hydroxyindoleacetic acid; HPLC: High
performance liquid chromatography; HVA: Homovanillic acid; mGlu3™": mGlu3
knockout; mGlu2 ™~ mGlu2 knockout; mGlu2/3~~: mGlu2/3 double knockout;
NAc: Nucleus accumbens; VTA: Ventral tegmental area; WT: Wild-type.
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