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Few attempts have been made to model learning of sen-
sory-motor control using spiking neural units. We trained
a 2-degree-of-freedom virtual arm to reach for a target
using a spiking-neuron model of motor cortex that maps
proprioceptive representations of limb position to motor
commands and undergoes learning based on reinforce-
ment mechanisms suggested by the dopaminergic reward
system. A 2-layer model of layer 5 motor cortex (M1)
passed motor commands to the virtual arm and received
proprioceptive position information from it. The reinfor-
cement algorithm trained synapses of M1 using reward
(punishment) signals based on visual perception of
decreasing (increasing) distance of the virtual hand from
the target. Output M1 units were partially driven by noise,
creating stochastic movements that were shaped to
achieve desired outcomes.

The virtual arm consisted of a shoulder joint, upper
arm, elbow joint, and forearm. The upper- and forearm
were each controlled by a pair of flexor/extensor muscles.
These muscles received rotational commands from 192
output cells of the M1 model, while the M1 model
received input from muscle-specific groups of sensory
cells, each of which were tuned to fire over a range of
muscle lengths. The M1 model had 384 excitatory and
192 inhibitory event-based integrate-and-fire neurons,
with AMPA/NMDA and GABA synapses. Excitatory and
inhibitory units were interconnected probabilistically.
Plasticity was enabled in the feedforward connections
between input and output excitatory units. Poisson noise
was added to the output units for driving stochastic
movements. The reinforcement learning (RL) algorithm
used eligibility traces for synaptic credit/blame assign-
ment, and a global signal (+1=reward, -1=punishment)
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corresponding to dopaminergic bursting/dipping.
Eligibility traces were spike-timing-dependent, with pre-
before-post spiking required. Reward (punishment) was
delivered when the distance between the hand and target
decreased (increased) [1].

RL learning occurred over 100 training sessions with the
arm starting at 15 different initial positions. Each sub-
session consisted of 15 s of RL training from a specific
starting position. After training, the network was tested
for its ability to reach the arm to target from each starting
position, over the course of a 15 s trial. Compared to the
naive network, the network post-training was able to
reach the target from all starting positions. This was most
clearly pronounced when the arm started at a large dis-
tance from the target. After reaching the target, the hand
tended to oscillate around the target. Learning was most
effective when recurrent connectivity in the output units
was turned off or at low levels. Best overall performance
was achieved with no recurrent connectivity and moderate
maximal weights. Although learning typically increased
average synaptic weight gains in the input-to-output M1
connections, there were frequent reductions in weights as
well. Our model predicts that optimal motor performance
is sensitive to perturbations in both strength and density
of recurrent connectivity within motor cortex and that
therefore the wiring of recurrent connectivity during
development might be carefully regulated.
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